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Cumulative emissions of CO, largely determine global

mean surface warming by the late 21st century and beyond
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High level of agreement on the global-scale warming
response to rising greenhouse gas levels
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Cumulative emissions and fossil carbon reserves

Cumulative total anthropogenic CO, emissions from 1870 (GtCO»)
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Cumulative emissions and fossil carbon reserves
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0 500 1000 1500 2000 2500
Cumulative total anthropogenic CO, emissions from 1870 (GtC)

[ J
IPCC AR5 Working Group | IDCC {et)

Climate Change 2013: The Physical Science Basis INTERGOVERNMENTAL PANEL oN ClimaTe change



Cost of mitigation scenarios likely to meet the 2°C goal
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Why is CCS so important?

Global GHG abatement cost curve beyond business-as-usual — 2030
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Why is CCS so important?

Underlying

Global GHG abatement cost curve beyond business-as-usual — 2030
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Why is CCS so important?

= The Kaya Identity:
Carbon emissions = Population x consumption per capita x
energy intensity of consumption x carbon intensity of energy
= Population and consumption are usually taken as
given. But are they?
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Where the Kaya ldentity goes wrong
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Where the Kaya Identity goes wrong

= Consumption is not given: increased efficiency and
lower carbon intensity mean more consumption per
tonne of carbon, not (necessarily) lower emissions.

= Meeting any climate target without CCS must
ultimately involve forgoing consumption, not just
delaying consumption.

— Assumption: fossil fuels will remain profitable for some
applications, even with the added cost of CO, disposal, for
the foreseeable future (well into the 229 century).

— David Hone on the Kaya Identify: http://blogs.shell.com/
climatechange/2014/04/revisiting-kaya/
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The dangers of relying on a carbon price or
emission trading system

Short-term impact: Some substitution, proceeds are
recycled, minimal net impact on welfare.

Long-term impact: investment in expensive
mitigation options is postponed as late as possible,
and then undertaken in a rush.

— Particularly problematic for options with inelastic costs and
long testing/deployment times — nuclear and esp. CCS.
If you choose to rely on a carbon price or cap-and-
trade, you are choosing to impose most of the
burden of mitigation on a future generation.
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The evolution of CCS in a relatively optimistic
carbon-price-based scenario
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Another identity

S = % net sequestered fraction = % tonnes carbon
sequestered per year / (tonnes extracted + leakage)

C...x = cumulative emissions over all time,
proportional to total climate change commitment

C = cumulative emissions to date

To limit cumulative emissions to C, ., GtC, S must
increase, from now on, at an average rate of

a5 = 100-5 % per GtC emitted

dC C_ . -C

It§=0and C,=C_, —C = "atmospheric space"
then dS _ 100
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Implications

Cumulative emissions to date are about 0.5TtC

To limit cumulative emissions to 1 TtC, the
sequestered fraction must increase in future, on
average, by 2% for every 10GtC of carbon released
into the atmosphere.

Note: dS S5 8

dC C' E
So we can meet a cumulative target either by
increasing the rate of increase in sequestered
fraction per year, or by reducing emissions, but only

if S’ > 0. Right now, $ =0.1% and S’ =0
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An alternative way of framing climate policy
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The evolution of sequestered fraction in typical
2°C scenarios
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The evolution of sequestered fraction in typical
2°C scenarios

ratio of extracted carbon sequestered from AMPERE-450ppm
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Climate mitigation with no new taxes

= Upstream mandatory sequestration: impose a
licensing condition on any company wishing to
extract or import fossil fuels to demonstrate that a
set percentage S% of their carbon content has been
verifiably sequestered.

— Use a certificate system to allow cheapest CO, sources to
be identified first.

— Storage sites also have to buy certificates (at market value)
to compensate for leakage.

— S can be explicitly linked to climate response: “anti-fragile”
policy.

— Allen, Frame & Mason, Nature Geoscience, 2:813-814, 2009 &
Otto et al, 2014
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Climate mitigation with no new taxes
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Upsreamandatry sequestration at work:

Gorgon gas project, Western Australia
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Climate mitigation with no new taxes

= Upstream mandatory sequestration would solve the
fossil CO, climate problem:

— If CCS is expensive, by imposing a relatively predictable and
apolitical implicit carbon price.

— If CCS is cheap, by mandating large-scale deployment with
minimal collateral economic damage.
= We would still need to
— Stop net deforestation
— Stabilize methane emissions
— Stabilize the global nitrogen cycle (stop net N,O emissions)

= But these are things we need to do anyway: they are
not “complementary” to solving the CO, problem.
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So what they could agree in Paris (but won’t)

All parties impose a licensing condition on
extraction or import of fossil fuels that S% of their
carbon content has been verifiably sequestered.

S=1% by 2020, S=10% and increasing at 2%/year by
2030, S=100% by the time anthropogenic warming
reaches 2°C.

If the cost of sequestration is $200/tCO,, this would
appear to the consumer as a carbon price of $2/tCO,
in 2020 & $20/tCO, in 2030.

How else could you credibly solve the climate
problem for a near-term carbon price of $2/tCO,?
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