Climate Change and Uncertainty

<u>Update of the Goddard Institute of Space Studies</u> 19 January 2016

"Global temperature in 2015 was +1.13 (~2.03°F) relative to the 1880-1920 mean. Accounting for interannual variability, it is fair to say that global warming has now reached ~1°C, almost ~2°F."

Hansen, Sato, Ruedy, Schmidt, Lo

Recap from yesterday

The climate system is complex

UNFCCC objectives stated in the Kyoto Protocol (1997): To stabilize greenhouse gas concentrations in the atmosphere that will prevent dangerous human interference with the climate system.

Paris update (2015): holding the increase in the global average temperature to well below 2 °C above preindustrial levels and pursuing efforts to limit the temperature increase to 1.5 °C above preindustrial levels

Motivation

"This 2 °C warming target is perceived by the public as a universally accepted goal, identified by scientists as a safe limit that avoids dangerous climate change. This perception is incorrect: no scientific assessment has clearly justified or defended the 2 °C target as a safe level of warming, and indeed, this is not a problem that science alone can address."

Knutti, Rogelj, Sedlácek and Fischer, Nat Geo (Dec, 2015)

Motivating Questions

- 1. What emissions scenario achieves this 2°C target?
- 2. What does a 2°C world look like?

3. How certain can we be about 1. and 2.?

4. How does uncertainty affect the decisions we make

Figures: IPCC AR5 SPM, 2014

GCMs

General Circulation Models

aka

Global Climate Models

Schematic for Global Atmospheric Model

Horizontal Grid (Latitude-Longitude)

Vertical Grid (Height or Pressure)

3D physically based climate models

Highly complex & computationally expensive

Each climate model differs in resolution (spatial and temporal)

Projection vs Prediction

Projection: Possible Outcome

Prediction: Probable Outcome

Climate Model Projections

Multi Model Ensemble with 22 models run under one emissions scenario (RCP 4.5)

This does not provide a probability distribution, but rather a likely range of outcomes.

No model run is considered more likely than another.

Climate Model Projections

Multi Model Ensemble with 22 models run under one emissions scenario (RCP 4.5)

This does not provide a probability distribution, but rather a likely range of outcomes.

No model run is considered more likely than another.

What might propagate uncertainty in climate models?

What might propagate uncertainty in climate models?

- Too coarse of a time step
- Too coarse of a spatial resolution
- Incomplete/inaccurate representation of feedbacks
- Incomplete database of current climate variables
- Unknown unknowns
- Known unknowns: (e.g. clouds and ice)

Largest source of uncertainties in Climate Models

Photo credit: climate.nasa.gov

- Cloud temperature, height, `puffiness', and depth affect climate feedbacks
- Cloud size makes them difficult to model
- Life span of a cloud makes them difficult to model
- Incomplete understanding of cloud physics makes them difficult to model

All models are wrong, some are useful - George Box, 1979

Multi model mean temperature projections

Figure: Mahlstein, Knutti, Portmann, Solomon, ERI 2011

Multi model mean precipitation projections

Percent Change in Precipitation By Decade

Boehlert, Solomon, Strzepek, 2015

Climate change at a local scale

Sea Level Rise

During the last interglacial period, sea level was at least 5m higher than today and temperatures were at least 2°C greater than present.

Sea level has risen ~19 cm between 1901 an 2010

Thermal expansion and glacier melting explain about 75% of the rise in sea level since 1970

Contributions from Greenland and Antarctic Ice sheets has increased since the 1990s.

Sea Level Change

Sea Level Change

Mean Sea Level Trend, Boston, Massachusetts

Figure credit: cityofboston.gov

Storm Activity

RCP 4.5

IPCC AR5, Chapter 14, 2014

Summary of Uncertainty

Summary of Uncertainty

Upcoming Events

Sunday Jan 24, 6pm: Arlington St Church 351 Boylston St Tu BiShvat Seder for Palestine, Climate, and Racial Justice

Monday Jan 25, 5:30pm: E51-315 (here!)
Dispatches from Paris: Reflecting on the Climate Talks with COP21 Attendees (RSVP to askmitei-ed@mit.edu)

Monday and Tuesday Jan 25-26, 10am-12pm: E51-085 From Turbines to Tariffs: Technical and Regulatory Issues for Scaling Up Wind Energy

Wednesday Jan 27, 8:30am-5:30pm: MIT 32-123 MIT on Climate = Science + Action

Friday Jan 29, 9am-5pm: MIT 3-415 Hackathon for Climate

Upcoming Events

FRI - JAN 22

WORLD CLIMATE NEGOTIATIONS SIMULATION

E51-315 · 5:30pm-7:30pm · Interactive Group Project

Designed as part of Climate Interactive's World Climate Project, this activity provides participants with some insight into the challenges of coming to a global climate agreement. Participant groups will represent regions of the world with various goals for mitigation, adaptation, and economic growth, then participate in a mock international climate negotiation. The computer simulation C-ROADS will be used to examine the outcomes of the mock negotiation in real-time.