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At the start of today’s presentation, please self-monitor your background noise and mute your teleconference
accordingly. You may be muted by the Moderator/Host in order to maintain sound quality during the presentation. If
you are muted, a red line will appear across the telephone icon next to your name in the attendee list. You can manually
un-mute your phone to ask a question.

During the presentation, the Moderator/Host and Presenter will be taking questions for clarity only (first 45-50 minutes
of the webinar). All other questions will be addressed during the Q&A period (second 40-45 minutes of the webinar).

If you have a question, you may either use the hand icon to "raise your hand”, type a message in the chat section to the
Moderator/Host, or ask your question via the teleconference if you have joined by phone. You will be recognized by the
Moderator so that you may ask your question.

When asking a question, please first identify yourself and your organization, for the benefit of all attendees.

This webinar series is a service provided to the Joint Program Sponsor members only. On occasion, we may have
prospective companies representatives attending for purposes of exploring membership with the Joint Program.

At the conclusion of the Webinar, online attendees will be presented with a brief survey. We hope that you will take a
few minutes to provide feedback on today's session and make suggestions for future webinar topics.

We welcome your comments at any time to Frances Goldstein (fkg@mit.edu).
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Uncertainty in Regional Change

Simulated Precipitation Change in 215t Century: A1B Scenario
Opposing Climate Model Results at the Regional Scale
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The Integrated Global System Model (IGSM)
Water Resource System (WRS) Framework
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|IGSM-WRS Basin Scales
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 Global application: Modeling Impacts of Global Change on Water Resources, C. A.
Schlosser, K. Strzepek, X. Gao, E. Blanc, A. Gueneau, C. Fant, B. Rasheed, T. Smith-

Greico, H. Jacoby, and J. Reilly (MIT Joint Program Report, forthcoming)

U.S. application: Water Resource System modeling for the U.S., Blanc E., K.
Strzepek, C. A. Schlosser, H. Jacoby, A. Gueneau, C. Fant, S. Rausch (MIT Joint
Program Report, forthcoming)

e Zambeazi River Basin Study: Special Issue of Climatic Change




IGSM Scenarios |
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Changes in Irrlgatlon Demand in 2050
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Unconstrained Emissions Scenario

Uncertainty in regional climate
changes patterns lead to
different consequences for
agricultural water demand.
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Changes in Non-agricultural Consumption
at 2050: Unconstrained Emissions

Change in Non-lrrigation Consumption (%)
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Changes to “Water Stress” at 2050
Unconstrained Emissions Scenario — No growth
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Case 4: NG-UCE-DRY Case 6: NG-L1S-DRY
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Higher sensitivity to climate pattern than policy scenario.




Changes to “Water Stress” at 2050
Unconstrained Emissions Scenario with growth

Case 4: UCE-DRY Case 6: L1S-DRY

Change in Water Stress (%)
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Salient Effects of Growth in Non-Agriculture Demand




Water Resource System
Modeling for the U.S.

Elodie Blanc, Kenneth Strzepek, Adam Schlosser, Henry Jacoby,
Arthur Gueneau, Charles Fant, Sebastian Rausch, John Reilly
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WRS-US

- WRS

— Global model: 282 regions
— 14 regions in the U.S.

« WRS-US

— WRS-US focuses solely on the continental US (excludes
Hawaii and Alaska)

— 99 river basins
— Improved estimation methods for water requirements

-
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River Basin Delineation
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Goal of the model

Allocate water to each sector (i.e. water depletion)
across the year in order to minimize water
shortages (i.e. unmet water requirements) at the
river basin level. Subject to water resource and
environmental constraints.

water _ supply
max Z Z — month,sector
month sectors WWater _ reqUIrements

month,sector

Sit. Z Water _ SUPPIY o cecor < (WALET _ FESOUICES

sector

— environmental _requirements_ )

month
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Water Resources

« Runoff/River flow

— Estimated using the biophysical Community Land Model
(CLM version 3.5; NCAR, 2012)

— Accounts for precipitation, evaporation, water
interception by plants, infiltration, snow melt and snow
pack formation

— Inflow from upstream basins calculated endogenously

« Inter-basin transfers

— Large transfers via canals & aqueducts in the South West
— Assumed to be constant at the 2005 level in each basin

« Ground water
— No ground water recharge modeled (at this stage)
F - — Assumed to be constant at the 2005 level in each basin

y
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Water Requirements

Irrigation

electric
cooling

N

Source: D://Wwww.sswm.info/category/understand-vour-system/how-water-used




Water Requirements

 Thermoelectric cooling The Regional
Energy Deployment
'Fl;he'US | System (ReEDS)
Eeglona_ model produces
Pc:)_nomlc electricity
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The WIthdrawal and Consumption for Thermoelectric Systems
(WICTS) model estimates water withdrawal and consumption

Strzepek, K, Baker, J., Farmer, W., Schlosser, C. A., 2012. Modeling Water Withdrawal and Consumption for Electricity

A2 Generation in the United States, MIT Joint Program Report No 222

ﬁ Rausch, S., and Mowers, M., 2012. Distributional and Efficiency Impacts of Clean and Renewable Energy Standards for
Electricity, MIT Joint Program Report No 225
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Water Requirements

e Public Supply (PS): Residential, some industrial and
commercial

« Self Supply (SS): industrial, commercial, agriculture (except
irrigation)

« Mining (MI): all types of mining

Calculated using econometric estimates of water withdrawals
Sector withdrawals are a function of population and GDP

Water withdrawal & Population data from USGS (2011) at the
county level data, every 5 years from 1985 to 2005

State-level GDP data from the Bureau of Economic Affairs
(BEA, 2011)

Annual withdrawal estimates are assumed to be spread
evenly across the year

Future water requirements estimated using GDP and
population growth estimated using USREP (Rausch et al.,
2009)

GLOBAL CHANGE
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Water Requirements

« Irrigation
— Irrigation system schema

1
|
Water Fiald CLLS : Managerment
decisions
hody Flant |1
|
|
|
|
Waterwithdrawsal YWater delivery YWWater consumption YWWater consumption
atthe source atthe field atthe root atthe root
I far maximurmn wields
|
Conveyance Field I Management Factar
efficiency efficienoy : & Calibration
1

« CliCrop (Fant et al., 2011) estimates crop water consumption at the
root of plants (in mm/crop/year) for maximum vyields

« Calculate a management factor (M factor) varying by crop to obtain
water consumption for actual yields

* Apply conveyance and system efficiencies to determine how much of
the water withdrawn is actually consumed

http://globalchange.mit.edu/



Water Requirements

 Environmental requirements

— Spills to downstream basins are constrained by
minimum environmental flows

— Releases from surface storage are limited to a
proportion of the storage capacity in order to respect an
environmental minimum storage threshold.

TP

L)

GLOBAL CHANGE http://globalchange.mit.edu/




« Water resources and requirements are modeled
from 2005 to 2050

e 2 GHG emissions scenarios:
— UCE: Unconstrained emissions scenario
— L1S: Level 1 stabilization

 Two climate patterns:
— GLOBAL WET
— GLOBAL DRY

-
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Predictions Inputs

Total population and total GDP in the US
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Prediction Inputs

Average annual runoff (in ‘000mm) for the base period (2005-2009) and
relative change (in %) for the prediction period (2041-2050)
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Predictions: Total Water Requirements

Total water requirements (in MCM) from 2005 to 2050
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Predictions: Total Water Requirements

Total water requirement (in ‘0O0O0OMCM) for the base period (2005-2009) and
relative change (in %) for the prediction period (2041-2050)
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Predictions: Thermoelectric Cooling Water Requirements

Thermoelectric cooling water requirement (in ‘000MCM) for the base period (2005-
2009) and relative change (in %) for the prediction period (2041-2050)
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Predictions: Irrigation Water Requirements

Irrigation water requirement (in ‘000MCM) for the base period (2005-2009) and
relative change (in %) for the prediction period (2041-2050)
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Predictions: Water Stress

Supply Requirement Ratio = supply/requirement

Annual average SRR for the base period (2005-2009) and relative change (in
%) for the prediction period (2041-2050)
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Predictions: Water Stress

Difference between the average SRR under the L1S and UCE scenarios in the
prediction period (2041-2050)
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Predictions: Water Stress

Box plot of monthly SRRs over stressed ASRs for the base period (2005-2009)
and the prediction period (2041-2050)
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Notes: the boxes represent, for each climate pattern, scenario and projection period, the range of
SRRs over selected ASRs (1603, 1602, 1501, 1503, 1301, 1102, 1007) between the 25th and 75th
percentile. The whiskers represent adjacent values.
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Conclusions

« Western part of the US is the most
concerned by water issues

* Average water stress is not expected to be
generally alleviated by a constrained GHG
emission policy (L1S mitigation) by 2050

« However, monthly water stress variability

is projected to be slightly smaller under
the L1S scenario

http://globalchange.mit.edu/



Evaluating Climate Change Impacts and Adaptation for
Investments in Southern African
Water Resources Infrastructure:
An Uncertainty Approach

Kenneth Strzepek, Chas Fant,
Yohannes Gebretsadik, Adam Schlosser

GLOBAL CHANGE
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Difficulty with Anticipating Climate Change

There is uncertainty about some

aspects of regional climate change
— Direction
— Magnitude
— Timing
— Path

AR4 Model Mean
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Infrastructure Investment under RISK

* Probabilistic approach means that we
can compare investments based on
both expected net benefits and risks

p
~JInvestment 1

Investment

1,.

. Benefit-cost ratio
o f o'?7
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Integrated Analytical Framework

Global change
(temperature, rainfall,
fossil fuel prices)

Rivers Sea level rise
(runoff, streamflow) (land loss, salination)

Flooding

(frequency, severity)

Energy Agriculture Infrastructure
(hydropower) (food, exports) (roads, ports, houses)

Local economy
(growth, jobs,

welfare, inequality)
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DJF Southern Africa Temperature

CMIP3/IPCC Model Mean CMIP3/IPCC Models

Schlosser et al., 2012
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DJF Southern Africa Precipitation

CMIP3/IPCC Model Mean CMIP3/IPCC Models
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DJF Eastern Zambezi Precipitation

Eastern Zambezi Frequency Distributions
2050 Decadal Average Precipitation Change: DJF
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Zambezi River Sub Catchments

Zambezi Basins
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Runoff Under Unconstrained Emissions

- 888888

GLOBAL CHANGE http://globalchange.mit.edu/



The Uncertain Future of Runoff in Zambezi River

Zambia
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What Does It Mean For Hydropower Development?

Inside a Hydropower Plant

Powerhouse

Transformer Power Lines

Generator

Control N Outflow
Gate Penstock Turbine

©2001 HowStuffWorks
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Zambezi River Development Plan
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River Basin Simulation Model - WEAP

Assessment of the Impacts of Climate
Change on Multi-Sector Investment
Opportunities in the Zambezi River Basin
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Impacts on Irrigation Demand in Mozambique
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Impacts on Hydropower in 2050
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Basin-wide Impacts on Hydropower in 2050
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What Do These Results Imply

for Investments in the Zambezi ?
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Alternative De5|gns

FIorlda circa 1900
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Adaptation for Flood Plain Management
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CONCLUSIONS

Anticipatory Adaptations Should Meet Two Criteria:

» Flexibility
— Performs well under a variety of climates
e Current climate
 Hotter and drier
« Hotter and wetter
 Efficiency
— Benefits exceed costs

— Consider
« Timing of climate change benefits
« Benefits under current climate
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1. Thank you for joining us today at the MIT Joint Program Sponsors Webinar series.

2. At the conclusion of today’s Webinar, online attendees will be presented with a brief survey. We do
hope that you will take a few minutes to provide feedback on today's session and make suggestions
for future webinar topics. For those participating by telephone only, we welcome your comments at
any time to Frances Goldstein by phone (+1.617.253.2682) or email (fkg@mit.edu).

3. Today’s webinar has been recorded, and will be available in our webinar archive in the ‘Sponsors
Only” section of the Joint Program website, at:
http://globalchange.mit.edu/sponsors/sponsorsonly/webinars.html
(Click on the “Archived webinars” tab)

4. The next webinar in the series will be:
Date: February/March 2012
Time: 10:30 a.m. - 12:00 p.m. EST
Title: TBD

Presenter: TBD

We do hope you hold this date on your calendar and plan to attend.
Details will be sent as we move closer to the event.

I
Thank you for participating in the MIT Joint Program Sponsors Webinar series today.
N
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