Climate Change and Uncertainty

Global surface temperature change (°C)
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Update of the Goddard Institute of Space Studies
19 January 2016

“Global temperature in 2015 was +1.13 (~2.03°F) relative to the
1880-1920 mean. Accounting for interannual variability, it is fair
to say that global warming has now reached ~1°C, almost ~2°F.”

Hansen, Sato, Ruedy, Schmidt, Lo



Recap from yesterday

Feedbacks

Atmos.
Temperature

Radiation

Absorption Al

The climate system is complex

UNFCCC objectives stated in the
Kyoto Protocol (1997): To stabilize
greenhouse gas concentrationsinthe
atmosphere that will prevent
dangerous human interference with
the climate system.

Paris update (2015): holdingthe
increasein the global average
temperature to well below 2 °C above
preindustrial levelsand pursuing
efforts to limit the temperature
increaseto 1.5 °C above preindustrial
levels



Motivation

“This 2 °C warming target is perceived by the
public as a universally accepted goal, identified
by scientists as a safe limit that avoids
dangerous climate change. This perception is
incorrect: no scientific assessment has clearly
justified or defended the 2 °C target as a safe
level of warming, and indeed, this is not a
problem that science alone can address.”

Knutti, Rogelj, Sedlacek and Fischer, Nat Geo (Dec, 2015)



Motivating Questions

1. What emissions scenario achieves this 2°C
target?

2. What does a 2°C world look like?
3. How certain can we be about 1.and 2. ?

4. How does uncertainty affect the decisions we
make
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Global surface temperature change (°C)
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Representative Concentration
Pathways
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Representative Concentration :> Greenhouse gas
Pathways concentration pathways
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Global surface warming (°C)

CMIPS5 models, RCP scenarios
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Global surface warming (°C)

CMIP5 models, RCP scenarios
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(a) GHG emission pathways 2000-2100: All AR5 scenarios
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GCMs

General Circulation Models

aka

Global Climate Models



Schematic for Global
Atmospheric Model

Horizontal Grid (Latitude-Longitude)

Vertical Grid (Height or Pressure)

Arcgres

| [
— [ — b - “ 4 |+ 3D physically based climate models
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r—— * Eachclimate model differs in resolution
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Figure credit: gfdl.noaa.gov



Projection vs Prediction

Projection: Possible Outcome

Prediction: Probable Outcome



Climate Model Projections

Multi model global temperature change ; MULTI, PREC
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Multi Model Ensemble with 22 models run under one emissions scenario (RCP 4.5)
This does not provide a probability distribution, but rather a likely range of outcomes.

No model run is considered more likely than another.



Climate Model Projections

Multi model global temperature change MULTI, PREC
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Multi Model Ensemble with 22 models run under one emissions scenario (RCP 4.5)

This does not provide a probability distribution, but rather a likely range of outcomes.

No model run is considered more likely than another.



What might propagate uncertainty in
climate models?



What might propagate uncertainty in
climate models?

Too coarse of a time step
Too coarse of a spatial resolution

Incomplete/inaccurate representation of
feedbacks

Incomplete database of current climate
variables

Unknown unknowns
Known unknowns: (e.g. clouds and ice)



Largest source of uncertainties in Climate Models

Photo credit: climate.nasa.gov

Cloud temperature, height, ‘puffiness’, and depth affect climate feedbacks
Cloud size makes them difficult to model

Life span of a cloud makes them difficult to model
Incomplete understanding of cloud physics makes them difficult to model



All models are wrong, some are useful
- George Box, 1979



Multi model mean temperature projections

RCP2.6 RCP8.5
) Change in average surface temperature (1986-2005 to 2081-2100)

IPCC AR5, SPM, 2014
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Multi model mean precipitation projections

Change in average precipitation (1986-2005 to 2081-2100)
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IPCC AR5, SPM, 2014



Percent Changein Precipitation By Decade
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Boehlert, Solomon, Strzepek, 2015



Climate change at a local scale
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Sea Level Rise

During the lastinterglacial period, sea level was at least 5m higher than today
and temperatures were at least 2°C greater than present.

Sea level hasrisen ~19 cm between 1901 an 2010

Thermal expansionand glacier melting explain about75% of the rise in sea
level since 1970

Contributions from Greenland and Antarcticlce sheets has increased since
the 1990s.



Sea Level Change
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Meters

Mean Sea Level Trend, Boston, Massachusetts

Boston, MA 263 +/-0.18 mmlfyr
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Storm Activity

RCP 4.5
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Summary of Uncertainty

Scenario GCM runs

RCP 4.5

RCP 6.0
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Upcoming Events

Sunday Jan 24, 6pm: Arlington St Church 351 Boylston St
Tu BiShvat Seder for Palestine, Climate, and Racial Justice

Monday Jan 25, 5:30pm: E51-315 (here!)
Dispatches from Paris: Reflecting on the Climate Talks with
COP21 Attendees (RSVP to askmitei-ed@mit.edu)

Monday and Tuesday Jan 25-26, 10am-12pm: E51-085
From Turbines to Tariffs: Technical and Regulatory Issues for
Scaling Up Wind Energy

Wednesday Jan 27, 8:30am-5:30pm: MIT 32-123
MIT on Climate = Science + Action

Friday Jan 29, 9am-5pm: MIT 3-415
Hackathon for Climate



Upcoming Events

WORLD CLIMATE NEGOTIATIONS SIMULATION
E51-315 - 5:30pm—7:30pm - Interactive Group Project

Designed as part of Climate Interactive’s World Climate Project, this activity provides participants with some
insight into the challenges of coming to a global climate agreement. Participant groups will represent regions
of the world with various goals for mitigation, adaptation, and economic growth, then participate in a mock
international climate negotiation. The computer simulation C-ROADS will be used to examine the outcomes of
the mock negotiation in real-time.




