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Abstract

This thesis explores the potential risk implications that a large penetration of intermittent
renewable electricity generation –such as wind and solar power– may have on the future
electricity generation technology mix, focusing on the anticipated new operating conditions
of different thermal generating technologies and their remuneration in a competitive market
environment. In addition, this thesis illustrates with an example how risk should be valued
at the power plant level in order to internalize the potential risks to which the generators
are exposed.

This thesis first compares the impacts of three different bidding rules on wholesale prices
and on the remuneration of units in power systems with a significant share of renewable
generation. The effects of bidding rules are distinguished from the effects of regulatory un-
certainty that can unexpectedly increase renewable generation by considering two distinct
situations: 1) an ‘adapted’ capacity mix, which is optimized for any given amount of renew-
able penetration, and 2) a ‘non-adapted’ capacity mix, which is optimized for zero renewable
penetration, but that operates with a certain non-zero renewable capacity, added on top of an
already adequate system. The analysis performed stresses the importance of sound mech-
anisms that allow the full-cost recovery of plants in a system where the intermittency of
renewables accentuates nonconvex costs, without over-increasing the cost paid by consumers
for electricity. Additionally, the analysis quantifies the potential losses incurred by different
thermal technologies if renewable deployment occurs without allowing for adaptation.

Methodologically, this thesis uses a novel long-term generation investment model, the
Investment Model for Renewable Electricity Systems (IMRES), to determine the minimum
cost thermal capacity mix necessary to complement renewable generation to meet electricity
demand, and to extract hourly wholesale prices. IMRES is a capacity expansion model with
unit commitment constraints whose main characteristics are: 1) reflecting the impact of
hourly resolution operation constraints on investment decisions and on total generation cost;
2) accounting for the chronological variability of demand and renewable output, and the
correlation between the two; and 3) deciding on power plant investments at the individual
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plant level. These characteristics allow for a detailed analysis of the profits obtained by
individual plants in systems with large renewable penetration levels. In addition, this thesis
tests the performance of a heuristic method that selects four weeks from a full year series
to optimally represent the net load duration curve (i.e., the difference between demand
and renewable output, decreasingly ordered). For each application of this heuristic method,
three metrics are proposed to reflect that the approximation also represents the chronological
variability of the net load.

Lastly, this thesis explores the role of risk in the valuation of electricity generating tech-
nologies and shows how to incorporate standard risk pricing principles into the popular
Monte Carlo simulation analysis. The exposition is structured using the standard frame-
work for a typical Monte Carlo cash flow simulation so that the implementation can be
readily generalized. This framework stresses the necessity of an asset pricing approach to
assess the relationship between the risk in the assets cash flows and the macroeconomic risk
with which the financial investors are concerned. The framework provided is flexible and can
accommodate many different structures for the interaction between the macroeconomic risk
and the risks in the asset’s cash flows (such as those from shocks in renewable deployment).
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Professor of Economics, Emeritus
Dean Emeritus

Committee Member: John E. Parsons
Title: Senior Lecturer, Sloan School of Management
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Executive Director, Center for Energy and Environmental Policy Research
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every year one week in the cold of the Boston winter to share his modeling expertise. The

validation of IMRES and its multiple extensions occurred during my collaboration with the

International Energy Agency. Thanks to Simon Müller for putting his faith in IMRES to

answer the questions posed in the GIVAR project, and for motivating me to enhance the
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Chapter 1

Introduction

1.1 Summary

In restructured markets, the asymmetry in the perception of risk by generators and con-

sumers, the volatility of prices and the presence of price caps have been considered –rightly

or not– potential driving factors for underinvestment in new generating capacity (Newell,

2012), therefore requiring some kind of regulatory intervention. More recently, in systems

with a high penetration of intermittent renewables1, the potential price depression and higher

volatility driven by low variable cost renewable electricity and the reduction of thermal plants

capacity factor, together with a more costly and technically demanding operating regime can

potentially exacerbate the problem creating a negative profit2 expectation for certain tech-

nologies (Perez-Arriaga and Batlle, 2012).

This thesis assesses, both theoretically and by means of detailed computer simulations,

the potential impact that a large penetration of intermittent renewable electricity gener-

ation –such as wind and solar power– may have on generation investments in electricity

1Here intermittent refers to the non-controllable variability and the partial unpredictability of renewable
resources, mostly of wind power and solar photovoltaics (Perez-Arriaga and Batlle, 2012)

2The generation costs to be “recovered” (or not) via market prices include all the operation costs (here
only startup costs and fuel costs of electricity production have been considered), plus the capital costs
(amortization and a reasonable rate of return on investment). In this thesis by “profit” it is understood any
excess income to a plant from market prices that is beyond strict cost recovery.
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markets. Specifically, this thesis concentrates on the impact of renewable generation on the

profits obtained by different generation technologies, and on the cost paid by consumers for

electricity.

First, the thesis focuses on analyzing the impact of renewable generation on the optimal

generation mix, and on the capacity factor, the energy contribution, the startup regime and

the profits of four standard thermal generation technologies: nuclear, coal, combined-cycle

gas turbines (CCGTs) and open-cycle gas turbines (OCGTs). This analysis is performed for

ten different renewable penetration scenarios under two distinct situations: 1) an ‘adapted’

capacity mix that is optimized for the given renewable penetration level; and 2) a ‘non-

adapted’ capacity mix, optimized for zero renewables but operated under a non-zero renew-

able capacity. It also includes a sensitivity analysis of the impact of the lumpiness introduced

by the size of power plants, the value of the startup cost and the value of lost load (VOLL)

on the results.

Second, as renewable penetration increases, so does the cycling regime of thermal power

plants and the fuel and O&M costs associated with starting up the generation units. In

order to help generators recover these costs, some electricity market operators have adopted

complex bidding mechanisms that account explicitly for nonconvex costs that are not re-

flected in the marginal cost of energy, while other markets rely solely on simple bids with

revenue sufficiency conditions. Examples of such mechanisms include side payments, price

uplifts, and internalizing startup costs within a simple bid. This thesis also addresses this

topic, studying the impact of three different bidding mechanisms on the total cost-recovery

of different technologies and on the cost paid by the consumer.

Third, given the uncertainty around renewable deployment, the role of risk in the valua-

tion of generating technologies has gained significant attention in recent years. Many of the

risks to which generation assets are exposed (e.g., electricity prices, fuel prices, new regula-

tion, etc) introduce a series of nonlinear and time-varying relationships between them and

the cash flows produced by the generator. Yet, investors in power plants commonly account

for risk using the risk-adjusted discounting methodology, which assumes that exposure is
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proportional to the market risk, resulting in a valuation of the power plant that is prone to

errors. This thesis introduces the stochastic discounting methodology for the valuation of

generation assets, as a method that accurately values risk by explicitly accounting for the

correlation between the average market risk and the expected cash flows generated by the

power plant.

The findings of this thesis are primarily targeted at regulators and policymakers who

have to confront the complexities of designing electricity market rules in the presence of

intermittent renewables. In addition, the findings in this work can inform investors in power

generation assets who need to understand the actual exposure to risk of this type of assets

and help them to value the asset accordingly and make better investment decisions.

1.2 Background of Wholesale Electricity Markets

Since the liberalization of electricity generation began in 1982 in Chile, many countries have

decided to introduce competition in their electricity industry to achieve greater economic

efficiency (Joskow and Schmalensee, 1983) (Rothwell and Gomez, 2003) (Sioshansi, 2006).

This process has reduced the costs of service and other inefficiencies associated with the

monopolistic behavior of the traditional vertically integrated utility (Fabrizio et al., 2007).

Competition is best achieved through markets where the commodity can be freely traded.

Accordingly, liberalized electric power systems have established wholesale markets for elec-

tricity generation to let market forces decide on the price and quantity of electricity that is

to be produced. In this context, it is the role of the regulator to establish a robust set of

market rules that ensures competition while guaranteeing the security of electricity supply

(Perez-Arriaga, 2007) (Rodilla, 2010) (Rodilla and Batlle, 2012) (Stoft, 2002).

Under liberalization, market agents are left with tasks that they can perform more effi-

ciently than the central planner. Subject to the conditions of electricity wholesale markets,

operating decisions are not taken by a central operator, but by individual agents who try

to maximize their profits (Joskow and Schmalensee, 1983) (Schweppe et al., 1987). These

agents also decide on individual power plant investments that build up the system’s electricity
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generation capacity. According to economic theory, under ideal conditions a remuneration

scheme based only on the short-term marginal cost of the system would allow generators

recover both operation costs and capital costs –including amortization and a rate of return

on investment– (Kahn, 1971) (Schweppe et al., 1987) (Perez-Arriaga, 1994) (Perez-Arriaga

and Meseguer, 1997), attracting enough investors to build an adequate level of generat-

ing capacity. Nevertheless, there are practical difficulties in implementing a pricing scheme

that accurately reflects the consumers’ real willingness to pay for electricity and the actual

costs incurred by the system. These two obstacles combined with users’ and investors’ risk

aversion can result in underinvestment or overinvestment situations, yielding a suboptimal

generating capacity mix that does not reflect the desired level of generation adequacy in the

system. The resulting market failure has been observed since the foundations of electricity

wholesale markets (Schweppe et al., 1987), and establishing market rules that allow revenue

reconciliation –the ability to recover all costs– has remained a major challenge (Batlle and

Perez-Arriaga, 2008) (Rodilla and Batlle, 2012) (Schweppe et al., 1987) (Stoft, 2002).

1.2.1 The Missing Money Problem

Historically, addressing regulatory actions that limit prices from reaching the expected high

levels during times of scarcity has been the most salient issue, constituting the so-called

‘missing money’ problem. According to Hogan (Hogan, 2005):“The missing money problem

arises when occasional market price increases are limited by administrative actions such as

price caps. By preventing prices from reaching high levels during times of relative scarcity,

these administrative actions reduce the payments that could be applied towards the fixed

operating costs of existing generation plants and the investment costs of new plants.” Regu-

lators introduce price caps in order to protect consumers against price spikes and to reduce

the ability of companies to exert market power (Stoft, 2002)(Kirschen and Strbac, 2004).

Yet, the ‘missing money’ problem only occurs during a transitory after the regulatory change:

as it will be shown later, in equilibrium, for any given price limitation being it high or low,

the ‘missing money’ problem does not exist as the generating capacity adapts to whatever
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the new scarcity price is.

1.2.2 Addressing Adequacy

Adequacy refers to “the existence of enough available capacity of generation and network,

both installed and/or expected to be installed, to meet demand” (Perez-Arriaga, 2007) In

equilibrium, systems with a low price cap that does not reflect the actual desired level of

generation adequacy have adopted regulatory solutions based on different forms of capacity

mechanisms (capacity payments, capacity markets or reliability options). However, these

mechanisms are decoupled from the ‘missing money’ problem, as their sole original objective

is to enhance the systems adequacy in equilibrium. Rodilla (Rodilla, 2010) presents a com-

prehensive treatment of capacity mechanisms and their impact on the different dimensions

of security of supply (security, firmness, adequacy and strategic energy policy).

1.2.3 Accounting for Nonconvexities in Wholesale Markets

The theoretical derivation of optimal prices assumes a convex problem where decision vari-

ables are continuous and the feasible region defined by the constraints of the problem is

also convex. However, the discrete nature of some of the decisions in electricity markets

(e.g., the size of plants, the commitment state of a plant, startup decisions, etc) can produce

situations in which there might not exit a set of prices that support an equilibrium solution

(i.e., prices that not only reflect the marginal cost of energy, but also other nonconvex costs

in the system such as those from starting-up the units) (Gribik et al., 2007). In the past,

this issue has had less economic importance than the effects on profits brought in by regu-

latory changes and it has typically attracted less attention. However, as will be shown in

subsequent sections, the cost associated with cycling increases significantly in systems with

large amounts of intermittent renewables. Therefore, recovering nonconvex costs, as well

as understanding the implications of pricing mechanisms on profit, becomes an increasingly

important problem.

When a mismatch between revenue and cost occurs, revenue reconciliation mechanisms
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have to be established to make power plants whole. Schweppe et al. contemplated the

possibility of introducing modifications to wholesale prices to achieve revenue sufficiency,

highlighting the importance of the tradeoff between equity (having consumers pay for the

full cost of generation) and economic efficiency (that the modified price is close to the optimal

marginal price).

“A key property of marginal cost based spot prices is [that] they tend to recover

both operating and capital costs. Since generation is assumed to be dispatched

optimally, marginal costs exceed average operating costs. Thus, charging cus-

tomers at marginal costs yields revenues which exactly match operating and

capital costs. Unfortunately, in the real world, this difference will usually either

over-or underrecover capital costs.” (Schweppe et al., 1987)

Vazquez (Vazquez, 2003) focused on finding a mechanism to obtain prices that provide the

optimal economic signals in the short and in the long term when the problem is nonconvex.

He found that the price resulting from the slope of the envelope of the cost function provides

the result closest to optimality. He also found that the prices derived from a commitment

problem where the binary variables are relaxed (prices derived from this problem are easy

to obtain), coincide in most cases with the prices resulting from the slope of the envelope of

the cost function.

O’Neill et al. proposed a method to obtain market clearing prices in power systems with

nonconvexities that would yield zero profits (O’Neill et al., 2005). The method is based on

solving a cost minimization problem, including integer decisions, in order to obtain a welfare

maximizing solution; calculating a set of prices derived from the same problem but with

integer decisions fixed; and offering bidders additional payments associated with their lumpy

decisions.

Similarly, Gribic et al. analyzed the impact of introducing a complementary payment3

that compensates plants for accepting a dispatch solution that does not maximize their

3Here ‘complementary payment’ refers to a lump sum paid for the difference between the operating costs
incurred and the energy revenues obtained, similar to the ‘side payment’ bidding rule that will be discussed
in following sections
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profits (as a result of ignoring nonconvex costs in calculating the market-clearing price and

quantities), under three different alternative conventions to calculate the market-clearing

price (Gribik et al., 2007).

1.2.4 Accounting for the Uncertainty of Renewable Deployment

In addition to issues pertaining to pricing and nonconvex costs, unexpected regulatory

changes that expand renewable deployment increase the uncertainty around the profits of

investments in thermal generation plants. This uncertainty might preclude the realization

of new investments necessary to guarantee the security of supply. The potential impact of

the uncertainty around regulatory shocks on generation capacity was also identified at the

inception of the spot pricing theory. As with any other market in equilibrium, in electricity

generation “investments are made until the last MW of investment capacity ‘earns’ an ex-

pected stream of new income whose present value equals the incremental cost of investment”

(Schweppe et al., 1987). However, in real systems, “unexpected future developments that

upset the expected revenue streams [. . . ] may result in imperfect revenue recovery”. At

the time, it was assumed that under spot pricing the magnitudes of such disruptions would

be small assuming that capacity additions would take place in systems exhibiting a gradual

growth of their net load. Yet, the magnitudes of the disruptions caused by the uncertainty in

the total renewable capacity have been found to be non-negligible, violating that assumption.

It is thus necessary to better understand the impact of these changes on the profitability of

different technologies, and to introduce better ways for investors to value the actual risk to

which plants are exposed so that better investment decisions are made.

If plans to deploy incentives for renewable generation are announced well in advance, and

deployment occurs progressively with sufficient time for investors to respond, then investment

decisions should take into account the differing operational regime that they will be exposed

to in the presence of intermittent renewables. In this situation, it is appropriate that investors

bear with the costs associated with failing to adapt to the announced future renewable

capacity. On the other hand, if the regulatory decision leaves insufficient time for investors

29



to anticipate the change, underutilized assets can become partially or totally stranded, and

a recovery procedure might be introduced by the regulator. The problem of shocks in the

regulation pertaining renewable energy deployment is analogous to the shock emerging during

the transition from a centralized planned system to a liberalized market 4.

1.3 Results from Optimal Marginal Pricing Theory

A comprehensive analysis of the economic principles underlying marginal pricing was first

developed for electric power systems by Schweppe and his colleagues with their work on

spot pricing of electricity (Schweppe et al., 1987). According to this theory, if generation is

optimally dispatched, then marginal energy costs will exceed average operating costs, yielding

revenues that will “exactly match operating and capital costs”. Therefore, under ideal

conditions, electricity marginal prices will induce the optimal level of investment, the optimal

operation of the generation units and, in equilibrium, the profit received by generators would

be equal to zero.

Pérez-Arriaga and Meseguer (Perez-Arriaga and Meseguer, 1997) expanded this theory

by incorporating into the optimal prices the economic signals that generators and consumers

must receive to meet short and long-term security of supply and other objectives as well as the

impact of other type of constraints in order to maximize net social welfare. Optimal marginal

prices must thus reflect: 1) the system marginal energy cost, 2) the system marginal reserves

cost and 3) the system marginal cost for security of supply. Under this pricing scheme, if the

total generation capacity of some technology is adapted, then the profit (i.e., the difference

between revenues and operating and fixed costs) for this technology has to be exactly zero.

They also showed that, under perfect competition, the solutions obtained by the following

three distinct regulatory paradigms are equivalent:

1. The regulator as a single decision-maker.

2. A fully-competitive generation market.

4Details on the regulatory processes that took place in several power systems during the introduction of
competition in the generation activity can be found in (Rothwell and Gomez, 2003)
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3. A monopolistic utility under regulated supervision, whose cost function includes the

cost of non-served energy.

Hence, the solution obtained through a decentralized individual welfare maximization by

generators and consumers based on non-regulated prices is equivalent to the solution obtained

through minimizing the total cost of a regulated monopoly. This result has been used to

justify cost minimization formulations that include the cost of non-served energy (VOLL) in

the analysis of perfectly competitive markets.

All these theoretical contributions are based on the interpretation of the first order con-

ditions (FOCs) of the Lagrangian function formed with the system cost function (including

investment and operation costs) and the system constraints (Perez-Arriaga, 1994). There-

fore, the necessary and sufficient conditions to guarantee the optimality of the prices, and the

investment and the operation solution obtained through this method are: 1) the differentia-

bility and the convexity of the Lagrangian function, and 2) the convexity of the feasible set

defined by the constraints (Floudas, 1995). In the context of power systems these conditions

imply the following assumptions:

1. Investment decision variables are continuous (plants are not lumpy).

2. The cost structure of the plants is convex (startup costs are convex), as well as the

utility function of the consumers.

3. No economies of scale (investment cost per MW of capacity is invariant of the total

installed capacity).

4. There is a perfectly competitive market: there is no market power and there is perfect

information.

5. Generators’ remuneration comes entirely from the sale of electricity in the short-term

market , as well as from providing reserves and adequacy services.

We revisit next the mathematical derivation of these results, in order to better understand

the composition of optimal marginal prices.
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1.3.1 The Regulator as a Single Decision-Maker: a Regulator’s

Model

The optimal investment and operation decisions in a system that is centrally-managed by a

regulator maximize the net social benefit (NSB), which is equal to the total utility (Up¨q)

received by consumers from using electricity, minus the cost of supplying that electricity.

Therefore, the optimal operation and investment decisions are given by the solution of the

following optimization problem (1.1)-(1.22).

max
xij ,x̄i,Dj

NSB “ max
xij ,x̄i,Dj

ÿ

jPJ
rU pDjq ´

ÿ

iPI
V Cpxijqs ´

ÿ

iPI
ICpx̄iq

(1.1)

s.t.: Dj ´
ÿ

iPI
xij ď 0 K µj @j P J (1.2)

xij ´ x̄i ď 0 K ψij @i P I, j P J (1.3)

αi x̄i ´ xij ď 0 K ωij @i P I, j P J (1.4)

Rpxijq “ 0 K ζij @i P I, j P J (1.5)

where i P I and j P J are the indices for power plants and time respectively; xij P R` is the

decision variable for the energy output of power plant i at time j; x̄i P R` is the decision

variable for the installed capacity at power plant i; V Cp¨q is the variable cost function; ICp¨q

is the investment cost function; Dj is the total demand at time j; αi P p0, 1q is the minimum

output of plant i, expressed as a fraction of the plant’s total capacity; and Rp¨q is a function

representing other technical constraints of the plant that are common to the regulators and

the generators problem.
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The Lagrangian function of the regulator’s problem becomes:

L ” NSB˚ “
ÿ

jPJ
rUpDjq ´

ÿ

iPI
V Cpxijqs ´

ÿ

iPI
ICpx̄iq ´ µjpDj ´

ÿ

iPI
xijq

´
ÿ

iPI

ÿ

jPJ
ψijpxij ´ x̄iq ´

ÿ

iPI

ÿ

jPJ
ωijpα x̄i ´ xijq ´

ÿ

iPI

ÿ

jPJ
ζij Rpxijq (1.6)

Taking the derivative with respect to each of the decision variables in the problem, we

can derive the FOCs, (1.7) and (1.9).

BNSB˚

Bxij
“ ´

BV Cpxijq

Bxij
` µj ´ ψij ` αωij ´

BRpxijq

Bxij
ζi “ 0 (1.7)

BNSB˚

Bx̄i
“ ´

BICpx̄iq

Bx̄i
`

ÿ

jPJ
ψij ´

ÿ

jPJ
αωij “ 0 (1.8)

BNSB˚

BDj

“
BUpDjq

BDj

´ µj “ 0 (1.9)

If we solve for µj, we have that the optimality condition for the regulator’s model is:

BUpDjq

BDj

“ µj “
BV Cpxijq

Bxij
` ψij ´ αωij `

BRpxijq

Bxij
ζi (1.10)

This equation shows that, in equilibrium, the marginal cost of supplying one more unit

of electricity –which is a function of the variable cost and the dual values associated with

the active constraints of the marginal plant–, has to be equal to the marginal utility that

the demand perceives from consuming one more unit.

1.3.2 The Competitive Market Models

We now describe the models that describe the behavior of the system with perfect com-

petition. Under this paradigm, we have two types of agents –consumers and generators–

that decide upon the decision variables that they control with the objective of maximizing

their own net benefit. Both consumers benefit, NCB, and generators benefit, NGB, are

a function of a set of unregulated prices ρj, j P J that are determined by the equilibrium
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between supply and demand.

Consumers’ Model

Consumers try to maximize their net benefit from electricity consumption.

max
Dj

NCB “ max
Dj

ÿ

jPJ
rU pDjq ´ ρj Djs “ NCB˚ (1.11)

If we take the derivative with respect to the decision variable Dj, we have that the FOC

of this model is:
dNCB˚

dDi

“
dUpDjq

dDj

´ ρj “ 0 (1.12)

Generator’s Model

Analogously to the consumer’s model, generators try to maximize their net benefit from

producing electricity, NGB. Note that in this model and in the consumer’s model there

is no demand balance equation enforcing that generation is equal to the total electricity

demanded.

max
xij ,x̄i

NGB “ max
xij ,x̄i

ÿ

jPJ
rρj

ÿ

iPI
xij ´

ÿ

iPI
V Cpxijqs ´

ÿ

iPI
ICpx̄iq

(1.13)

s.t.: xij ´ x̄i ď 0 K ψij @i P I, j P J

α x̄i ´ xij ď 0 K ωij @i P I, j P J

Rpxijq “ 0 K ζij @i P I, j P J

The Lagrangian function of this problem becomes:

L ” NGB˚ “
ÿ

jPJ
rρj

ÿ

iPI
xij ´

ÿ

iPI
V Cpxijqs ´

ÿ

iPI
ICpx̄iq

´
ÿ

iPI

ÿ

jPJ
ψijpxij ´ x̄iq ´

ÿ

iPI

ÿ

jPJ
ωijpα x̄i ´ xijq ´

ÿ

iPI

ÿ

jPJ
ζij Rpxijq (1.14)
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If we now take the derivative of the Lagrangian function with respect to each of the

decision variables of the generators, we have that the FOCs of the model are:

BNGB˚

Bxij
“ ρj ´

BV Cpxijq

Bxij
´ ψij ` αωij ´

BRpxijq

Bxij
ζi “ 0 (1.15)

BNGB˚

Bx̄i
“ ´

BICpx̄iq

Bx̄i
`

ÿ

jPJ
ψij ´

ÿ

jPJ
αωij “ 0 (1.16)

We can derive the optimality condition of the competitive market, taking the FOCs

of the consumer’s and the generator’s model. This optimality condition implies that, in

equilibrium, the marginal utility of demand is equal to the marginal cost of energy, as it was

expected:

BUpDjq

BDj

“ ρj “
BV Cpxijq

Bxij
` ψij ´ αωij `

BRpxijq

Bxij
ζi “ µj (1.17)

1.3.3 The Regulated Monopolistic Utility

In this model a monopolistic generation utility minimizes the supply cost, SC, resulting from

total operation and investment costs.

min
xij ,x̄i

SC “ min
xij ,x̄i

ÿ

jPJ

ÿ

iPI
V Cpxijq `

ÿ

iPI
ICpx̄iq (1.18)

s.t.: Dj ´
ÿ

iPI
xij ď 0 K µj @j P J (1.19)

xij ´ x̄i ď 0 K ψij @i P I, j P J (1.20)

αi x̄i ´ xij ď 0 K ωij @i P I, j P J (1.21)

Rpxijq “ 0 K ζij @i P I, j P J (1.22)

Here non-served energy is treated as an additional technology with an investment cost

equal to zero and a variable cost equal to the value of lost load (VOLL), which is the value

that consumers put on electricity that is not consumed above the scarcity level.

35



The Lagrangian function of the regulated utility problem becomes:

L ” SC˚ “
ÿ

jPJ

ÿ

iPI
V Cpxijq `

ÿ

iPI
ICpx̄iq ` µjpDj ´

ÿ

iPI
xijq

`
ÿ

iPI

ÿ

jPJ
ψijpxij ´ x̄iq `

ÿ

iPI

ÿ

jPJ
ωijpα x̄i ´ xijq `

ÿ

iPI

ÿ

jPJ
ζij Rpxijq (1.23)

Taking the derivative with respect to each of the decision variables in the problem, we

can derive the FOCs, (1.7) and (1.9).

BSC˚

Bxij
“
BV Cpxijq

Bxij
´ µj ` ψij ´ αωij `

BRpxijq

Bxij
ζi “ 0 (1.24)

BSC˚

Bx̄i
“
BICpx̄iq

Bx̄i
´

ÿ

jPJ
ψij `

ÿ

jPJ
αωij “ 0 (1.25)

If we clear for µj with the FOCs, we have that the optimality condition for the regulated

utility is:

µj “
BV Cpxijq

Bxij
` ψij ´ αωij `

BRpxijq

Bxij
ζi (1.26)

1.3.4 Key Results

It is straightforward to realize that the optimality conditions derived from the regulator’s

model (1.10) are equivalent to those derived from the models in the competitive market

paradigm (1.17). Therefore, the optimal prices derived from the competitive market model,

ρj, are equal to the Lagrangian multipliers of the demand balance constraint, µj, in both the

regulator’s and the competitive market’s models. This result, together with other important

results derived from optimal marginal electricity pricing are summarized as follows:

1. Under perfect competition, the solution of the regulator’s model and the solution of

the competitive market are equivalent.

2. In equilibrium, the profits of all units are exactly zero. Otherwise, new capacity would

enter the market until equilibrium is reached.
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3. The profits obtained by a technology whose capacity is optimized for a given mix of

some other technologies, is exactly zero.

4. The existence of common or internal active constraints on installed capacity creates a

positive or negative mismatch between revenues and cost of generators.

1.4 Impacts of Intermittent Renewables on Power Sys-

tems

This section provides a qualitative description of some of the operational and market impacts

of intermittent renewables on electric power systems, some of which will be further quantified

in the analyses in this thesis.

1.4.1 Renewables, Adaptation and Windfall Losses

The need to mitigate climate change through reducing anthropogenic green-house gas emis-

sions and the absence of an international framework that regulates such emissions has urged

many countries to mandate levels of renewable electricity deployment. This requirement is

commonly achieved through price incentives (feed-in-tariffs) or through regulatory obliga-

tions (such as Renewable Portfolio Standards in the U.S.) (IEA, 2013), which might con-

stitute a form of market distortion if the deployment of incentives does not leave time for

investors in generation to anticipate to the new situation. Therefore, and given that renew-

able technologies can be installed much faster than other generation technologies, it is likely

that rapid deployment of renewable generation will have implications on the dynamics of

the market and that adaptation problems with the existing generation fleet will ensue. The

resulting situation can be illustrated by the net load duration curve (NLDC)5, showing how

the net energy demanded is reduced as increasing quantities of wind and solar PV capacity

5The net load duration curve defines the probability distribution of the hourly difference between demand
and renewable generation (i.e., the probability distribution of hourly energy that has to be supplied with
conventional generators).
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are introduced in the system (Figure 1-1). If we assume that initially, with no wind power or

solar PV installed, the generation capacity in the system is perfectly adapted, the expected

effects of a quick deployment of renewable capacity on the existing thermal capacity can be

summarized as follows:

• In the short-term, there will be excess of capacity as new renewable units are pushed

into an already adequately dimensioned system. This surplus of capacity would impose

some negative consequences on units with high variable costs and high energy bids

as these units are displaced by others bidding lower prices (‘quantity effect’). This

‘quantity effect’ would in turn depress prices, further reducing the cash flows of all

units in the system (‘price effect’).

• In the long-term, plants with higher capital costs could see their full-load hours reduced

by larger shares of renewables as renewables increasingly reduce the baseload portion

of the NLDC. Additionally, plants with high startup costs and plants with a high

minimum output requirement would see their operating costs increase as a result of

their exposure to the intermittency of renewable generation sources. In equilibrium,

some of the plants with a high capital cost as well as plants that are ‘inflexible would be

decommissioned once their life expires, and substituted by ‘flexible technologies that

can follow the net load profile at a lower cost, as the generation fleet adapts to the new

situation.

Figure 1-1 shows an example of the evolution of the NLDC with larger wind capacity

(left panel) and solar PV capacity (right panel). This example was built upscaling wind and

solar capacity factors to the given wind and solar capacities in each case (Holttinen et al.,

2010). According to this illustration, the total energy that has to be supplied by conventional

technologies will diminish with larger renewable shares. Yet, this figure does not include the

variability of renewable resources, which also affects investment, commitment and dispatch

decisions. Overall, the impact of net load changes on conventional generation units will be

different depending on the units capex and opex values, and their flexibility characteristics.
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Figure 1-1: Net load duration curves for different wind power and solar PV penetration
scenarios. Demand, wind and solar data correspond to the German System in 2008.

If changes in renewable capacity follow a deployment schedule that allows the other

players in the market to anticipate future changes and adapt, the capacity mix in equilibrium

will roughly consist of less plants with high capex, and more flexible plants that can adapt

to the intermittency of renewables.

Conversely, without adaptation, it is expected that plants will see their capacity factor

reduced as some of the energy is supplied by renewables, and see lower prices as a result of

the ensuing excess of capacity. This effect can be characterized as windfall losses resulting

from an unanticipated regulatory shock, to which the generation mix did not have time to

adapt.

1.4.2 Operational Characteristics of Power Systems with Wind

and Solar PV

Intermittency: Variability and Uncertainty

Variability and uncertainty have always been present in power systems: demand varies

throughout the day and throughout seasons following consumers changing consumption of

electricity, and generators must adjust their output accordingly to track this pattern. Addi-

tionally, demand is also uncertain by nature, even though the main drivers for demand are
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very well known and it can be predicted very accurately. Similarly, power plant outages, hy-

dro inflows, the possibility of a line tripping or other external factors contribute to increasing

the uncertainty in the operation of power systems.

Although to some extent all power generation technologies can exhibit some variability

and uncertainty for the reasons just described, wind and solar resources are extraordinarily

variable and uncertain as they are fully dependent on instantaneous wind speed and insola-

tion respectively, accouting for the sudden loss of very large plants. Many studies have shown

how the spatial aggregation of wind turbines contributes to decreasing the system-level vari-

ability of wind output. Nevertheless, the variability of wind power even at a regional or

national level is still high (Holttinen et al., 2008). In contrast to wind, solar power exhibits a

more regular variability pattern, as solar availability is fundamentally driven by diurnal cy-

cles, seasonal patterns and the presence of clouds and precipitation. Besides variability, wind

and solar power availability are difficult to predict, although better forecasts can be achieved

with proximity to real time. Therefore, wind and solar generation can both be considered as

intermittent resources in the sense that intermittency accounts simultaneously for the non-

controllable variability and the partial unpredictability of these resources (Perez-Arriaga,

2011).

The experience gained by independent system operators (ISOs) during the last decades

has enabled them to cope with these uncertainties by introducing improvements in the man-

agement of the system, introducing redundancies through reliability criteria and deploying

ancillary services. Ancillary services are “all non-energy services used to compensate for the

variability and the uncertainty in the system in order to serve load reliably and keep system

frequency stable” (Milligan et al., 2010). Among them, reserves can be defined as “real power

capability that can be given or taken in the operating timeframe to assist in generation and

load balance and frequency control” (Milligan et al., 2010). Table 1-2 presents a classification

of types of reserves in terms of their response time and whether they are spinning (margin

of capacity up or down from plants that are already producing) or non-spinning (margin of

capacity up from plants that are not producing, or extra demand that can be called upon
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request of the system operator). The names of the reserves used in this classification is based

on the denomination used in the different north-american interconnections. For clarity, the

European denomination is also provided in parenthesis.

Regulating reserve (secondary reserve): maintain 
area control error due to random movements 

Load following reserve (tertiary reserve): 
maintain area control error and frequency due 
to non-random movements  

Frequency response reserve (primary reserves): 
provide frequency response to major 
disturbances 

Supplemental reserve (tertiary reserve): replace 
faster reserve sources to restore pre-event level 
reserve 

Ramping reserve: respond to failures and events 
that occur over long time frames (e.g.: wind 
variability) 

Figure 1-2: Illustration of reserves types with the European denomination in parenthesis.
Adapted from (Milligan et al., 2010)

The response of power systems in the face of an increasing uncertainty from larger shares

of wind and solar has been to redefine some of these reserve requirements (Holttinen et al.,

2008)(Perez-Arriaga, 2011). Yet, larger renewable shares do not translate automatically into

a proportional increase of reserve requirements. Many studies have shown the existence

of a ‘smoothing effect’ from the spatial aggregation of intermittent resources, and many

system operators currently use an ‘aggregated’ observation of the instantaneous renewable

generation in the operation of the system for better efficiency. In addition to the aggregation

effect, there are regions that might exhibit some correlation between demand, and wind and

solar resources. Therefore, it is the net load (the difference between demand and renewable

output) that ultimately matters in the operation and planning of power systems (Holttinen

et al., 2010). The analyses in this thesis also takes this view and use net load as a joint
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characterization of demand, wind, and solar resources.

Lastly, scarcity events extended for long periods of time occur with very low probability

in systems with intermittent renewables. However, their impact on the system is far from

negligible: they can provoke involuntary load curtailment or lead to the over-dimensioning

of the generation capacity, both very costly outcomes. In order to cope with these events,

systems could enable demand response mechanisms that reduce demand levels during times

of resource scarcity or provide price incentives to activate back-up generators. This thesis

does not explore the occurrence of these events, which should be analyzed on a region-by-

region basis and by means of extensive historical data.

Cycling

The intermittency of renewable generation induces a more intense cycling regime on ther-

mal power plants, as they have to start-up and shut-down more often in order to keep an

instantaneous balance between demand and generation, or in order to meet reserve require-

ments (Perez-Arriaga and Batlle, 2012)(Holttinen et al., 2008). In particular, units that are

high in the merit order like CCGTs or OCGTs are very exposed to renewable intermittency

(given their high variable cost, they are the first being displaced by renewables) and they

will quickly experience an increase in cycling. In some power systems, units considered as

baseload (mostly coal units) are also providers of reserves and might see their part-load

operation and cycling increased as a consequence of larger renewable shares (Troy et al.,

2010).

The start-up and shut-down of a unit has a direct impact on the fuel cost and on the

depreciation of the turbine. First, the startup of a thermal unit requires an extra amount of

fuel to increase the temperature of the boiler to bring the unit to its minimum operational

point. This amount of fuel required to startup the unit is a function of the time that the

unit has been offline. Second, cycling operations moves the unit to operate more frequently

within less efficient regimes in the heat rate curve, requiring more fuel to generate electricity

than in the optimal generation region. Third, the number of starts is a major driver for the
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wear and tear of the turbine, and a more intense cycling regime will accelerate the need to

major turbine overhauls, dramatically affecting the profitability of the unit. In particular, the

long-term service agreements between the plant and the original equipment manufacturer,

establish the needs for inspections and maintenance services, as well as for major overhauls,

which are in the range of $20-60M each (Rodilla et al., 2013). Therefore, given its economic

importance, it is essential to include in detail the costs of starting up in models used to

analyze investment decisions and markets, such as capacity expansion models. Figure 1-3

represents three different maintenance interval functions of a gas turbine, corresponding to

three possible ways of accounting for its firing hours and the number of startups (Option A,

maintenance is determined by the first threshold criteria reached; Option B, each start cycle

has an equivalent number of operating fire hours; and Option C, maintenance is determined

by a function of both firing hours and cycles performed).

Figure 1-3: Baseline functions for maintenance interval (Rodilla et al., 2013)

In the analyses performed in this thesis, startup costs are modeled as a single quan-

tity that includes both fuel costs and major overhauls, without considering explicitly the

conditions included in maintenance contracts, like those in Figure 1-3.

Flexibility

In general, it has been acknowledged that systems aiming at introducing large amounts of

intermittent renewables will be required to be more flexible (Lannoye et al., 2011) (Lannoye

et al., 2010) (IEA, 2011) (Holttinen et al., 2008) (Perez-Arriaga, 2011). At a system level,
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flexibility can be defined as the capacity to adapt generation and demand in order to inte-

grate intermittent resources. This definition is consistent with other definitions found in the

literature (IEA, 2011).

There are multiple elements that can be introduced to enhance the flexility of a power

system, mainly: storage, demand side response (DSR), interconnections with neighboring

areas and ‘flexible’ power plants. Each of these ‘flexibility options’ have different implications

on the operation of power systems, and present different advantages relative to one another.

The International Energy Agency (IEA) has extensively explored the impact of each of these

options on the operation of the system, as well as their economic tradeoffs, using the same

modeling approach as the analyses in this thesis (IMRES) (IEA, 2014).

Focusing on thermal generation, power systems with renewables will require a larger num-

ber of flexible generating units that balance renewable electricity variability, some of which

will operate for fewer hours of the year (DENA, 2010)(Denholm and Margolis, 2007)(Den-

holm et al., 2010)(IEA, 2011)(Lannoye et al., 2011)(Milligan et al., 2010)(MIT, 2011)(Perez-

Arriaga, 2011). Operational flexibility as an attribute associated with power generators

entails some specific characteristics: low start-up costs (ability to cycle), highly adjustable

output rate (low minimum operating point) and high ramping rate (fast ramp-up capac-

ity) (Lannoye et al., 2010) (Perez-Arriaga, 2011). Some research efforts have been lately

geared towards identifying which of all of the attributes associated with flexible thermal

plants are mostly needed in systems with intermittent renewables, in order to create new

services that can be priced to compensate flexible plants for their extra fixed costs compared

to conventional generation technologies. Most of these studies have shown that the primary

scarce attribute is fast ramping capability (ramping that occurs in a timeframe of minutes)

(Lannoye et al., 2010) and some power systems have started to introduce mechanisms that

remunerate plants providing this service (California ISO, 2011).

As this thesis focuses on day-ahead wholesale markets, the analysis of the intra-hourly

variability of the net load (what happens in timeframes of minutes) is beyond its scope and,

therefore, the flexibility attributes included in the analyses of this thesis are those that are
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salient in timeframes greater or equal than one hour.

1.4.3 Wholesale Electricity Markets and Intermittent Renewables

There are many open questions regarding how intermittent renewables affect electricity

wholesale markets. During transitory stages, since renewables have zero variable cost, some

systems with large penetration of intermittent renewables have experienced a decrease in

prices as the units with high variable cost are partially or totally displaced by renewable

generation. This price effect might be partially counteracted if wholesale prices account for

startup costs as will be shown in Chapter 3.

An additional contributor to decreasing prices is the curtailment of renewables, resulting

in zero price hours whenever curtailment occurs. At moderate penetration levels, renewable

curtailment occurs for two primary reasons: 1) a lack of available transmission to integrate

part of the renewable energy generated; and 2) situations where renewable generation ex-

ceeds load and the excess cannot be exported to other balancing areas due to transmission

constraints (Fink et al., 2009). At high penetration levels, renewable curtailment adds a de-

gree of freedom to the operation of the system, and it can be used to avoid violating ramping

constraints, reserves constraints, or to avoid the cost of shutting down a unit and having to

start it up again. Some markets introduce a priority dispatch condition as an incentive for

renewable generation, by which renewables cannot be curtailed unless they are jeopardizing

the safe operation of the system. Nevertheless, this condition introduces an inefficiency in

the system, as the possibility of curtailment can reduce the operational cost of the system.

Hence, all the analyses in this thesis include renewable curtailment as an option that can be

used to reduce the total system cost.

In equilibrium, it is not clear what the evolution of electricity prices would be, as there

are other factors such as the formats of bidding, or changes in fuel prices that could shift

the capacity mix and the prices in one direction or the other.

In addition to the characteristics mentioned, an effect frequently observed in markets

with intermittent generation is an enhanced volatility, with an increasing occurrence of high
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price spikes and numerous occurrences of zero or even negative prices6 (Perez-Arriaga and

Batlle, 2012). The impacts resulting from all these market effects on the value of generating

assets are not fully clear yet. This thesis addresses these issues by focusing on the profits

obtained by generators under different renewable penetration scenarios and different formats

of bidding, each exhibiting different magnitudes of volatility and renewable curtailment.

1.4.4 Taxonomy of the Impacts of Intermittent Renewables on

Electricity Markets

Table 1.1 summarizes the main factors that have been found to have an impact on the

profitability of thermal generating units and, ultimately, on the risk perceived by investors

in electricity generation. The factors covered in this thesis have been marked in bold.

This thesis the impacts of large-scale deployment levels of intermittent renewables on

electricity markets, focusing on the impact of pricing rules and unanticipated regulatory

decisions that increase renewable capacity, on the wholesale electricity price, and on the

profits made by generating technologies. In addition, as individual plants’ profit calculations

are based on hourly prices, they already account for the effect of price volatility on plants’

profits.

Since the trade of electricity in different time scales is typically referenced to the prices

of the day-ahead market7, this thesis focuses exclusively on this market, leaving secondary

and reserve markets beyond the scope of this research. Likewise, the study of the impact of

rare scarcity events, external factors, and intra-hourly ramps on electricity markets requires

exhaustive statistical analysis and sensitivity analysis with data specific to the region of

study, and are also beyond the scope of this research.

6In power systems where renewables do not enjoy priority dispatch while receiving feed-in tariffs, re-
newables might see an incentive to bid negative prices in the market to ensure being dispatched. Yet,
feed-in-tariffs and other incentives are not considered in this thesis and it will be assumed that renewable
plants always bid zero prices.

7The day-ahead electricity market is a forward market where participants submit quantity-price bids,
sometimes together with other conditions, for the 24 hours of the following day. Typically, bids in this
market are submitted between 30 and 36 hrs before the delivery time
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Table 1.1: Summary of the main factors affecting the profitability of thermal units.

Factor Origin Analysis

1. Price
volatility

Zero or negative prices and
price spikes

Obtain profit distribution with and
without renewables

2. Scarcity events
Rare periods of renewable

resource scarcity

Simulation of weeks including rare
events found in long-term data series

analysis

3. Regulatory
decisions

Rapid deployment and/or
regulatory uncertainty on

renewable deployment

Obtain profit distribution w/
renewables in a system designed for

less or no renewables

4. External factors CO2 price, different gas prices
Sensitivity analysis under different

conditions

5. State of the
market

Correlation between capital
markets and conditions affecting

generation assets

Calculation of stochastic discount
factors and risk neutral discounting

6. Pricing rules
Ability of pricing rules to

recover costs from an increased
cycling regime

Obtain the profit distribution with
different start-up costs and different

pricing rules

7. Ramps
Increase in the variability of the

net load
Analysis of net load ramps at different

time-steps

1.5 Methodology

1.5.1 Electricity Market Models

As shown above, under perfect competition, and with a convex feasible set and cost functions,

economic theory demonstrates that centralized planning models that minimize investment

and operation costs and include the cost of non-served energy (VOLL) provide the same

solution as market models where the objective is to maximize generators’ and consumers’

total profits (Green, 2000)(Perez-Arriaga, 1994)(Perez-Arriaga and Meseguer, 1997). This

equivalence allows for the use of traditional cost-minimization models to simulate specific

results pertaining to situations of perfect competition.

In highly concentrated markets, firms try to exert market power and the size of firms and

the prices diverge from those in perfectly competitive markets (Stoft, 2002). Under these

conditions, models that assume perfect competition do not accurately represent the behavior
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of the market in question, and therefore the strategic behavior of the different players has to

be considered (Hobbs, 1995). One of the most common approaches to represent perfectly and

imperfectly competitive markets is using equilibrium models. The solution of equilibrium

models involves solving a system of equations built upon the KKT optimality conditions

of the original problem (Ventosa et al., 2005). Among these conditions, the complementary

slackness condition is that at an equilibrium point, the product of the value of the constraint

at that point and its dual variable equal zero. Nevertheless, one necessary condition for this

powerful result to hold is that the set of feasible solutions over which the optimization takes

place is convex (Floudas, 1995), which is rarely the case for power systems with intermittent

renewables and nonconvex costs. Therefore, this thesis assumes perfect competition in order

to be able to account for nonconvex costs and focus exclusively on the effects of intermittent

renewables on electricity markets.

In power systems, generation capacity expansion models have traditionally been used,

among others, for investment planning, to analyze how plants can recover both fixed and

variable costs, and to assess the environmental impact of electricity generation. Some of these

models, such as those based on screening curves and the load duration curve, are useful to

highlight the economic tradeoffs between the fixed costs and the variable costs of the available

technologies in the system (Turvey and Anderson, 1977). Other more sophisticated models,

also based on the load duration curve, incorporate more advanced techniques to account

for the operational uncertainty of the units into the dispatch process in order to assess

the reliability of the system (EPRI, 1980).The operational characteristics of power systems

with a large amount of intermittent renewables bring additional costs to the system from

starting up thermal units and from the activation of other constraints, as power plants need

to ramp up fast and cycle more often to balance the intermittency of wind and solar PV

(Lannoye et al., 2010). To estimate the additional costs requires investment models that

incorporate some of the operational constraints that are not included in traditional capacity

expansion models. Power system models that account for start up costs and operational

constraints are called unit commitment models. These models choose the commitment state
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of individual plants and dispatch decisions, accounting for the operational constraints of

the plants in the system to find a technically feasible solution. Capacity expansion models

that include the operational details that represent the effects of renewable electricity are

computationally challenging. First, the use of binary variables to represent operation and

investment decisions create a domain that is a combinatorial space, demanding sophisticated

solution methods (Bertsimas and Tsitsiklis, 1997)(Bertsimas and Weismantel, 2005). Second,

the combined variability of renewables and demand is such that the net load cannot be

realistically represented anymore with a small number of blocks (Turvey and Anderson,

1977)(Holttinen et al., 2008). This increases the dimensionality of the problem making

it computationally intractable for a very large number of load periods. Dimensionality

problems are usually tackled with conventional stochastic programming (SD) decomposition

techniques (Geoffrion, 1972)(Birge and Louveaux, 1997). However, adaptations of these

techniques to nonconvex problems such as this one are only valid when the nonconvexity lies

in the function being optimized and not in the feasible set defined by the constraints and

the decision space (Li et al., 2011).

Recently, efforts have been made to account for more detailed operational constraints in

perfect competition models in a computationally tractable way (Bushnell, 2010)(de Jonghe

et al., 2011)(Ma et al., 2013)(Palmintier and Webster, 2013)(de Sisternes, 2011)(Batlle and

Rodilla, 2013). The model developed in the context of this thesis has been inspired by some

of these recent efforts to include the operational details necessary to account for the effects of

renewable electricity in real-sized market investment models (Palmintier, 2012)(Palmintier

and Webster, 2013). This model has been labeled ‘Investment Model for Renewable Electric-

ity Systems (IMRES)’ and consists of a cost minimization capacity expansion model –perfect

competition, socially optimal– with unit commitment constraints embedded. IMRES has a

two-component structure: in the first component, individual plant building decisions are

made; in the second component, a unit commitment model decides on the short-term op-

eration of the power plants that have been built, while meeting all operational constraints.

The high-dimensionality problem is addressed by limiting the unit commitment component
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of the model to a number of representative weeks that optimally represent the total energy

demanded in the system (de Sisternes, 2013). In the next section it will be shown that this

representation provides also a good approximation of the chrnological variability of the net

load and the operation of thermal plants in the presence of intermittent renewables, although

these parameters are not explicitly reflected in the approximation method.

Unlike other models that focus exclusively on cost, IMRES has been designed to model

electricity markets –in terms of both costs and prices– in power systems with intermittent

renewables. The design requirements of IMRES are threefold: first, hourly resolution to

simulate wholesale prices; second, constraint that couple time periods in chronological order

to reflect on investment decisions the extra costs derived from the operation of plants in

a system with large shares of intermittent renewables; and third, individual treatment of

plants to simulate profit results. IMRES’ two-component structure of capacity expansion

with unit commitment constraints reflects the impact of a more intense operating regime on

investment decisions, which are represented by binary variables. Additionally, the net load

approximation using whole weeks, simplifies the dimensionality of the problem while account-

ing for the chronological variability of the net load and the correlation between renewables

and demand. The ‘market simulator’ component of IMRES, in which wholesale prices are

derived, was calibrated to approximate to the expected theoretical result in equilibrium (i.e.,

total revenues equal total costs), while taking into account the divergences produced by the

nonconvexities included in the model.

Throughout the analyses carried out in this thesis, IMRES is used to simulate the impacts

of different penetration levels of renewables, in terms of the optimal capacity mix, and the

capacity factor, the energy contribution, the cycling regime and the profits obtained by each

thermal technology present in the system. In addition, IMRES is used to explore the impact

of different bidding mechanisms (complex and simple bids) on the total cost recovery of units

and on the cost paid by consumers.

Given the nonconvexities in the cost structure of the units and the changes in remuner-

ation introduced by the different bidding mechanisms, the hourly price solution provided
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by IMRES might not support a market equilibrium solution (i.e, some technologies might

appear as under or over-compensated, and a different number of plants would have been

installed in reality). Therefore, a metaheuristic approach is presented to approximate the

solution to market equilibrium. Metaheuristic models combine optimization techniques with

heuristic rules that improve candidate solutions. In particular, this model will calculate the

expected revenues of each individual plant using a standard unit commitment model, and

it proposes new candidate solutions according to a set of heuristic rules that reduce the

number of plants from technologies that incur losses and increase the number of plants of

technologies making large profits. These rules ensure that all the plants proposed in each

solution obtain a positive profit and that no new entrant would make a profit in the new

solution. Metaheuristic models such as the one proposed in this thesis allow us to search

in a high-dimensional space, but their main disadvantage is that the equilibrium solutions

produced by these models are not guaranteed to be global optima.

1.5.2 Valuation Models Accounting for Risk

Investors in electricity generation assets turn to various valuation techniques to discount

future cash flows generated by the assets for time and risk, in order to obtain their present

value to be used in strategic decisions. Most non-financial firms use the capital asset pricing

model (CAPM) to derive a price for the risk that a prospective investment decision will

entail. The principal risk metric used in this exercise is the beta of the asset, which measures

how much on average the value of the asset will change given a 1% change in the market

index8(Brealey et al., 2008). The risk premium derived with this beta added to the risk-free

rate of return is then used to discount the future cash flows of the asset, performing what

is commonly known as risk-adjusted discounting. The main feature of this asset valuation

method is that it assumes that the assets’ risk is directly proportional to the market risk,

ignoring other more complex relationships. In particular, in power systems there are caps on

prices, operational constraints and regulatory changes –such as the unexpected deployment

8Here the market index represents the general risk of the market and it can be calculated as a weighted
average of all the assets in the market
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of renewable generation– that introduce a series of nonlinear and time-varying relationships

between the state of the market and the cash flows obtained by a power plant.

This thesis proposes an algorithm based on stochastic discounting that makes explicit the

relationship between the underlying market risk and the cash flows generated by the asset

in order to accurately value risk. The algorithm proposed is divided into four steps: 1) the

macro perspective step, modeling the evolution of the market index (our chosen risk factor),

looking at how market risk (the macroeconomic risk) is structured, and deriving stochastic

discount factors for each of the states considered; 2) the micro perspective step, modeling

the relationship between the market index and the cash flows produced by the generation

asset, and defining state-contingent cash flows; 3) the valuation step, where cash flows are

discounted for time and risk to obtain the present value of the asset; and 4) a last step,

calculating useful parameters such as an implied discount rate of the asset valued (i.e., a

discount rate that would yield the same present value of the asset if expected cash flows are

discounted at that rate).

1.6 Thesis Research Question and Contributions

The main hypothesis in this thesis is that the conditions introduced by a large penetration

of intermittent renewables might prevent thermal plants from recovering costs, making in-

vestors in power plants to diverge in behavior from the welfare maximizer level of investment.

Therefore, the main research question can be formulated as follows:

What are the risk implications of a large penetration level of intermittent renewables on

investments in electricity generation?

In particular, this question can be subdivided in the following five questions:
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1. How do different penetration levels of intermittent renewables affect the optimal ca-

pacity mix; and the capacity factor, the energy contribution, the startup regime and

the profits of individual units?

2. How do unexpected penetration levels of intermittent renewables impact the cost re-

covery of thermal generators in the wholesale electricity market and the cost paid by

consumers?

3. How do different bidding rules impact the cost recovery of thermal generators in the

wholesale electricity market and the cost paid by consumers?

4. How do parameters characteristic of the system such as the VOLL, the size of the

system and the startup cost affect estimates of cost-recovery by plants?

5. How should investors value the risk of new investments in generation plants in order

to make better investment decisions?

The goal of this thesis is to elucidate the impacts of intermittent renewables on electricity

markets and, in particular, explain how investments in thermal technologies are affected by

a large penetration of renewables. Specifically, this thesis will focus on: 1) explaining the

effects in a system that is adapted for certain renewable capacity and also in a system that is

designed for a zero renewables, but operated with a non-zero renewable capacity; 2) explain

the effects of bidding rules on recovering operational and fixed costs of thermal power plants,

and the impact on the cost paid by consumers; and 3) explain how risk should be accounted

for in investment decisions.

Methodologically, this thesis presents a new capacity expansion model with unit com-

mitment constraints, capable of analyzing the market effects of real-size power systems with

large amounts of renewables. It also proposes a heuristic method with which to derive a

market equilibrium solution in situations where the cost minimization solution does not sup-

port equilibrium. In addition to this, this thesis introduces a method based on stochastic

discounting and Monte Carlo simulation to value the risk of new generation assets.
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1.7 Thesis Structure

The thesis is structured as follows.

Chapter 2 describes the capacity expansion model with unit commitment constraints used

in this research to explore the impacts of renewables on electricity markets. It also describes

the heuristic method used to select the weeks used in the unit commitment component of

the model, and shows how four weeks can approximate well the commitment results derived

from the full one-year series.

Chapter 3 analyzes the impact of renewable generation on the cost recovery of thermal

generators. In particular, it explores the effects of the unanticipated deployment of renew-

ables and the impact of three different bidding rules (side payments, price uplift and simple

bids) on plants’ profits and the cost paid by consumers. In addition, this chapter summarizes

the impact of renewables on the optimal capacity mix, and the operational characteristics of

the generation technologies considered. It also analyzes the impact of some system parame-

ters such as the size of the units, the VOLL and the startup cost on profit results.

Chapter 4 presents the issue of accounting for the value of risk in electricity generation

investments and explains with an example the application of the Monte Carlo method to the

stochastic discounting methodology for the valuation of electricity generation assets under

uncertainty.

Finally, Chapter 5 summarizes the conclusions and the regulatory implications of the

results found in the thesis.
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Chapter 2

Methodology

This chapter is an adaptation of the following papers:

• Investment Model for Renewable Electricity Systems (IMRES): an Electricity Genera-

tion Capacity Expansion Formulation with Unit Commitment Constraints, MIT Center

for Energy and Environmental Policy Research, CEEPR WP 2013-16, Cambridge, MA

(de Sisternes, 2013)

• Optimal Selection of Sample Weeks for Approximating the Net Load in Generation

Planning Problems, ESD Working Paper Series, ESD WP 2013-03, Cambridge, MA

(de Sisternes and Webster, 2013)

2.1 Introduction

The ongoing large-scale introduction of intermittent renewable energy resources in electric

power systems has substantially increased the variability and the uncertainty of the net

load, the difference between the actual load and the variable energy output, also known

as residual demand (Perez-Arriaga, 2011). Under this new paradigm, resources that can

respond quickly and balance the variability of the net load throughout a prolonged period of

time need to be deployed in the system (Milligan et al., 2010)(Morales et al., 2009)(Holttinen

et al., 2008). These resources typically have low startup and variable costs, and provide
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what is generally referred to as operational flexibility or, simply, flexibility (although there

is no common definition for it) (Perez-Arriaga, 2011)(IEA, 2011)(Lannoye et al., 2011).

Quantifying the operational flexibility needs in power systems with renewables requires using

long-term investment models that account for the cost of deploying these resources, as well

as including sufficient operational detail to account for the cycling costs and operational

effects resulting from the additional variability introduced (Lannoye et al., 2011)(de Jonghe

et al., 2011)(Palmintier and Webster, 2013)(IEA, 2014)(Ma et al., 2013). Additionally,

the detailed analysis of electricity markets involves the derivation of wholesale prices, and a

model structure with decision variables particular to individual plants, to enable the analysis

of each plants’ profits.

Therefore, the elements required for a capacity expansion model that assess the impacts

of intermittent renewables on electricity markets –in terms of both costs and prices– are

three:

1. Hourly resolution to allow the simulation of wholesale prices and the implementation

of unit commitment constraints.

2. Unit commitment constraints that couple variables in chronological demand periods in

order to reflect the additional costs derived from the distinct operation of plants in a

system with large shares of intermittent renewables.

3. Individual treatment of plants (investment and operating decision variables particular

to each plant) to simulate the profits obtained by individual units.

Capacity expansion problems are typically used to determine the optimal generation ca-

pacity mix and the level of reserves to supply electricity reliably to meet a given demand

profile represented by a load duration curve (LDC). However, increased variability in the

system causes a more intense cycling regime in thermal units, whose additional fuel and

O&M costs associated with starting up is not captured in the classic version of the problem.

Traditional capacity expansion models such as screening curves models (Turvey and Ander-

son, 1977) primarily capture the economic trade-off between generating technologies with
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a high capital cost and a low variable costs, and technologies with lower capital cost but

high variable cost, without accounting for other important factors such as start-up costs, the

indivisibility of units, minimum stable output levels, ramp limits and reserve needs. Besides

the simple versions of screening curves, there are other more sophisticated models based on

load duration curves that account for reserve margins and reliability criteria (EPRI, 1980),

but that do not include the commitment detail and the chronological ordering necessary to

reflect the impact of renewables on the operation of the units.

Conversely, unit commitment (UC) problems represent the hour-by-hour dynamics of

the system solving for commitment states, start-up and shutting-down of plants for a given

capacity mix, but do not consider new investment decisions (Baldick, 1995). In addition to

including the technical constraints in the system, UC problems for systems with high pene-

tration of intermittent renewables, need to account for the additional uncertainty brought in

by renewable resources. In previous studies, some authors have introduced methods that ad-

dress some of the classic uncertainties present in power systems. For instance, the uncertain

availability of plants has been considered through probabilistic reserve determination (Dilon

et al., 1978), and uncertainty in demand (Takriti et al., 1996) and stochastic hydro-inflows

in hydro-thermal systems (Pereira and Pinto, 1985) through stochastic programming. More

recently, stochastic programming approaches (Morales et al., 2009)(Tuohy et al., 2009)(Pa-

pavasiliou et al., 2011) and stronger formulations of the problem (Ostrowski et al., 2012) have

been proposed to more effectively and efficiently model the uncertainty posed by renewables,

given an existing capacity mix.

Models that assess the need for flexibility for long-term planning in a system with renew-

ables must simultaneously include capital investment decisions, operational decisions, and

the uncertainty and variability from intermittent renewables. Recently, formulations based

on including capacity decisions within existing simplified UC problems have gained momen-

tum, as a means to assess operational flexibility needs (de Jonghe et al., 2011)(Palmintier

and Webster, 2013)(Ma et al., 2013). These formulations minimize the total system cost (the

sum of the fixed and variable costs) over one year, by taking into account the annualized
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capital cost of the units and the total variable cost of a one-year unit commitment problem,

including the main operational constraints. These models are computationally very difficult

to solve as each potential unit in the system has on the order of thousands of binary commit-

ment variables associated, in addition to the constraints on this variables. For instance, to

make commitment and generation decisions from a pool of 300 generating units, one would

need to solve a problem with over five million binary variables (counting each units commit-

ment and start-up decisions over the 8,760 hours of a year). Yet, the high dimensionality

of these models cannot be addressed with a straightforward application of stochastic opti-

mization techniques, as binary commitment variables would be part of the subproblem in

the classic Benders decomposition formulation, which impedes closing the duality gap (Birge

and Louveaux, 1997).

Palmintier and Webster propose a method that incorporates operational flexibility into

long-term capacity expansion planning, based on a capacity expansion formulation with unit

commitment for a full 8 760 hour load profile (Palmintier and Webster, 2011)(Palmintier and

Webster, 2013). This method is founded on an integrated clustering approach for the unit

commitment, that combines together all units from the same technology into a single cluster.

This approach improves the computational tractability of the model, but it is not suitable

a priori for analyzing the profitability of individual units as they are bundled together in

clusters.

Instead, Morales et al. point out that improving the computational tractability of models

that assess the need for reserves in systems with renewables might require an appropriate

bundling of hourly wind-related values and a reduced but representative set of renewable gen-

eration scenarios (Morales et al., 2009). Accordingly, Some authors have proposed simplified

versions of such models, all of which select a number of representative weeks to construct an

approximate load profile of the systems yearly demand (de Jonghe et al., 2011)(Ma et al.,

2013) (Papavasiliou et al., 2011). De Jonghe et al account for the chronologic sequence of

hourly load levels, including some operational constraints, but their approach decides upon

technologies and not upon individual plants, which impedes accounting for startup costs and
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the minimum up and down times of the plants (de Jonghe et al., 2011). Ma et al. based their

selection of representative weeks on seasonality and well-known demand patterns, which does

not reflect accurately the total amount of energy demanded in the system over the year (Ma

et al., 2013). Conversely, Papavasiliou et al. proposed a method that optimally determines

the weights of a pre-selected number of representative wind power scenarios (Papavasiliou

et al., 2011). However, in a system with a large penetration of renewables, a sound method

that selects a small number of representative weeks has to simultaneously provide a good

account of the load duration curve while including potential correlations between the load

and renewable output. Therefore, this thesis addresses the dimensionality challenge by op-

timally selecting a number of weeks from a one-year-horizon hourly load series, given the

hourly availability of wind and solar power over the same timeframe, and taking into account

the correlation between demand and renewable resources.

There are other approaches that are not strictly based on optimization, connecting long-

term capacity expansion planning models with a detailed representation of the cycling costs

of the plants. One example of these models is ‘LEEMA’, a model developed by Batlle and

Rodilla that incorporates maintenance costs and major overhauls to the traditional screening

curves model (Batlle and Rodilla, 2013). LEEMA is based on a heuristic optimization that

calculates the production profile and the total cost that a 1MW fictitious plant of some

certain technology will have if it supplies each of the 1MW horizontal slices in which the

sequential hourly demand is divided (loading points). Capacity decisions are subsequently

made attending to the cost functions resulting from assuming that the different production

profiles are supplied by each thermal technology considered. Although hourly prices can be

derived from this model, its heuristic nature would make it difficult to calibrate so that, in

equilibrium, the profits obtained by all units approximate the expected theoretical result of

zero profits.

This chapter describes the Investment Model for Renewable Electricity Systems (IMRES),

a model based on a selection method that accounts for the correlation between demand and

renewable availability, which aims at determining the minimum cost electricity generation
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capacity mix and the profits obtained by individual units in systems with a high penetration

of intermittent renewable resources. IMRES uses a capacity expansion formulation with

embedded unit commitment constraints, integrating the operational dynamics induced by a

high net load variability characteristic of this type of power systems. The main advantage

of this formulation is that its objective function accounts for capital costs, variable costs, as

well as the costs associated with a more intense cycling regime. In addition, the model also

includes commitment constraints that couple together consecutive demand periods and relate

the technical characteristics of thermal units to total system cost and capacity decisions. The

dimensionality challenge is addressed by optimally selecting a number of weeks from a one-

year-horizon hourly load series, given the hourly availability of wind and solar power over

the same timeframe, and taking into account the correlation between demand and renewable

resources.

From a centralized planning perspective, IMRES can help to determine the future in-

vestments needed to supply a future electricity demand at minimum cost. In the context of

liberalized markets, IMRES can be used by regulators for indicative energy planning (Perez-

Arriaga and Linares, 2008) in order to establish a long-term vision of where efficient markets

should evolve, and to have an estimation of the impact of renewables and market rules on

the profitability of generating units. The method presented with IMRES combines the eco-

nomic assessment performed by classic approaches with the techno-economic analysis of unit

commitment models, allowing a detailed study of the impact of technical constraints on the

system cost and the profit made by individual units.

IMRES can be viewed as a two component model (Table 2.1): the primary component

decides which power plants to build; and the secondary component accounts for the opera-

tional decisions at the power plants. In its original form, renewables and storage capacity

are taken as parameters, while capacity and operational decisions concerning the thermal

capacity mix are treated as variables. However, as will be shown below, IMRES also al-

lows renewables and storage capacity to be treated as decision variables, at the expense of

increased computational complexity and computation time.

60



Minimize Investment costs + Operational costs (2.45)

s.t.: operate-if-built coupling constraint (3.17)
demand balance equation (2.3)
unit commitment constraints (3.5-3.12)
renewable energy and emissions constraints (2.12-3.15)
storage constraints (2.16-2.20)
demand-side management constraints (2.21-2.25)
reserves constraints (2.26-2.32)
non-negativity/binary constraints (3.18-2.42)

Table 2.1: IMRES’ General Structure and Reference to Equations

The time interval evaluated in IMRES is one year, divided into one-hour periods and

representing a future year (e.g.: in 2050). In this sense, IMRES is a static model because its

objective is not to determine when investments should take place over time, but rather to

produce a snapshot of the minimum cost generation capacity mix under some pre-specified

future conditions.

This chapter begins by presenting the mathematical formulation of the model, with a

detailed description of the unit commitment constraints used. Second, it shows how the size

of the problem posed by selecting weeks from a one-year data series increases with the number

of weeks selected. Third, it proposes metrics to test the quality of the approximation, arguing

that a small number of weeks is sufficient to represent the net load duration curve with

negligible error. Fourth, it explores the trade-off between the added complexity of including

the peak net load day in the problem and achieving a more accurate representation of the

hours with non-served energy (NSE), which is critical for determining the economic feasibility

of peaking units. Fifth, it demonstrates the improvement in accuracy from accounting for

the correlation between demand and renewables, using a selection based on the net load

duration curve, as opposed to a selection based on seasons or based on the system’s load

duration curve. Lastly, it validates the applicability of this method to power systems with

a high penetration of renewables by comparing the error values obtained in two different
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regions.

2.2 Notation

2.2.1 Indices and Sets

Table 2.2: IMRES’ Indices and Sets

i P I, where I is the set of generating units that can be potentially built

j P J , where J is the set of hours in the data series

j1 P J , where J is the set of hours in the data series

k P K, where K is the set of generation technologies

W Ă I, where W is the subset of wind units

S Ă I, where S is the subset of solar photovoltaic units

T Ă I, where T is the subset of thermal power units (nuclear, coal, CCGTs and OCGTs)

T k Ă I, where T is the subset of thermal units of technology k

G Ă I, where G is the subset of gas peaking units (OCGTs)

N Ă I, where N is the subset of nuclear units

2.2.2 Variables

Table 2.3: IMRES’ Variables

yi P t0, 1u building decision for power plant i

y˚ optimal solution for capacity expansion (individual building decisions)

xij P R` output power of plant i during hour j

uij P t0, 1u commitment state of power plant i during hour j

zij P t0, 1u start-up decision of power plant i at hour j

vij P R` shut-down decision of power plant i at hour j

wij P R` output power over minimum output of plant i during hour j

fj P t0, 1u charging/discharging state of the storage unit during hour j
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xSTORj P R` output power of the storage unit during hour j

lSTORj P R` energy capacity of the storage unit during hour j

pSTORj P R` energy inflows to the storage unit (or hydro reservoir) during hour j

xDSMj P R` energy ’put back’ from demand side management during hour j

lDSMj P R` total energy withheld in demand side management during hour j

pDSMj P R` energy withheld in demand side management during hour j

rPRI Uj upwards primary reserves in hour j

rPRI Dj downwards primary reserves in hour j

rSEC U
j upwards secondary reserves in hour j

rSEC D
j downwards secondary reserves in hour j

rTERj tertiary reserves in hour j

nj non-served energy in hour j

2.2.3 Parameters

Table 2.4: IMRES’ Parameters

Dj electricity demand in hour j [GWh]

CFWIND
j capacity factor of wind power during hour j [%]

CF SOLAR
j capacity factor of solar power during hour j [%]

CFOM
i fixed cost for operations and maintenance for unit i [M$/year]

CV OM
i variable cost for operations and maintenance for unit i [k$/MWh]

CFCAP
i annualized fixed cost for unit i [M$/year]

CFUEL
i fuel cost per unit power output from unit i

CSTUP
i start-up cost for unit i

V OLL value of lost load [k$/MWh]

Yi building state of renewable plant i: built (Yi “ 1) or not built (Yi “ 0)

EMAX limit on carbon emissions [Mtons]

Ei carbon emissions per unit power output from power plant i [tons/GWh]

πCO2 price of carbon emissions [$/tn]
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PMAX
i maximum power output for unit i [GW]

PMIN
i minimum stable power output for unit i [GW]

P IN maximum input power of storage unit (pumping capacity, in hydro) [GW]

POUT maximum output power of storage unit [GW]

Sj energy spilt in the storage unit during hour j

LMAX energy capacity of the aggregated storage unit [GWh]

LMIN minimum energy level of the aggregated storage unit [GWh]

Ij hydro inflows during hour j [GWh]

ε efficiency of the pumping unit in the reservoir [p.u.]

H max time to ’put back’ energy withheld in DSM

PDSM maximum DSM capacity in one hour

RU
i maximum up-ramping capability for unit i [GW/hr]

RD
i maximum down-ramping capability for unit i [GW/hr]

MU
i minimum up time for unit i

MD
i minimum down time for unit i

KU up reserves constant

KD down reserves constant

α demand component for up primary reserves

β demand component for down primary reserves

γ wind output component for up secondary reserves

δ solar output component for up primary reserves

ξ wind output component for down secondary reserves

θ solar output component for down secondary reserves

ζ wind component for tertiary reserves

o solar component for tertiary reserves
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2.3 Model Formulation

min
x,y,z
u,n,f,p

ÿ

iPI
pCFCAP

i ` CFOM
i qyi `

ÿ

iPI

ÿ

jPJ
ppCV OM

i ` CFUEL
i ` πCO2Eiqxij ` C

STUP
i zijq

`
ÿ

jPJ
V OLL nj (2.1)

s.t. xij ď PMAX
i yi @i P I, @j P J (2.2)

ÿ

iPI
xij ` x

STOR
j ` pDSMj ` nj “ Dj ` p

STOR
j ` xDSMj @j P J (2.3)

uij ´ uij´1 “ zij ´ vij @i P T , @j P J zt1u (2.4)

wij “ xij ´ uij P
MIN
i @i P T , @j P J (2.5)

wij ´ wij´1 ď RU
i @i P T , @j P J zt1u (2.6)

wij´1 ´ wij ď RD
i @i P T , @j P J zt1u (2.7)

wij ď uijpP
MAX
i ´ PMIN

i q @i P T , @j P J (2.8)

uij ě
j
ÿ

j1ąj´MU
i

ztj1 @i P T , @j P J (2.9)

1´ uij ě
j
ÿ

j1ąj´MD
i

vtj1 @i P T , @j P J (2.10)

uij ě yi @i P N , @j P J (2.11)

yi “ Yi @i PW Y S (2.12)
ÿ

iPW
xij ď

ÿ

iPW
yi P

MAX
i CFWIND

j @j P J (2.13)

ÿ

iPS
xij ď

ÿ

iPS
yi P

MAX
i CF SOLAR

j @j P J (2.14)

ÿ

iPI
pEi

ÿ

jPJ
xijq ď EMAX (2.15)

lj ` Sj “ lj´1 ´ x
STOR
j ` Ij ` ε pj @j P J (2.16)
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xSTORj ď fjP
OUT

@j P J (2.17)

pj ď p1´ fjqP
IN

@j P J (2.18)

lj ď LMAX
@j P J (2.19)

lj ě LMIN
@j P J (2.20)

j`H
ÿ

j1ąj

xDSMj1 ě pDSMj @j P J (2.21)

lDSMj “ lDSMj´1 ´ xDSMj ` pDSMj @j P J (2.22)

lDSMj ď PDSMH @j P J (2.23)

xDSMj ď PDSM
@j P J (2.24)

pDSMj ď PDSM
@j P J (2.25)

rPRI Uj ě max
iPI

PMAX
i @j P J (2.26)

rSEC U
j ě KU

rαD2
j ` γpCF

WIND
j

ÿ

iPW
Yi P

MAX
i q

2
`

` δpCF SOLAR
j

ÿ

iPS
Yi P

MAX
i q

2
s
1{2

@j P J (2.27)

rSEC D
j ě KD

rβD2
j ` ξpCF

WIND
j

ÿ

iPW
Yi P

MAX
i q

2
`

` θpCF SOLAR
j

ÿ

iPS
Yi P

MAX
i q

2
s
1{2

@j P J (2.28)

rTERj ě ζ
ÿ

iPW
Yi P

MAX
i ` o

ÿ

iPS
Yi P

MAX
i @j P J (2.29)

ÿ

iPI
puij P

MAX
i ´ xijq ` fjP

OUT
´ xSTORj ` pj`

` PDSM
` xDSMj ´ pDSMj ě rPRI Uj ` rSEC U

j @j P J (2.30)
ÿ

iPI
pxij ´ ui,j P

MIN
i q ` p1´ fjqP

OUT
` xSTORj ´ pj ě

rSEC D
j @j P J (2.31)

ÿ

iPI
pyi ´ uijqP

MAX
i q ě rTERj @j P J (2.32)

xij ě 0 @i P I, @j P J (2.33)
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vij ě 0 @i P I, @j P J (2.34)

wi,j ě 0 @i P I, @j P J (2.35)

lSTORj ě 0 @j P J (2.36)

lDSMj ě 0 @j P J (2.37)

pSTORj ě 0 @j P J (2.38)

pDSMj ě 0 @j P J (2.39)

nj ě 0 @j P J (2.40)

yi P t0, 1u @i P I (2.41)

fi P t0, 1u @i P I (2.42)

uij P t0, 1u @i P I, @j P J (2.43)

zij P t0, 1u @i P I, @j P J (2.44)

2.4 Description of the Model

2.4.1 Indices and Sets

IMRES uses two main indices: i P I and j P J . I denotes the set of individual generating

units that can be built, containing all the units from the different technologies considered:

nuclear, coal, combined cycle gas turbines (CCGTs), open cycle gas turbines (OCGTs), wind

and solar photovoltaic. In addition,W Ă I denotes the subset of wind units; S Ă I, denotes

the subset of solar units; T Ă I, denotes the subset of thermal power units (nuclear, coal,

CCGTs and OCGTs); and G Ă I, denotes the subset of gas-fired power plants (CCGTs and

OCGTs). J denotes the set of hours in a year or, alternatively, the total number of hours

contained in the weeks sampled, used in the unit commitment component of the model.

Building decisions are modeled with binary variables yi P t0, 1u, where y˚ is a vector

representing the optimal building state of the power plants in the solution space; unit com-

mitment decisions are denoted by ui,j P t0, 1u ; start-up decisions are denoted by zij P t0, 1u

; shut-down decisions are denoted by vij P R`; power output decisions are denoted by
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xij P R`; and non-served energy is denoted by nj P R`. An additional variable wij P R`
(where wij “ xij ´ PMIN

i uijq, has been introduced to decompose the total output of each

power plant into its minimum stable level and the incremental generation above that mini-

mum output to facilitate the formulation of ramping rate constraints.

2.4.2 Objective Function

The objective function in IMRES (2.45) minimizes the total cost of the system, which is the

sum of fixed costs (annualized capital cost plus fixed O&M: CFCAP
i `CFOM

i ), variable costs1

(fuel cost plus variable O&M: CFUEL
i `CV OM

i ), start-up costs (CSTUP
i ) and the value of lost

load (CV OLL). IMRES can formally be divided into two components: 1) a component where

individual plant building decisions are made; and 2) a component including startup, com-

mitment and energy dispatch decisions. Note however that these components are considered

jointly and the optimization is performed over the whole problem at once.

min
x,y,z
u,n,f,p

ÿ

iPI
pCFCAP

i ` CFOM
i qyi `

ÿ

iPI

ÿ

jPJ
ppCV OM

i ` CFUEL
i ` πCO2Eiqxij ` C

STUP
i zijq

`
ÿ

jPJ
V OLL nj (2.45)

2.4.3 Value of Lost Load

In the same way as in other capacity expansion models, the value of lost load (VOLL) used

in IMRES affects critically the total non-served energy in the system and building decisions

of peaking units. The choice of VOLL can be made to address various criteria and there are

several methods to determine its value.

To give an example, a typical rule of thumb for establishing reliability criteria in many

power systems is that there can only be at most one day (24 hrs of duration) with non-served

energy over a time span of ten years. If we calculate the per year ratio of this limitation, we

1The present formulation uses an affine variable cost function that could be replaced in future implemen-
tations by a piecewise linear cost function to increase the accuracy of the representation of the plants’ cost
structure.
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have a maximum average of 2.4 hours per year with non-served energy. In a classic capacity

expansion model with screening curves (Turvey and Anderson, 1977), non-served energy can

be introduced as an additional technology with fixed cost equal to zero and variable cost

equal to the VOLL. The intersection between the cost function of non-served energy and the

cost function of the peaking technology determines the number of hours in a year for which

it is cheaper to curtail demand rather than supply the full peak. If the maximum number of

hours with non-served energy is fixed by the reliability criteria of choice (for the criteria just

discussed, 2.4 hours), and we assume that the peaking plant does not have any additional

income, we can derive an analytical expression for the VOLL using this number:

V OLL “
CFCAP
i ` CFOM

i

2.4
` CV OM

i ` CFUEL
i , i P G r${MWhs (2.46)

Conventional values of lost load range between 1,000 and 10,000 $/MWh. However,

the method just described typically produces values much higher than 10,000 $/MWh. For

instance, for a peaking technology with a fixed annual cost of 100,000 $/MW, the resulting

value of lost load calculated with screening curves is above 40,000 $/MWh.

Alternatively, we can assume that some demand is sensitive to price, which prevents the

price from going above some certain threshold lower than the values presented above. In

reality, this is achieved through contracts with special customer groups that are willing to

reduce their demand during peak hours, or with grid elements that can supply electricity on

an ad-hoc basis. Elements within this category are emergency generators located in critical

infrastructures and public facilities such as hospitals, government offices, etc, used for back-

up power in case of blackouts, staying idle when the system is operating normally. These

generators could potentially be used to deliver electricity when prices are high, without

jeopardizing their back-up generator functionality. Typically, back-up generators are fueled

with expensive diesel, and if they are used in the mode just described, the system VOLL

would take a value close to the variable cost of these generators, but high enough to offer an

incentive for these generators to supply electricity to the system. The analyses in this thesis

assume a VOLL„ 500 $/MWh, which is close to the variable cost of these plants.
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2.4.4 Accounting for Unit Commitment

The main two decision components in IMRES (building and operating) are linked with a

coupling constraint imposing the condition that only units that have been built can generate

(3.17).

xij ď PMAX
i yi @i P I, @j P J (3.17)

Additionally, IMRES is subject to the classic constraints included in a unit commitment

model: demand balance constraints; constraints on the commitment state; constraints on

the minimum and maximum output of the plants; constraints on the ramping rates; and

constraints on the minimum up and down times . The demand balance constraint (3.25)

establishes for all time periods the equilibrium between the load in the system and the total

power generated, including the option of having non-served energy.

ÿ

iPI
xij ` nj “ Dj @j P J (2.47)

If we include the possibility of having storage and demand side management (DSM) in

the system (see sections 2.4.6 and 2.4.7), the demand balance equation becomes:

ÿ

iPI
xij ` x

STOR
j ` pDSMj ` nj “ Dj ` p

STOR
j ` xDSMj @j P J (2.3)

State constraints (3.5) link commitment states (uij) with start-up and shut-down deci-

sions (zij and vij, respectively). Note that even if vi,j has been defined in the positive real

domain, it will only adopt binary values as the commitment states and start-up decisions

are all binary.

uij ´ uij´1 “ zij ´ vij @i P T , @j P J zt1u (3.5)

Constraints on ramping rates (3.7-3.8) account for the physical limitations imposed by
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power plants’ thermal and mechanical inertias. These equations are constructed using a set

of auxiliary variables (wij, i P T , j P J ) (3.6) to prevent ramping constraints from acting

when off-line power plants start-up and jump from zero output (xij “ 0) to the minimum

output (xij “ PMIN
i ), or when power plants shut down.

wij “ xij ´ uij P
MIN
i @i P T , @j P J (3.6)

wij ´ wij´1 ď RU
i @i P T , @j P J zt1u (3.7)

wij´1 ´ wij ď RD
i @i P T , @j P J zt1u (3.8)

Constraints accounting for the minimum and maximum output limits of the units (3.9)

can be thus defined in terms of the interval between each unit’s minimum and maximum

output levels:

wij ď uij
`

PMAX
i ´ PMIN

i

˘

@i P T , @j P J (3.9)

Constraints on the minimum up and down times are implemented following the formu-

lation in (Hedman et al., 2009). In this formulation MU
i and MD

i represent the minimum

time that a power plant has to remain on or off after a start-up or shut-down respectively,

and j1 P J is an auxiliary index for the hours in the time series:

uij ě
j
ÿ

j1ąj´MU
i

ztj1 @i P T , @j P J (3.10)

1´ uij ě
j
ÿ

j1ąj´MD
i

vtj1 @i P T , @j P J (3.11)

Lastly, IMRES allows the option of including a restriction on nuclear plants cycling

that prevents nuclear plants from shutting down or starting up for reasons other than for

maintenance, as is the case in many power systems. If this constraint is added to the
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formulation, all nuclear power plants built have to be permanently on-line (3.12).

uij ě yi @i P N , @j P J (3.12)

2.4.5 Accounting for Renewables and Carbon Emissions

Wind and solar PV plants (Yi, i PW Y S) are considered as inputs to the model, and their

energy outputs are functions of each technology’s capacity factor (CF ). Capacity factors

reflect the availability of wind or solar resources for a specific hour at a certain location.

Hence, for a particular hour of the year, the output from the total wind or solar power

installed in the system is determined by the product of each technology’s total capacity

installed and its respective CF (3.16-2.49):

yi “ Yi @i PW Y S (2.12)
ÿ

iPW
xij “

ÿ

iPW
yi P

MAX
i CFWIND

j @j P J (2.48)

ÿ

iPS
xij “

ÿ

iPS
yi P

MAX
i CF SOLAR

j @j P J (2.49)

–PMAX
i , i P W and PMAX

i , i P S are the maximum capacities of a unitary wind and solar

farm respectively (in this research, equal to 1GW). Note that in IMRES the size of renewable

power plants –wind and solar PV– does not affect the outcomes of the model, as long as the

sum of the capacity of individual wind and solar plants in the system adds up separately to

the total wind and solar capacity in place in the scenario analyzed.

The model also allows the possibility of introducing curtailment as another degree of

freedom to guarantee that generation exactly meets hourly demand. For both wind and

solar power, this feature is implemented through substituting the equality constraints (3.16-
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2.49) by inequality constraints (3.13-3.14):

ÿ

iPW
xij ď

ÿ

iPW
yi P

MAX
i CFWIND

j @j P J (3.13)

ÿ

iPS
xij ď

ÿ

iPS
yi P

MAX
i CF SOLAR

j @j P J (3.14)

Additionally, each unit has a parameter Ei reflecting an estimation of its specific carbon

emissions in gCO2/kWh associated with producing electricity. The effect of these carbon

emissions is modeled by either introducing a carbon price πCO2 [$/tnCO2] in the objective

function that affects the total variable cost of each technology, or by introducing a cap on

total system emissions EMAX , implemented as an additional constraint (3.15).

ÿ

iPI

˜

Ei
ÿ

jPJ
xij

¸

ď EMAX (3.15)

Note that if the latter option is used, the dual variable of the emissions constraints can

be interpreted as the carbon price that plants should be charged in a carbon price scenario

to achieve the same emissions target of EMAX equivalent tons of CO2 .

2.4.6 Accounting for Hydro and Storage Capacity

IMRES aggregates hydro storage and other forms of storage capacity (mostly electro-chemical

and chemical) in a single storage unit with the ability to increase and release the energy

stored. The formulation used in this model is similar to that used by Cerisola et al. (Cerisola

et al., 2009), where a constant energy-flow ratio for each hydro unit is considered and the

storage level is expressed in terms of stored energy in MWh. The equation representing the

storage level of the reservoir is as follows:

lSTORj ` Sj “ lSTORj´1 ´ xSTORj ` Ij ` ε p
STOR
j @j P J (2.16)

–where lSTORj P R` represents the energy level of the storage unit at hour j; pSTORj P R`
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represents the pumped energy during hour j; ε is the efficiency of the pumping unit; Sj is

the energy spilled in hour j; and Ij are the energy inflows (water inflows from precipitation,

in the case of hydro storage) during hour j.

Additionally, storage units are subject to constraints on the maximum and minimum

level that the storage unit can reach, and the maximum speed of charging and discharging

the unit. These constraints are respectively:

lSTORj ď LMAX
@j P J (2.17)

lSTORj ě LMIN
@j P J (2.18)

pSTORj ď p1´ fjqP
IN

@j P J (2.19)

xSTORj ď fjP
OUT

@j P J (2.20)

–where LMAX and LMIN denote the maximum and minimum storage level of the aggregated

unit; P IN and POUT are the maximum speed to discharge and charge the unit, with POUT ď

LMIN ; and the variable fj P t0, 1u denotes the charging or discharging state of the storage

unit (fj “ 0 indicates that the storage unit is charging, and fj “ 1 indicates that the storage

unit is discharging).

An alternative to aggregating all storage units into a single unit is to treat them sep-

arately, splitting them into different units. Each unit can be distinguished from the other

through different values of storage capacity, maximum power delivery or roundtrip efficiency.

However, introducing many storage units in the model will have a direct impact on the

model’s computational time, as the number of decision variables increase.

2.4.7 Accounting for Demand Side Management

Demand side management (DSM) is a strategy designed to withhold a fraction of the demand

until a later time, when it is cheaper for the system to supply that energy. DSM programs

try to achieve net load peak shaving and provide reserves, which would reduce fuel costs and

defer investments.
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In IMRES, DSM has been implemented as a capability to shift part of the demand at

a given hour throughout the following H hours. The implementation of DSM is somewhat

similar to the implementation of storage as the amount of demand that remains to be supplied

is recorded at a ‘virtual storage’ unit. This virtual storage can only store a maximum of

PDSMH gigawatt-hours of energy, where PDSM is the maximum energy that can be withheld

in one hour. Accordingly, the equation modeling the behavior of DSM is:

j`H
ÿ

j1ąj

xDSMj1 ě pDSMj @j P J (2.21)

lDSMj “ lDSMj´1 ´ xDSMj ` pDSMj @j P J (2.22)

lDSMj ď PDSMH @j P J (2.23)

xDSMj ď PDSM
@j P J (2.24)

pDSMj ď PDSM
@j P J (2.25)

–where pDSMj P R` denotes the energy withheld during hour j; lDSMj P R` denotes the total

energy withheld or, alternatively, the energy level of the virtual storage at hour j; PDSM

denotes the demand shifting capacity; and xDSMj denotes the demand being put back at hour

j.

2.4.8 Reserves Constraints

IMRES uses the general reserves classification proposed in Milligan et al. (Milligan et al.,

2010), but with the European naming convention (primary, secondary and tertiary reserves,

as in Figure 1-2). Primary up reserves, are denoted rPRI Uj , and are equal to the capacity

of the largest generating unit. The magnitude of secondary up reserves, rSEC U
j , and of

secondary down reserves, rSEC D
j , is proportional to the euclidean norm of three uncertainty

factors, depending on the demand level, and the wind and solar PV outputs2 (Milligan et al.,

2010). Finally, tertiary reserves, are denoted rTERj , are proportional to the wind and solar

2This assumes that the forecasting errors associated with these three factors (the sources of uncertainty)
are independent from each other.
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PV capacity installed.

rPRI Uj ě max
iPI

PMAX
i @j P J

(2.26)

rSEC U
j ě

KU

»

–αD2
j ` γ

˜

CFWIND
j

ÿ

iPW
Yi P

MAX
i

¸2

` δ

˜

CF SOLAR
j

ÿ

iPS
Yi P

MAX
i

¸2
fi

fl

1{2

@j P J

(2.27)

rSEC D
j ě

KD

»

–βD2
j ` ξ

˜

CFWIND
j

ÿ

iPW
Yi P

MAX
i

¸2

` θ

˜

CF SOLAR
j

ÿ

iPS
Yi P

MAX
i

¸2
fi

fl

1{2

@j P J

(2.28)

rTERj ě ζ
ÿ

iPW
Yi P

MAX
i ` o

ÿ

iPS
Yi P

MAX
i @j P J

(2.29)

Operating reserves are modeled requiring the system to have a certain amount of spinning

and non-spinning reserves ready to be deployed at every hour. These reserves can be provided

by committed thermal power plants, storage units and DSM. Accordingly, spinning reserves

are formulated accounting for the capacity margin offered by these on-line elements (2.30-

2.31).

ÿ

iPI

`

uij P
MAX
i ´ xij

˘

` fjP
OUT

´ xSTORj ` pSTORj ` PDSM
`

` xDSMj ´ pDSMj ě rPRI Uj ` rSEC U
j @j P J (2.30)

ÿ

iPI

`

xij ´ uij P
MIN
i

˘

` p1´ fjqP
OUT

` xSTORj ´ pSTORj ` PDSM
´

´ xDSMj ` pDSMj ě rSEC D
j @j P J (2.31)
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Additional conditions should be added to these two equations in order to take into account

the behavior of the reservoir when the storage is at minimum or maximum capacity: in

Equation (2.30), if lSTORj ´LMIN ă POUT , then POUT should be replaced by lSTORj ´LMIN ;

similarly, in Equation (2.31), if LMAX ´ lSTORj ă POUT , then POUT should be replaced by

LMAX ´ lSTORj .

Finally, non-spinning reserves are modeled accounting for the off-line capacity in the

system that can be turned on to replace secondary reserves (2.32).

ÿ

iPI
pyi ´ ui,jqP

MAX
i ě rTERj @j P J (2.32)

2.5 Approximating the Net Load Duration Curve

IMRES is formulated as a high-dimension binary mixed integer linear program (0-1 MILP), in

which unit commitment states and investment decisions are represented by binary variables.

The dimensionality of a formulation like the one proposed, combining investment decisions

at the individual plant level and a unit commitment spanning one full year, is on the order

of 8 760 ¨ dim pyq, where dim pyq is the number of power plants considered by the model.

For realistically sized system (with a peak load on the order of tens of gigawatts), dim pyq

will typically be in the order of hundreds, which means that the computational burden of

solving the model is prohibitively large for current computers and solvers such as CPLEX.

Decomposition techniques such as Benders’ cannot be used with this formulation because the

binary variables in the commitment component (the subproblem in a decomposed formula-

tion) would impede the closing of the duality gap (Floudas, 1995). Therefore, simplifications

are needed to reduce the dimensionality of the formulation.

The characteristic variability of power systems with high shares of renewables can be

approximated using IMRES by introducing a four-week approximation of a one-year net

load series to reflect the joint variability of demand and renewable energy output (note

that longer time series could also be used in this process to account for a larger variability

spectrum). The week selection heuristic method is based on choosing the four weeks that
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most closely approximate the full annual net load duration curve, using least-squares. A

detailed description of the week selection heuristic method used in IMRES, its performance

and its comparative advantage against other selection methods is presented below.

2.5.1 Week Selection Methodology

The methodology presented in this section is based on selecting a fixed number of sample

weeks from a one-year-horizon net load series, to develop useful approximations to be used

within planning tools for systems with a very high penetration of renewables. To this end,

we need to assume the hourly renewable generation for a certain future penetration level as

an input to the model. The method focuses on net load because it represents the combined

variability of demand and renewables that must be balanced with dispatchable generation

(mostly thermal and hydro units). Therefore, by jointly considering demand and renewable

generation, we also account for the correlation between them.

It is well-known that there is a smoothing effect on the variability of renewable output

with a larger geographical dispersion of the resources. However, for sufficiently large levels

of dispersion and penetration, this smoothing effect reaches a saturation point above which

there is minimal further reduction in variability (Hasche, 2010). This heuristic method

assumes that for the systems studied such a saturation point has been reached and that

it is safe to scale historical data to project hourly renewable output for higher levels of

penetration. Therefore, for a given penetration level of wind and solar PV, the hourly

variable output is calculated as the product of each variable technology’s historical capacity

factor (CF) and the total capacity deployed of that technology. If we choose the maximum

output parameter of renewable plants to be equal to 1GW (PMAX
i “ 1GW @i P W Y S),

then the gigawatts of wind and solar capacity installed in the system can be expressed as
ř

iPW yi and
ř

iPS yi respectively. Thus, the net load duration curve (NLDC) can be obtained

by sorting the difference between the demand and the renewable output in decreasing order:
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NLDCj “ Dj ´ CF
WIND
j

ÿ

iPW
yi ´ CF

SOLAR
j

ÿ

iPS
yi

s.t.: NLDCj´1 ´NLDCj ě 0 @j P J
(2.50)

Similarly, an approximate net load duration curve ( ČNLDC) can be obtained in three

consecutive steps: 1) sample a given number of weeks from a full year of demand and

renewable generation; 2) scale up the hours contained in the sample to one year; and 3)

sort the series in decreasing order to form the approximate net load duration curve. The

resulting ( ČNLDC) is a staircase approximation to the NLDC.

In this analysis, for a scenario given by its renewable penetration level, we choose the

four weeks that minimize the least square error between the NLDC and its approximation.

The approximation (ν˚) is thus given by the solution to the following optimization problem:

ν˚ “ arg min
ν
}NLDC ´ ČNLDCν}

2 (2.51)

where ν P Zn is the set of indices of the n weeks selected; ν˚ P Zn is the set of indices of the

optimal week combination; and NLDC, ČNLDC
ν
P R8,736.

This method guarantees that the weeks selected best represent the energy below the net

load duration curve, but it does not explicitly account for the chronological variability of the

net load. Therefore, the method cannot guarantee that the four weeks selected provide a

good representation of the chronological order of the net load in one year. Still, as it will be

shown below, sensitivity analyses conducted on the number of weeks selected to construct the

approximation ČNLDC and a thorough comparison of the commitment results produced by

the approximation and the full year net load series show that, for the 4-week approximation

(dim ν “ 4), the errors are small both in terms of energy and in terms of commitment results

(less than 3% in terms of capacity factor and energy contribution, and less than 10% of total

startups).
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2.5.2 Scaling the Sample

We can assess the quality of the approximation by comparing each of the individual hours in

the NLDC with its corresponding hour in the ČNLDC. In order to establish this comparison,

we need to have the same number of hours in the approximation as in the NLDC. To this

end, each hour contained in the weeks sampled has to be repeated an integer number of

times (Θ) to complete the total number of hours in a year. For simplicity, although one year

is composed of 52.14 weeks, we will assume that a year is formed by 52 weeks to preserve the

integrality of the total number of weeks selected. For example, if a sample of four weeks is

selected, the factor by which we have to repeat each hour within the group of weeks selected

to generate a one-year series is Θ “ 52{4 “ 13 (each hour from the 4 weeks appears 13 times

in the annual approximation) (Figure 2-1).

Notice that if the same factor is to be applied to all the weeks selected, the possible

number of weeks is limited to the divisors of 52 (i.e., 1, 2, 4, 13, 26 and 52). Other different

number of weeks could be selected, but applying different scaling factors to each of the weeks.

4-week approximate net load profile 

52-week, 1-year net load profile  

Figure 2-1: Four-week approximate net load constructed with 4 weeks selected from the total
52 weeks in one year. Each hour from the selected week is scaled by a factor Θ “ 52{4 “ 13

2.5.3 Error Metrics

As mentioned above, the objective of the approximation is two-fold: first, to accurately

approximate the yearly net energy demanded by the system; and second, to account for

the operational detail of thermal units in the system. Thus, we need metrics that assess the
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approximations performance from these two perspectives. The statistical metric for the error

incurred with respect to the net energy is the root-mean-square error (RMSE) between the

NLDC and its approximation:

RMSEν
“

g

f

f

e

ř8,736
j“1

´

NLDCj ´ ČNLDC
ν

j

¯2

8, 736
(2.52)

This metric can be normalized relative to the range of net load values in the series with

the normalized-root-mean-square error (NRMSE):

NRMSEν
“

RMSEν

NLDCmax ´NLDCmin
¨ 100 r%s (2.53)

The sample of weeks is chosen to best represent the net load duration curve. However, we

are primarily interested in how well the sample approximates the unit commitment decisions

from a full year. To show the value of the approximation, we compare the results for

energy contribution, capacity factor, and number of cycles performed per year from the

approximation (scaled up to a year) with the results from running the UC for the full year.

These three values give an indication of how thermal units are operated in the system. The

difference in results between the two models is expressed in absolute values with their sign,

and define the three error metrics for each technology k P K as:

ECEk
“

1

|T k|

˜

ÿ

iPT k

ĄECi ´
ÿ

iPT k
ECi

¸

rp.u.s (2.54)

CFEk
“

1

|T k|

˜

ÿ

iPT k

ĄCF i ´
ÿ

iPT k
CFi

¸

rp.u.s (2.55)

SUEk
“

1

|T k|

˜

ÿ

iPT k

ĂSU i ´
ÿ

iPT k
SUi

¸

rp.u.s (2.56)

where T k Ă I is the subset of indices corresponding to generating units of technology k; and

|T k| is the cardinality of the subset.
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2.5.4 How Many Weeks to Select?

The selection algorithm consists of an exhaustive search throughout all the possible combina-

tions of weeks to determine which combination yields the minimum RMSE. This enumeration

process is implemented by a number of nested loops equal to the number of weeks to be se-

lected. As a result, the computational time required to choose the optimal sample set grows

proportionally with the number of possible combinations, which grows as the factorial of the

number of sample weeks (Table 2.5).

Table 2.5: Number of Possible Combinations and Computing Time as a Function of the
Number of Weeks Selected

Number of weeks Selected Number of possible
combinations

Computing time

1
`

52
1

˘

“ 52 0.05 secs

2
`

52
2

˘

“ 1, 326 1.5 secs

4
`

52
4

˘

“ 270, 725 10 mins

5
`

52
5

˘

“ 2, 598, 960 1 h 40 mins

8
`

52
8

˘

“ 752, 538, 150 „19 days

13
`

52
13

˘

“ 6.3501E ` 11 „ 46 years

Computing times from running a MATLAB algorithm having as many nested loops as weeks
selected, on a commercial 2.4 GHz Intel Core 2 Duo machine with 4GB of memory.

Incrementing the sample size by one week requires an additional nested loop in the

sampling algorithm to search through all possible week combinations. On a standard desktop,

the optimization procedure can be reasonably performed for sample sizes of up to 5 weeks

(5 nested loops), but beyond that it becomes prohibitive.

2.5.5 Selecting a Large Number of Weeks

As an alternative to optimal selection for larger sample sizes, there are heuristic approxima-

tions that allow increasing the sample size without increasing the number of nested loops.

For instance, we could sample subsets of some certain number of adjoining weeks instead

of individual weeks (e.g., two-week intervals). With this heuristic we can easily expand the
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number of weeks selected but, for a given number of weeks, the weeks selected are not the

ones representing the NLDC the best. Once these subsets have been selected, we can scale

up the hours in the sample to produce a 52-week approximation by applying a different

scaling factor to each week within the subset. For instance, a 16-week sample might consist

of four subsets of four weeks, where the first week in the subset is scaled up by a factor of 6,

the second week by a factor of 4, the third by a factor of 2, and the fourth by a factor of 1

(4 ¨ p6` 4` 2` 1q “ 52):

8-week 

Length = 7 + 6 

52-week 

Length = 6 + 6 + 1 

12-week 

16-week 

Length = 6 + 4 + 2 + 1 

Figure 2-2: Four-week approximate net load constructed with 8, 12, 16 and 52 weeks selected
from the total 52 weeks in one year.

This approach allows to increase the number of weeks sampled while avoiding a dramatic

increase in computation time as the number of loops in the search process grow.

2.5.6 Number of Weeks and Net Energy Error

The demand and renewable generation (solar and wind power) hourly data used to test the

proposed methodology corresponds to the data recorded in 2009 in the Electricity Reliability

Council of Texas (ERCOT). In order to simulate a high penetration level of renewables, wind

and solar outputs are scaled up assuming an expected capacity of 30GW of wind power and

10 GW of solar PV (Holttinen et al., 2010).

Figure 2-3 shows graphically the results of selecting one, two and four weeks to charac-

terize the NLDC, illustrating how the RMSE in approximating the net load decrease with

the number of weeks sampled.

It can be observed that while the approximations based on one and two weeks produce
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Figure 2-3: Graphical representation of the system’s LDC, NLDC and their respective ap-
proximations, built with one, two and four weeks, selected to fit the NLDC.

an inaccurate representation of the NLDC with a RMSE over 2%, the approximation that

uses four weeks closely matches the shape of the original NLDC. For sample sizes larger than

four weeks, selected with the heuristic method that chooses from subsets of weeks (rather

than individual weeks), errors are further reduced, although non-monotonically (Table 2.6).
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Table 2.6: Net Energy Error Relative to the Number of Weeks Selected

Number of Weeks Approximation ν˚ RMSEν NRMSEν

[%]
time [sec]

1 {4} 2.3 4.2 0.066

2 {9,24} 1.233 2.3 1.52

4 {17,31,37,46} 0.299 0.5 688

8 {3,4,15,16,20,21,31,32} 0.283 0.52 1,042

12 {12,13,14,34,35,36,38,39,40,50,51,52} 0.68 1.24 1,368

16 {3,4,5,6,14,15,16,17,31,32,33,34,38,39,40,41} 0.24 0.44 1,505

Summary of the error incurred by approximations constructed with an increasing number of
weeks. The weeks are selected based on minimizing the error between the approximation and
the NLDC. The column “Approximation” shows the weeks selected; “RMSEν” is the root-
mean-square error between the NLDC and its approximation; “NRMSEν” is the normalized
root-mean-square error between the NLDC and its approximation.

2.5.7 Commitment Results and Errors

Despite the small error incurred by the four-week approximation in representing the net

load, its commitment performance must also be tested. This test is based on comparing the

commitment results obtained from running IMRES with the one-week, two-week, four-week

and the eight-week approximation, with those from a UC model that uses the full one-year

data series.

The test is performed with data corresponding to the ERCOT system, allowing power

curtailment of both wind and solar PV, and using standard thermal units whose cost pa-

rameters and technical characteristics can also be found in the Appendix. The solver chosen

for this experiment is CPLEX 12.4 under GAMS on a 64-bit dual-socket hexcore (i.e. 12

physical cores, 12 virtual cores total) Intel Nehalem (x5650) machine. The maximum du-

ality gap tolerance was set to 0.01, producing a solution in approximately 4 hrs. Tighter

duality gap tolerances did not affect the main solution parameters but had a significant

impact on the computation time. The computing time with commercial machines (2.4 GHz

Intel Core 2 Duo machine with 4GB of memory) was on the order of 1.5 times greater than

those experienced with the original 12-core machine. Panel A) in Tables 2.7-2.10 summa-

rizes the capacity and commitment results obtained with each approximation (each IMRES
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simulation uses a different NLDC approximation in its unit commitment component).

The second component of the test consists of running a full one-year UC model for each of

the capacity mixes produced by IMRES. The full year UC model uses the same parameters

and applies the same constraints as those in IMRES, but uses hourly demand and renewable

data for the 8 760 hours of the year. In order to test all the approximations, the full year UC

is performed for the different capacity mixes determined by each IMRES simulation. The

comparison is then established between the commitment results derived from the full year

and those derived from the approximation, both using the same capacity mix. Panel B) in

Tables 2.7-2.10 presents the results from the full year run and the differences with the results

derived using the approximations tested.
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Table 2.7: One-Week Net-Load-Based Approximation Results and Errors

A) One-Year Unit Commitment Results Based on the One-Week Net-Load-Based Approximation.

Technology Units
Installed

Capacity Installed
[GW]

EC [p.u.] CF [p.u.] Startups/yr

Nuclear 8 8 0.245 1 0

Solar 10 10 0.043 0.141 -

Wind 30 30 0.190 0.206 -

Coal 13 6.5 0.188 0.943 0

CCGT 72 28.8 0.331 0.375 102

OCGT 18 5.4 0.003 0.017 145

B) One-Year Unit Commitment Results Based on a Full One-Year Data Series and Commitment Error.

Technology EC [p.u.] ECE [p.u.] CF [p.u.] CFE [p.u.] Startups/yr SUE
[startups/yr]

Nuclear 0.228 +0.017 1 +0.000 0 +0

Solar 0.056 -0.013 0.198 -0.054 - -

Wind 0.199 -0.009 0.233 -0.027 - -

Coal 0.176 +0.012 0.951 -0.008 0 +0

CCGT 0.325 +0.006 0.395 -0.020 64 +38

OCGT 0.007 -0.004 0.048 -0.031 148 -3

Result summary from: A) a capacity expansion model with embedded unit commitment con-
straints based on a one-week sample; B) a one-year full unit commitment model of the units
installed, and commitment errors between the full run and the approximation. NSE = 7.75E-3
p.u.

87



Table 2.8: Two-Week Net-Load-Based Approximation Results and Errors

A) One-Year Unit Commitment Results Based on the Two-Week Net-Load-Based Approximation.

Technology Units
Installed

Capacity Installed
[GW]

EC [p.u.] CF [p.u.] Startups/yr

Nuclear 9 9 0.243 1 0

Solar 10 10 0.058 0.215 -

Wind 30 30 0.226 0.279 -

Coal 12 6 0.154 0.950 0

CCGT 87 34.8 0.317 0.338 74

OCGT 18 5.4 0.002 0.014 97

B) One-Year Unit Commitment Results Based on a Full One-Year Data Series and Commitment Error.

Technology EC [p.u.] ECE [p.u.] CF [p.u.] CFE [p.u.] Startups/yr SUE
[startups/yr]

Nuclear 0.257 -0.014 1 +0.000 0 +0

Solar 0.057 +0.001 0.198 +0.017 - -

Wind 0.196 +0.030 0.229 +0.050 - -

Coal 0.162 -0.008 0.950 +0.000 0 +0

CCGT 0.325 -0.008 0.327 +0.011 57 +17

OCGT 0.003 -0.001 0.019 -0.005 97 +0

Result summary from: A) a capacity expansion model with embedded unit commitment con-
straints based on a two-week sample; B) a one-year full unit commitment model of the units
installed, and commitment errors between the full run and the approximation. NSE = 7.75E-3
p.u.
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Table 2.9: Four-Week Net-Load-Based Approximation Results and Errors

A) One-Year Unit Commitment Results Based on the Four-Week Net-Load-Based Approximation.

Technology Units
Installed

Capacity Installed
[GW]

EC [p.u.] CF [p.u.] Startups/yr

Nuclear 8 8 0.226 1 0

Solar 10 10 0.063 0.223 -

Wind 30 30 0.198 0.233 -

Coal 15 7.5 0.199 0.939 0

CCGT 87 34.8 0.310 0.315 54

OCGT 30 9 0.003 0.012 61

B) One-Year Unit Commitment Results Based on a Full One-Year Data Series and Commitment Error.

Technology EC [p.u.] ECE [p.u.] CF [p.u.] CFE [p.u.] Startups/yr SUE
[startups/yr]

Nuclear 0.228 -0.002 1 +0.000 0 +0

Solar 0.057 +0.007 0.199 +0.024 - -

Wind 0.199 -0.001 0.233 +0.000 - -

Coal 0.199 +0.000 0.933 +0.006 0 +0

CCGT 0.313 -0.003 0.316 -0.001 59 -5

OCGT 0.003 +0.000 0.012 +0.000 65 -4

Result summary from: A) a capacity expansion model with embedded unit commitment con-
straints based on a four-week sample; B) a one-year full unit commitment model of the units
installed, and commitment errors between the full run and the approximation. NSE = 7.75E-3
p.u.
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Table 2.10: Eight-Week Net-Load-Based Approximation Results and Errors

A) One-Year Unit Commitment Results Based on the Eight-Week Net-Load-Based Approximation.

Technology Units
Installed

Capacity Installed
[GW]

EC [p.u.] CF [p.u.] Startups/yr

Nuclear 10 10 0.284 1 0

Solar 10 10 0.063 0.220 -

Wind 30 30 0.186 0.219 -

Coal 11 5.5 0.148 0.950 0

CCGT 89 35.6 0.316 0.312 66

OCGT 26 7.8 0.003 0.012 71

B) One-Year Unit Commitment Results Based on a Full One-Year Data Series and Commitment Error.

Technology EC [p.u.] ECE [p.u.] CF [p.u.] CFE [p.u.] Startups/yr SUE
[startups/yr]

Nuclear 0.285 -0.001 1 +0.000 0 +0

Solar 0.056 +0.007 0.197 +0.023 - -

Wind 0.192 -0.006 0.225 -0.006 - -

Coal 0.149 -0.001 0.950 +0.000 0 +0

CCGT 0.315 +0.001 0.310 +0.002 57 +9

OCGT 0.002 +0.001 0.011 +0.001 67 +4

Result summary from: A) a capacity expansion model with embedded unit commitment con-
straints based on an eight-week sample; B) a one-year full unit commitment model of the units
installed, and commitment errors between the full run and the approximation. NSE = 7.75E-3
p.u.
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A comparison of the errors produced by the different sample sizes, shows that the errors

corresponding to the one-week and two-week sample runs are greater than those found in

the four- week and eight-week sample runs. Both energy contribution errors and capacity

factor errors are at least twice as large in the first two cases as in the last two. Also, start-

up errors in the first two cases are close to or well over 20 cycles per year, indicating that

they represent poorly the cycling behavior of the thermal units, a main concern of flexibility

studies. On the other hand, the average number of start-ups per year in the four-week and

eight-week sample are very similar to the results of the full-year UC simulation.

Additionally, the quantity of NSE in the four-week and eight-week cases are one order of

magnitude below those produced by the one-week and the two-week sample. This difference

indicates that the larger sample sizes produce a more adequate capacity mix than the first

two because the variation in net load is better represented. Errors are not appreciably

reduced by using a sample size of eight weeks, relative to the four-week approximation.

Based on these results, an approximation of the net load from four-weeks of data using

this approach appears to represent well the full one-year data series. The optimal four-week

approximation of net load will be used for the remainder of this paper.

2.6 Representing the Peak Net Load

One of the critical parameters for determining adequacy in capacity expansion and flexibil-

ity assessment studies is the value-of-lost-load (VOLL) (Stoft, 2002). An adequate system

typically has less than one day with non-served energy (NSE) every 10 years (or less than 2.4

hours every year), although it varies from one system to another. In this thesis the VOLL

is assumed to be fixed to $500/MWh (see section 2.4.3), and the amount of NSE is derived

endogenously from the cost minimization model. Nevertheless, the amount of NSE does

not depend exclusively on the VOLL. It is also determined by the system’s peak load or, in

situations with a high penetration of renewables, the peak net load. Hence, it is important

to examine how including the peak net load in the sample affects the final solution of the

problem.
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Comparing the four-week approximation ν˚ with the NLDC, the approximation under-

estimates the peak hour by 4.5%. If embedded within a capacity expansion model, this

underestimate would lead to insufficient investment in generation capacity.
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Figure 2-4: Detail of the system’s NLDC peak and its respective four-week-based approxi-
mation. The peak value in both series is 68.5 GW and 56 GW respectively. Note that since
the number of weeks selected is four, the step size of the ČNLDC is Θ “ 52{4 “ 13.

One possible solution to this issue is to require having the week containing the peak

net load as one of the weeks in the sample. We denote this approximation by κ˚. The κ˚

approximation is constructed with the week containing the peak net load plus an optimal

selection of three weeks, conditional on having the peak net load week in the approximation.

Alternatively, we can revisit the initial assumption that the year is composed of 52 weeks

(in reality it is composed of 52 weeks and one day), and add the peak net load day to one

four-week approximation, to make a total of 8,760 hours in one year. This approximation

will be denoted by τ˚. Figure 2-5 shows the detail of the peak net load as achieved by these

two alternative approximations that contain the peak net load day.

The accuracy of each approximation can be assessed by the NRMSE metric and by the ca-
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Figure 2-5: Detail of the system’s NLDC peak and its κ˚ and its τ˚ four-week-based ap-
proximations. The peak value in both series is 68.5 GW and 56 GW respectively. Note that
since the number of weeks selected is four, the step size of the ČNLDC is Θ “ 52{4 “ 13.

pacity results obtained from running IMRES with each of the three different approximations

(Table 2.11).

The results show that approximations τ˚ and κ˚, with greater peak capacities and lower

NSE, represent the peak net load more precisely than the ν˚ approximation. However, the

NRMSE is greater for the approximation κ˚ because it is forcing a suboptimal week to be

included in the sample. This error is reduced with approximation τ˚ because the optimal

selection is done conditional on having introduced the peak net load day. As a result of better

resolution in the peak of the NLDC, approximations that consider the peak net load yield a

higher system capacity and lower NSE. Although the impact on the overall approximation

of the NLDC is small, including the peak net load day in the approximation increases the

accuracy in the peak hours.
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Table 2.11: Standard Error Relative to the Number of Weeks Selected

Number of Weeks No Peak (ν˚) Peak Week (κ˚) Peak Day (τ˚)

Weeks Selected {17,31,37,46} {29,41,46,48} {17,21,31,45} + peak net
load day (day #197)

NRMSE [%] 0.546 0.821 0.537

Total Capacity
Installed [GW]

99.3 102.3 99.4

NSE [p.u.] 3.79E-4 9.74E-5 1.24E-4

System Cost [%] - -0.54 -1.86

Summary of the error sum of squares incurred by three approximations: 1) neglecting the peak
net load; 2) including the week containing the peak net load hour (52 weeks); and 3) including
the day containing the peak net load hour (52 weeks + 1 day). The peak net load hour is in day
#197, in week #29.

2.7 Comparison to Other Approaches

This section shows the advantages of the net-load-based selection approach by comparing it

with other sample week selection methods found in the literature.

2.7.1 Results from Using a Season-Based Selection

The most common approach to selecting a sample of weeks to approximate the demand in

one year is to identify seasonal demand patterns, and sampling one week from each of the

seasons (Kirschen et al., 2011). For example, the maximum, average and minimum demand

from each week can be used to identify the four seasons. One week from each season is

chosen randomly to make up a sample of four weeks, and the hours in the sample are scaled

up to construct a one-year season-based approximation ρ˚. For this example, the sample

ρ˚ “ t14, 27, 40, 49u has a NRMSE between the NLDC and its approximation of 2.78, as

compared with 0.5 from our four-week approximation. Table 2.12 shows the capacity and

commitment results using a season-based approximation, and commitment results with the

three error metrics.
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Figure 2-6: Graphical representation of the maximum, average and minimum weekly demand
for the ERCOT system throughout 2008.
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Figure 2-7: Graphical representation of the system’s LDC, NLDC, and their respective four-
week approximations selected through seasonality criteria.
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Table 2.12: Four-Week Net-Season-Based Approximation Results and Errors

A) One-Year Unit Commitment Results Based on the Four-Week Season-Based Approximation.

Technology Units
Installed

Capacity Installed
[GW]

EC [p.u.] CF [p.u.] Startups/yr

Nuclear 11 11 0.294 1 0

Solar 10 10 0.046 0.171 -

Wind 30 30 0.209 0.260 -

Coal 14 7 0.173 0.924 0

CCGT 88 35.2 0.276 0.293 76

OCGT 29 8.7 0.003 0.014 80

B) One-Year Unit Commitment Results Based on a Full One-Year Data Series and Commitment Error.

Technology EC [p.u.] ECE [p.u.] CF [p.u.] CFE [p.u.] Startups/yr SUE
[startups/yr]

Nuclear 0.314 -0.020 1 +0.000 0 +0

Solar 0.056 -0.010 0.196 -0.025 - -

Wind 0.189 +0.020 0.221 +0.039 - -

Coal 0.180 -0.007 0.900 +0.024 0 +0

CCGT 0.260 +0.017 0.259 +0.034 68 +8

OCGT 0.002 +0.001 0.006 +0.008 53 +27

Result summary from: A) a capacity expansion model with embedded unit commitment con-
straints based on an four-week sample; B) a one-year full unit commitment model of the units
installed, and commitment errors between the full run and the approximation. NSE = 3.65E-3
p.u.

96



2.7.2 Results from Ignoring the Correlation Between Renewables

and Load

The season-based selection approach used above has two sources of error: first, it randomly

chooses a week from each season rather than building the selection upon any error minimiza-

tion criterion; and second, it focuses on load rather than net load, ignoring the correlation

between demand and renewable output. In order to differentiate between these two sources

of error, we show the errors derived from using an optimal selection procedure, but aimed at

approximating the LDC, which ignores the correlation between load and renewables. Analo-

gously to the optimization problem proposed in (2.51), the objective of the selection problem

now is to find the week combination that yields the least square error between the LDC and

its approximation, ĆLDC (2.57).

λ˚ “ arg min
λ
}LDC ´ ČLDCλ}

2 (2.57)

–where λ P Zn is the set of indices of the n weeks selected; λ˚ P Zn is the set of indices of

the optimal week combination; and LDC, ĆLDC
ν
P R8,736.

This problem is solved through enumeration, by constructing all possible approximations

for a certain number of weeks, and selecting the combination of weeks that best represents

the LDC. Accordingly, the ČNLDC
λ

is built with the net load associated with the weeks

selected through this process.

For all cases explored (one, two, four, eight, twelve and sixteen week samples), the

resulting error metrics are summarized in Table 2.13

The errors from all the approximations corresponding to different number of weeks are

significantly greater when the selection is based on the LDC (λ˚) than when the selection is

based on approximating the NLDC (ν˚). By fitting the LDC, we do not necessarily select

the weeks that characterize best the NLDC or, in other words, a selection based on the

LDC is suboptimal relative to how well it characterizes the NLDC.

More importantly, the errors in the approximate capacity, commitment, and startup
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Figure 2-8: Graphical representation of the system’s LDC, NLDC and their respective four-
week approximations, selected to fit the LDC.

results obtained with λ˚ are larger when the sample is based on the LDC (Table 2.14). As

the level of penetration of renewables increases, so does the importance of accounting for the

correlation between load and renewable output.
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Table 2.13: Net Energy Error Relative to the Number of Weeks Selected

Number of Weeks Approximation λ˚ RMSEλ NRMSEλ

[%]
time [sec]

1 {38} 3.953 7.22 0.06

2 {10,23} 2.311 4.22 1.61

4 {11,16,27,40} 1.271 2.32 694

8 {5,6,16,17,24,25,39,40} 1.242 2.27 992

12 {4,5,6,24,25,26,39,40,41,42,43,44} 0.627 1.14 1,419

16 {3,4,5,6,15,16,17,18,24,25,26,27,39,40,41,42} 0.583 1.07 1,542

Summary of the error incurred by approximations constructed with an increasing number of
weeks. The weeks are selected based on minimizing the error between the approximation and the
LDC. The column “Approximation” shows the weeks selected; “RMSEλ” is the root-mean-square
error between the NLDC and its approximation; “NRMSEλ” is the normalized root-mean-square
error between the NLDC and its approximation.
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Table 2.14: Four-Week Load-Based Approximation Results and Errors

A) One-Year Unit Commitment Results Based on the Four-Week Load-Based Approximation.

Technology Units
Installed

Capacity Installed
[GW]

EC [p.u.] CF [p.u.] Startups/yr

Nuclear 10 10 0.285 1 0

Solar 10 10 0.062 0.218 -

Wind 30 30 0.162 0.190 -

Coal 14 7 0.185 0.928 0

CCGT 86 34.4 0.303 0.309 55

OCGT 21 6.3 0.002 0.012 69

B) One-Year Unit Commitment Results Based on a Full One-Year Data Series and Commitment Error.

Technology EC [p.u.] ECE [p.u.] CF [p.u.] CFE [p.u.] Startups/yr SUE
[startups/yr]

Nuclear 0.285 +0.000 1 +0.000 0 +0

Solar 0.056 +0.006 0.197 +0.021 - -

Wind 0.193 -0.031 0.225 -0.035 - -

Coal 0.183 +0.002 0.915 +0.013 0 +0

CCGT 0.281 -0.002 0.286 +0.023 65 -10

OCGT 0.002 +0.000 0.012 +0.000 81 -12

Result summary from: A) a capacity expansion model with embedded unit commitment con-
straints based on an four-week sample; B) a one-year full unit commitment model of the units
installed, and commitment errors between the full run and the approximation. NSE = 3.98E-3
p.u.
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2.8 Validity Assessment

In order to show the applicability of the method to other power systems, this section tests

the four-week sampling method described in previous sections with data (load, wind CF and

solar CF ) corresponding to Germany during year 2008. The resulting four-week sample is

then used to build an approximation of the net load, which serves as input to IMRES. In the

same way as with the tests performed above, a full-year unit commitment of the capacity mix

obtained is used to assess the quality of the net load approximation in terms of representing

the chronological variability of the net load. Results are shown in Table 2.15 using the same

format as in previous simulations.

The magnitude of the commitment errors are similar to the errors obtained with the

ERCOT 2009 system. This result gives additional confidence in the applicability of the

approximation method to power systems with a high penetration of intermittent renewables.

The results presented here taken together suggest that our approximation method might

perform well for a range of systems.
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Table 2.15: Four-Week Net-Load-Based Approximation Results and Errors

A) One-Year Unit Commitment Results Based on the Four-Week Load-Based Approximation.

Technology Units
Installed

Capacity Installed
[GW]

EC [p.u.] CF [p.u.] Startups/yr

Nuclear 30 30 0.530 1 0

Solar 10 10 0.019 0.106 -

Wind 30 30 0.105 0.198 -

Coal 16 8 0.130 0.924 0

CCGT 78 31.2 0.215 0.390 68

OCGT 17 5.1 0.001 0.015 97

B) One-Year Unit Commitment Results Based on a Full One-Year Data Series and Commitment Error.

Technology EC [p.u.] ECE [p.u.] CF [p.u.] CFE [p.u.] Startups/yr SUE
[startups/yr]

Nuclear 0.532 -0.002 1 +0.000 0 +0

Solar 0.017 +0.002 0.096 +0.010 - -

Wind 0.102 +0.003 0.192 +0.006 - -

Coal 0.131 -0.001 0.926 -0.002 0 +0

CCGT 0.216 -0.001 0.391 -0.001 76 -8

OCGT 0.001 +0.000 0.013 +0.002 99 -2

Result summary from: A) a capacity expansion model with embedded unit commitment con-
straints based on an four-week sample; B) a one-year full unit commitment model of the units
installed, and commitment errors between the full run and the approximation. NSE = 3.92E-3
p.u.
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2.9 Conclusions

This chapter introduced IMRES, a capacity expansion model with unit commitment con-

straints embedded that incorporates the extra costs of cycling and operational constraints

into investment decisions. In addition to the model, the chapter also presents a methodology

to sample weeks based on historical demand and renewable generation data, that can be used

to reduce the dimensionality of capacity expansion models with unit commitment constraints

such as the one use in this thesis. IMRES provides an effective approach for reducing the

computation time for capacity expansion with embedded unit commitment constraints, while

still capturing the relevant characteristics of a system with renewables. Given the increased

concern about flexibility in future generation planning, this approach provides a means to

evaluate the flexibility of alternative future generation mixes.

The analyses performed for different number of weeks illustrate how the error of the

approximation depends on the number of weeks included, and that the error incurred with

a four-week approximation is small with respect to both net energy and unit commitment

error metrics. In addition, comparisons with other methods in the literature indicate that in

order to best reflect the possible correlation between demand and renewables, the selection

should be based on the net load instead of attending to other aspects such as demands

seasonal patterns or the LDC. Lastly, the similarity of the results obtained from applying

the selection method to a different power system helps to confirm the consistency of the

results.

Nevertheless, the week selection method proposed only guarantees that the four weeks

selected represent well the energy below the net load duration curve, without explicitly

accounting for the chronological variability of the net load. Therefore, it is recommended

that any specific application of this methods performs the full-year unit commitment test

with the capacity resulting from IMRES (focusing on the three commitment error metrics), to

guarantee that the ČNLDC represents as well the chronological variability of the NLDC. In

the future, other improved selection criteria based on commitment metrics could be explored

to avoid this caveat.
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2.10 Applications

The formulation of IMRES offers a great versatility in terms of which constraints are included

in the model, which are left out, and which decisions variables are free and which ones are

fixed and parameterized. Therefore, IMRES could serve as modeling framework for a large

set of experiments. As an example of the potential capabilities of IMRES, the experiments

performed in IEA’s report The Power of Transformation. Wind, Sun and the Economics

of Flexible Power Systems (IEA, 2014) include a comprehensive economic analysis of the

impact of intermittent renewables on power systems and a cost-benefit analysis of three

different flexibility options (demand side management, storage and thermal power plants).

As a summary, the following list presents a sample of possible tasks that could be performed

with IMRES:

• Determining the optimal electricity generation capacity mix at a given future time.

• Analyzing the effect of constraints (such as total carbon emissions) on the total system

cost through selectively applying and removing these constraints.

• Calculating the value of flexibility options (storage, DSM, flexible power plants, etc)

by comparing the total system cost with and without each option, to establish R&D

priorities.

• Calculating the profitability of individual units through obtaining the prices and the

quantities produced for the different services provided.

• Analyzing the effect of different renewable deployment levels for a fixed capacity mix.
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Chapter 3

The Impact of Intermittent

Renewables on Electricity Markets

This chapter is an extended adaptation of the following paper:

• “The Impact of Bidding Rules on Electricity Markets with Intermittent Renewables”,

submitted to IEEE Transactions on Power Systems, IEEE (de Sisternes et al., 2014)

3.1 Introduction

The operation of power systems with large amounts of intermittent renewables is expected

to change substantially from how the system operates solely with conventional technologies:

first, large shares of zero-variable-cost renewables reduce the peak and change the shape of the

net load (the load that has to be supplied by conventional technologies); second, renewables’

variability make conventional technologies to cycle more frequently in order to maintain

the instantaneous balance between supply and demand; and third, renewables’ uncertainty

increase the need for reserve capacity and its utilization. This chapter explores the impacts

of renewables on electricity markets by focusing on the prices1 and profits obtained by plants

1since the trade of electricity is typically referenced to the price of the day-ahead market, this chapter
focuses exclusively on this market, leaving the study of the implications on secondary and reserve markets
for further research.
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under different market conditions.

Renewable integration studies (Holttinen et al., 2008)(Perez-Arriaga and Batlle, 2012)(Troy

et al., 2010)(Delarue et al., 2007) have shown that cycling of thermal power plants signif-

icantly intensifies in the presence of intermittent renewables, increasing fuel and operation

& maintenance costs from startup of the thermal units. In this context, it is particularly

relevant to study the mechanisms through which thermal power plants participating in liber-

alized markets with renewables recover the costs associated with starting up and how these

mechanisms affect the wholesale electricity price and the total cost recovery 2. Ultimately,

the profitability of the generating units in the system can be examined.

Many wholesale markets have adopted complex bidding mechanisms to account for non-

convex cost components (those associated with discrete decisions, such as start up or the

minimum output requirement) that are not reflected in the marginal cost of energy (O’Neill

et al., 2005). Such complementary bidding procedures for instance allow companies to declare

their startup costs or to specify a minimum revenue threshold for the day that ensures the

cost-recovery of the units. Examples of these different procedures include an energy-based

market price where startup costs are paid separately for bids that are accepted (similarly

to the PJM market (Sioshansi, 2008)); a market price that includes an uplift added to the

energy component of price to guarantee the recovery of operating costs (comparable to the

Irish market (AIP, 2007)); and internalizing startup costs in the bid into a single energy term

(in a similar way as it is done in general in other European markets (Rothwell and Gomez,

2003)). This paper uses a capacity expansion model with embedded unit commitment con-

straints to explore the different implications of each bidding rule for the resulting wholesale

price, the cost recovery by individual units, and the cost borne by consumers.

Concurrently with the impact of pricing rules for recouping startup costs on market

prices, the regulatory uncertainty around renewable deployment has gained significant at-

tention as a critical factor affecting the profitability of thermal power plants. In most cases,

2Remember that in this thesis by “profit” it is understood any excess income to a plant from market
prices that is beyond strict cost recovery: operation costs (here only startup costs and fuel costs of electricity
production have been considered), plus the capital costs (amortization and a reasonable rate of return on
investment).
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renewable deployment still depends on the existence of subsidies (e.g., feed-in-tariffs or tax

credits) or regulatory mandates (e.g., renewable portfolio standards). Unforeseen regulatory

changes that affect the deployment pace of renewables can alter the economic equilibrium

of the generation fleet. Such regulatory shocks, combined with the short construction time

of renewable projects, can quickly displace some thermal generators in the merit order, po-

tentially resulting in partly or totally stranded assets among the thermal generation fleet.

Our analysis also studies the relative importance of these two factors – bidding rules and

regulatory uncertainty and distinguishes between their effects.

Much of the work found in the literature on this topic has been devoted to investigating

the short-term impact of renewables on electricity markets, focusing on determining how

greater shares of renewables will change wholesale prices and the remuneration of existing

plants (Poyry and EWEA, 2010)(Brown, 2012), or on how new investments could be incen-

tivized (Newell, 2012)(Baritaud, 2012). Other efforts have been focused on calculating the

long-term market equilibrium capacity mix, or quantifying the benefits of elements such as

storage or demand response in systems with a high share of renewables (de Jonghe et al.,

2011)(Palmintier and Webster, 2011). Yet, little attention has been paid to studying the in-

teraction between each one of the different bidding mechanisms found in wholesale markets,

the renewable penetration level, and the economic losses occurring in a generating fleet that

is ill-adapted following an unanticipated addition of renewable capacity to the system. This

chapter fills this gap by unpacking the interaction between these three elements, explaining

their relative influence on the wholesale clearing price and the remuneration of four specific

thermal generation technologies: nuclear, coal, combined cycle gas turbines (CCGTs), and

open cycle gas turbines (OCGTs).

The chapter is structured as follows. First, we present the experimental design used

in the study, highlighting the differences between an adapted and a non-adapted system.

Second, we describe the method used in the experiments to determine the minimum cost

generation fleet, the dispatch, the hourly prices, and the remuneration of the units. We

also describe the implementation of the bidding rules studied and the calculation of the
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plants’ profits for each rule. Third, we propose a heuristic method that selectively adds or

removes plants based on their expected remuneration to derive an approximate equilibrium

solution for the generation fleet, used when the bidding rules overpay or underpay certain

technologies. Finally, we present the results of the simulations, show the markedly different

implications to generators and to consumers of the bidding rules studied, and present the

conclusions.

3.2 Experimental Design

The proposed experimental design allows for a comparative analysis of the effect of bidding

rules under ten different renewable penetration scenarios. In each scenario (S), wind capacity

and solar PV capacity have both been chosen to be equal to 10 ¨ S gigawatts, where S P

t1, . . . , 10u. Although the capacity installed of each technology is the same, their energy

contributions will differ, as wind and solar PV have different capacity factors and production

patterns.

From optimal marginal pricing theory (Perez-Arriaga and Meseguer, 1997), if technologies

are able to adapt and the ideal conditions are satisfied, in equilibrium, and in the absence

of common or internal constraints on installed capacity, the profit of all power plants will

be exactly zero. Alternatively, if there is a renewable deployment shock in the system,

the ensuing excess capacity situation will produce a transition period during which some

units in the generation fleet will likely incur losses. In equilibrium, generation is perfectly

adapted to renewable deployment and remuneration gaps are exclusively due to the effect

of nonconvexities, which allows for the assessment of the performance of bidding rules in

recovering nonconvex costs. Without equilibrium, the effect of the nonconvexities interacts

with the effect of having non-adapted system. This situation can be useful to estimate

the relative effect of the bidding rules under the influence of an unexpected deployment of

intermittent renewables. We therefore consider two cases:

• Adaptation: represents market equilibrium conditions, as simulated by the solution of
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a capacity expansion model that chooses both investment and operations, accounting

for unit commitment constraints and minimizes total system costs. The result of this

exercise is a generation fleet y˚pSq that is perfectly adapted to a given renewable

capacity S.

• Non-adaptation: assumes the generation mix that minimizes costs for zero renew-

able capacity, which then operates in the presence of a given capacity S of renewable

generation, y0pSq.

Throughout the analysis we assume that there is no market power and that a cost mini-

mization approach can be used to obtain a market equilibrium solution. Once we have the

capacity and operational variables from both cases, we use a market simulator that calculates

the wholesale prices under a particular bidding rule (see Section V) and the cash flows for

all the units in the system. The final output of the market simulator, for both the adapted

and the non-adapted case, is the average profit for each technology and the average cost to

consumers. The resulting experimental design is depicted in Fig. 3-1.

Adapted System 

Central-planning 
model 

Market Simulator 
•  Calculates prices 
•  Determines cash-f lows 

y*(S)  
minimum cost 
generation fleet 

Bidding Rules 

Profit with 
adaptation 

Non-Adapted System 

Profit without 
adaptation 

Market Simulator 
•  Calculates prices 
•  Determines cash-f lows 

Unit Commitment im
re

s 

Unit Commitment of   
y0 under scenario S 

S 
renewable 

deployment 
level: 

10S GW solar + 
10S GW wind 

Fixed capacity, optimal 
for zero renewables: y0 

Figure 3-1: Experimental design

Different bidding rules will result in a different balance between producer and consumer
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surplus. Therefore, they have to be assessed on the basis of how they affect these two types

of agents, measured through two separate metrics:

1. Average profit of technology k (π̄k), obtained by a thermal technology and reflects the

extent to which the remuneration obtained by the units exceeds their fixed and variable

costs (3.1)

π̄k “

ř

iPT k πi
ř

iPT k yi
@k P K |

ÿ

iPT k
yi ą 0 (3.1)

2. Average cost to the consumer (ĚCC)3, accounts for the average price paid by consumers,

resulting from dividing all the costs paid by the consumer (excluding those derived from

incentive plans to renewable technologies) by the total energy consumed (3.2).

ĚCC “

ř

iPI
ř

jPJ ρjxij `
ř

iPI
ř

dPD sid
ř

iPI
ř

jPJ xij
(3.2)

3.3 Methodology

The operational regime of thermal plants becomes more demanding with greater renewable

deployment as a consequence of a more variable net load. The technical constraints that were

typically ignored in generation planning models (Turvey and Anderson, 1977) (minimum

required output of the units, output ramping limits, minimum up and down times, and

startup costs) become binding and must be incorporated into the model to account for their

effect on the system cost.

The analyses in this chapter use IMRES, a centralized capacity expansion model with

detailed unit commitment constraints embedded (de Sisternes and Webster, 2013), to account

for the impact of nonconvex costs on investment decisions. In each case, the model chooses

both the investments in new capacity needed in the system and the hourly commitment and

3Note that in this expression the side payment sid takes on non-zero values only when the bidding rule
involving side payments is analyzed.
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generation schedule of all units to meet demand at minimum cost. The objective function

in IMRES minimizes the total cost of the system, which is the sum of investment and

operating costs, including the cost of non-served energy (3.3). As explained in the previous

chapter, a set of four representative weeks in the unit commitment component of the model

that approximate the inter-hour variability of the net load over the year to reduce the

dimensionality of the problem (de Sisternes, 2013).

min
x,y,z,u

ÿ

iPI
CFIX
i yi `Θ

˜

ÿ

iPI

ÿ

jPJ
pCV AR

i xij ` C
STUP
i zijq `

ÿ

jPJ
V OLL nj

¸

(3.3)

The analyses in this thesis focus on the day-ahead market, as electricity trade at different

time-scales is referenced to this market. Therefore, all constraints relative to reserves have

been ignored in the model, to avoid introducing constraints that are not remunerated. The

wholesale energy price is determined based on the dual variable of the demand balance

equation and the bid-forming mechanisms implicit in each of the rules described below.

3.3.1 Operational Constraints

The model includes the most important operation constraints in unit commitment formula-

tions: demand balance equation (3.25); commitment and maximum and minimum output

constraints minimum output requirement (3.5-3.8); maximum ramp constraints (3.9-3.10);

constraints representing the minimum up and down time of the plants (3.11-3.12); constraints

setting the renewable scenarios (3.13-3.14); and constraints allowing for the curtailment of

renewable energy output (3.15-3.16). In addition, the model includes a coupling constraint

that imposing the condition that only units that have been built can generate (3.17).
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ř

iPI xij ` nj “ Dj @j P J (3.4)

uij ´ uij´1 “ zij ´ vij @i P T , @j P J zt1u (3.5)

zij ` vij ď 1 @i P T , @j P J (3.6)

wij “ xij ´ uij P
MIN
i @i P T , @j P J (3.7)

wij ď uijpP
MAX
i ´ PMIN

i q @i P T , @j P J (3.8)

wij ´ wij´1 ď RU
i @i P T , @j P J zt1u (3.9)

wij´1 ´ wij ď RD
i @i P T , @j P J zt1u (3.10)

uij ě
řj

j1ąj´MU
i
ztj1 @i P T , @j P J (3.11)

1´ uij ě
řj

j1ąj´MD
i
vtj1 @i P T , @j P J (3.12)

ř

iPW yi “ 10 S (3.13)

ř

iPS yi “ 10 S (3.14)

xij ď PMAX
i CFWIND

j @i PW , @j P J (3.15)

xij ď PMAX
i CF SOLAR

j @i P S, @j P J (3.16)

xij ď PMAX
i yi @i P I, @j P J (3.17)

Non-negativity constraints and integrality constraints (3.18-3.24):

xij ě 0 @i P I, @j P J (3.18)

vij ě 0 @i P I, @j P J (3.19)

wi,j ě 0 @i P I, @j P J (3.20)

nj ě 0 @j P J (3.21)

yi P t0, 1u @i P I (3.22)

uij P t0, 1u @i P I, @j P J (3.23)

zij P t0, 1u @i P I, @j P J (3.24)
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3.4 Market Impacts under Adaptation and Non-Adaptation

Following the experimental design described above, we now analyze the effects of larger

shares of intermittent renewables in a system with 77 GW of peak demand and geographically

diversified renewable resources, which enable renewable production to be scaled for a given

renewable capacity based on the historical capacity factor of wind and solar resources. In the

adapted case, IMRES assumes a greenfield situation and decides on the individual generating

units required to satisfy the demand at minimum cost. In the non-adapted case, IMRES

assumes a capacity optimized for zero renewables but operated with a non-zero renewable

capacity.

3.4.1 Optimal Capacity Mix

Figure 3-2 shows that, with adaptation, more renewable generation shifts the optimal gener-

ation mix towards having more flexible plants (CCGTs and OCGTs), displacing technologies

traditionally considered as baseload. Therefore, a fraction of the blend of renewables and

flexible technologies operate now as ‘baseload’. This is primarily driven by how the shape of

the net load duration curve changes as renewable capacity grows, as well as by the technical

limitations of baseload technologies in the face of a more demanding operational regime.

These two effects are consistent with those found in the MIT Future of Natural Gas Study

(MIT, 2011). Additionally, coal plants do not appear in the optimal capacity mix as their

startup costs are high comparatively to those of CCGTs, which can complement better the

variability of renewable generation.

3.4.2 Capacity Factor and Renewable Curtailment

Without adaptation (solid lines in Figure 3-3), the average capacity factor (or level of uti-

lization of the power plants) varies significantly across technologies: the capacity factor of

nuclear power plants declines slightly with larger renewable penetration values, but it always

stays at a level above 95 %; the capacity factor of coal plants declines sharply from 90% with
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Figure 3-2: Evolution of the thermal capacity installed with greater renewable capacity
installed

zero renewables to 30% in S “ 10; the capacity factor of CCGTs and OCGTs also declines

steadily from a level of 50% to 10% in the case of CCGTs, and from 8% to 4% in the case

of OCGTs.

With adaptation (dashed lines in Figure 3-3), nuclear plants maintain a capacity factor

level over 99% in most cases, coal plants are displaced, and CCGTs and OCGTs maintain a

stable level above 40% and 8% respectively. Therefore, with adaptation all plants exhibit a

higher capacity factor (i.e., a better utilization) than in the non-adapted system, as was to be

expected. Note that with adaptation coal disappears from the optimal mix with renewable

penetration levels greater than those in S “ 1.

Similarly, renewable capacity is better utilized in the adapted case, and both solar and

wind power exhibit larger capacity factors in the adapted case than in the non-adapted case.

This can be better illustrated by looking specifically to the levels of renewable curtailment

produced in the system (Figure 3-4). It can be seen how even though renewable curtailment

grows as renewable capacity increases, the growth pace in a system that is not adapted is

much quicker than in an adapted system. In this last case, renewable curtailment does not

114



0% 

20% 

40% 

60% 

80% 

100% 

120% 

0 1 2 3 4 5 6 7 8 9 10 

C
ap

ac
it
y 

fa
ct

or
 [%

] 

Renewable Scenario (S) 
Nuclear Solar Wind 
Coal CCGT OCGTs 
Nuclear (adaptation) Solar (adaptation) Wind (adaptation) 
Coal (adaptation) CCGTs (adaptation) OCGTs (adaptation) 

Figure 3-3: Capacity factor by technology under adaptation (dashed line) and non-
adaptation (solid line).

go beyond 15% for the case with the largest renewable capacity in place.

3.4.3 Energy Contribution and Carbon Emissions

The technology-specific energy contribution (also known as the ‘electricity mix’), reflects the

participation of each technology in supplying the total electricity demand (Figure 3-5). It

can be observed that without adaptation the participation of nuclear power in the electricity

mix remains stable at about 68%, while the participation of CCGTs declines sharply from

23% to a mere 5%. Remember that without adaptation the capacity mix used is optimal for a

situation with zero renewables, characterized by a homogeneous demand pattern with a high

baseload that is covered by nuclear and coal. As more renewable capacity is unexpectedly

added to the system, the generation mix that was originally optimized for zero renewables

is operated to supply a lower and more variable net load. With adaptation, the opposite

occurs: nuclear power contributes less to the total electricity mix with larger renewable
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Figure 3-4: Renewable curtailment, expressed as % of the total renewable energy produced,
under adaptation (dashed line) and non-adaptation (solid line).

shares, decreasing from 70% to 30%, while the energy contribution of CCGTs grows from

20% to 30%.

The total amount of carbon emissions is very much linked to the renewable penetration in

each scenario and to the thermal technologies accompanying renewables in the energy mix.

In the non-adapted case, emissions drop steadily, achieving 50% less emissions in S “ 10 than

in S “ 0. Ultimately, as renewables are pushed into the system, they displace coal and gas-

based technologies, coexisting only with nuclear power and balancing demand and generation

through curtailment. With adaptation, total carbon emissions drop faster than in the non-

adapted case, until they reach a floor of about 60% the emissions with no-renewables. This

floor is explained because as the system adapts and nuclear power is displaced by CCGTs

and OCGTs, the emissions associated with these gas-fueled technologies are non-zero, and

the total emissions of the system will be those of a mix composed of gas-fueled plants and

renewables (Figure 3-6).

116



0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

0 1 2 3 4 5 6 7 8 9 10 

E
ne

rg
y 

C
on

tr
ib

ut
io

n 
[%

] 

Renewable Scenario (S) 
Nuclear Solar Wind 
Coal CCGTs OCGTs 
Nuclear (adaptation) Solar (adaptation) Wind (adaptation) 
Coal (adaptation) CCGTs (adaptation) OCGTs (adaptation) 

Figure 3-5: Energy contribution, expressed as % of total demand, by technology under
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3.4.4 Total Startups

Results on the total number of startups (Figure 3-7) confirm the initial hypothesis in this

thesis that the total startup cost in the system increases in the presence of intermittent

renewables. With adaptation, we observe that the total number of startups performed by

CCGTs and OCGTs grows. Without adaptation, we observe that the total number of

startups of CCGTs and OCGTs remains relatively constant, while the number of startups

performed by coal power plants increases, as they bear most of the extra cycling in the

system.

The average number of startups by power plant (Figure 3-8) shows that with adaptation

the number of startups performed by CCGTs grows with a larger renewable capacity, the

number of startups by coal plants falls as coal plants are displaced by other technologies, and

the startups by OCGTs do not follow any clear pattern. Without adaptation, the number

of startups by CCGTs stays stable with larger shares of renewables, the number of startups
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Figure 3-6: Total carbon emissions under adaptation (dashed line) and non-adaptation (solid
line).

by coal plants increases, and the number of startups by OCGTs do not follow any particular

pattern. Therefore, we these results show that larger shares of renewables induce a more

intense cycling regime to some units in the system: with adaptation most of the extra cycling

in the system is borne by CCGTs while, without adaptation, the extra cycling is borne by

coal power plants.

3.4.5 One-Week Commitment Example

Figure 3-9 represents the wholesale price profile and the unit commitment of the resulting

capacity mix in three different situations: no renewables in the system (Panel A), a capacity

mix adapted for zero renewables but operating with 80 GW of wind and 80 GW of solar PV

(Panel B), and a capacity mix adapted for 80 GW of wind and 80 GW of solar PV (Panel C).

The situation in Panel B reflects a severe case of non-adaptation, which would be unlikely

in reality, but as an extreme case it illustrates the effects more clearly.

Panel A shows that, without renewables, most of the baseload is provided by nuclear

power, while coal plants operate as mid merit, reducing their output to the minimum stable
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Figure 3-7: Total number of startups per year, by technology under adaptation (dashed line)
and non-adaptation (solid line).

level when demand is low. CCGTs provide most of the power that is not baseload, adapting

to the daily peaks and reducing their output or shutting down during the valleys. The

wholesale prices derived from this situation follow the same pattern as demand, producing

even one price spike during one hour where demand is very high and it is more economic to

the system to have non-served energy than starting a new group. Yet, this small amount of

non-served energy triggers the VOLL as wholesale price.

In Panel B the capacity installed is the same as the one in Panel A, but the capacity

mix operates with a large amount of renewable capacity. We observe that CCGTs and

OCGTs are almost completely displaced by renewables, as these are the two most expensive

technologies in the system, and that coal plants have to cycle more, as it was indicated in

the startup analysis. Wholesale prices are significantly lower in this case, because renewables

have been added on top of an already adapted capacity mix, which has produced an excess

capacity situation. In this case, technologies with the highest marginal costs are pushed
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Figure 3-8: Average number of startups per year, by technology under adaptation (dashed
line) and non-adaptation (solid line).

out of merit by renewables and the technologies setting the system marginal price have a

lower variable cost. In addition, hours with very high renewable output hit the minimum

output constraint of nuclear power, and the only degree of freedom left to meet the demand

balance equation is the curtailment of renewable resource. The panel illustrates how during

most hours there is renewable curtailment, with nuclear is producing at its minimum output

level. Situations with renewable curtailment produce a zero marginal price in the system,

and are responsible together with the excess of capacity of the low wholesale prices observed.

Conversely, hours with small peaks in nuclear production indicate hours where there is no

curtailment, and where it is economical to increase nuclear output above its minimum level.

Lastly, Panel C shows the operation of a capacity mix that has been optimized for the

same renewable capacity introduced in the case shown in Panel B. In this capacity mix, the

amount of nuclear capacity is reduced compared to the two previous cases, and the number

of CCGTs in the system is larger as they are more flexible and they can adapt to renewables’
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variability at a lower cost than other technologies. This panel illustrates how now CCGTs

and OCGTs complement wind and solar output to supply part of the baseload, and adapt

to the joint variability of demand and renewables. Although there is a significant renewable

deployment in the system, the resulting price series shows that they are very similar to those

found in the case with zero renewables, evidencing that the adaptation state of the system

to renewable penetration is one of the main drivers of the wholesale prices in the system.
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Panel A: unit commitment for S “ 0, adapted capacity mix, 0% renewable penetration.
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Panel B: unit commitment for S “ 8, non-adapted capacity mix, 16.75% renewable penetra-
tion.
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Panel C: unit commitment for S “ 8, adapted capacity mix, 36.93% renewable penetration.
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Figure 3-9: One week unit commitment and wholesale price profile in three different cases:
S “ 0, S “ 8 without adaptation, and S “ 8 with adaptation.
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3.5 Bidding Rule Implementation

Bidding rules govern the structure of the bid functions submitted by the generators to elec-

tricity day-ahead auctions (i.e. the economic and technical conditions that are acceptable by

generators in order to generate), influencing the market clearing price used to compensate

generators for the energy delivered. Simple bids are price-quantity pairs that a generating

unit is willing to accept as a fair compensation for producing electricity. Simple bids, how-

ever, do not represent explicitly the nonconvex components of cost, such as startup costs and

no-load costs. As a consequence, generators are forced to internalize those cost items in the

simple bid or, plants bid their actual marginal cost of energy and the market operator applies

other mechanisms that allow plants to recover other costs. Alternatively, complex bids (also

referred to as complimentary bids) are mechanisms that allow producers to explicitly reflect

the nonconvex components of their cost structure in the bid.

Once all the bids have been received, the market operator centrally decides upon the

commitment state and quantity dispatched of all the units participating in the auction, typ-

ically running a security-constrained unit commitment in the case of complex bids, and a

straightforward matching of supply and demand curves in the case of simple bids. However,

for the purpose of determining the generation mix and the minimum cost unit commitment

and dispatch, it will be assumed that these decisions are centralized and the resulting gen-

eration mix, unit commitment and dispatch are optimal in the sense of minimizing costs. In

principle, it is conceptually legitimate to assume that a perfectly competitive market and a

centrally-planned system will result in the same generation expansion and operation, when

all cost information is available to the decision maker4(Perez-Arriaga and Meseguer, 1997).

This section examines why the choice of bidding rules may create a discrepancy and its

quantitative relevance. Therefore, in our experiments, we chose the generation mix and the

operation of generating plants to be identical for all the bidding rules studied, differing only

in the way that wholesale prices are determined. In reality, wholesale prices in the simple

4This is not strictly the case with simple bids, since the unit commitment and dispatch are not based on
a explicit accounting of the start-up costs.
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bids case also change the way that plants are scheduled and, ultimately, the capacity mix

that the system would have in equilibrium. Nevertheless, we assume that the commitment

states and capacity are the same across all cases, to observe more clearly what is the direct

impact of bidding rules on prices and profits.

The bidding rules studied (with the exception of the simple bids case) are based on the

dual variable µj of the demand balance equation (3.25). For problems with binary variables

–such as IMRES–, the solver CPLEX uses a branch and cut algorithm, solving a series of

LP subproblems where all binary variables are fixed (GAMS, 2014). Therefore, the duals

obtained are those of an LP subproblem where commitment, startup and building variables

are fixed.
ÿ

iPI
xij ` nj “ Dj K µj free @j P J (3.25)

3.5.1 Do Nothing

The “do nothing” case represents a naive approach to bidding, ignoring the nonconvex

costs. The wholesale market price is ρAj “ µj, @j P J , and the profitability of units is the

difference between the remuneration obtained from energy sales and the sum of fixed costs

and operating costs (3.26).

πAi “ ´C
FIX
i `

ÿ

jPJ

“`

ρAj ´ C
V AR
i

˘

xij ´ C
STUP
i zij

‰

@i P T (3.26)

We use the results obtained from this strategy as comparison to quantify the effect produced

by the subsequent bidding rules analyzed. This case is a simple theoretical situation used

to show that if bidding rules do not account somehow for nonconvexities, operating costs

cannot be recovered.

3.5.2 Side Payment

Some power systems like PJM and NY-ISO include a revenue sufficiency guarantee condition

to ensure that power plants scheduled in the day-ahead and real-time markets recover their
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daily offer amounts. In this case, the price is equal to the marginal cost of energy: ρBj “

µj, @j P J , and there is a side payment that guarantees that plants recover their operating

costs.

Side payments are allocated by looking at the difference between remuneration and oper-

ating costs on a daily basis. If we define an index d P D “
“

1, ...,
X

N
24

\‰

for the days included

in the time series, the operating costs of power plant i incurred in day d, cid, are given by

the following expression:

cid “
ÿ

jPJ d

`

CV AR
i xij ` C

STUP
i zij

˘

@i P T , @d P D (3.27)

where J d denotes the subset of hours in day d P D:

J d
“

"

j

ˇ

ˇ

ˇ

ˇ

d “

Z

j

24

^

; j P r1, ..., N s

*

(3.28)

We then assign a side payment equal to the difference between operating costs and energy

remuneration, to plants where this difference is positive (3.29b). This mechanism ensures

that plants are not overpaid when operating costs have already been recovered with energy

sales (3.29a).

sid “

$

’

&

’

%

0, if
ř

jPJ d ρBj xij ě cid (3.29a)
ÿ

jPJ d

cid ´ ρ
B
j xij, if

ř

jPJ d ρBj xij ă cid (3.29b)

The yearly profit of individual plants is equal to the difference between remuneration

(including the side payments received) and cost:

πBi “ ´C
FIX
i `

ÿ

jPJ
ρBj xij `

ÿ

dPD
psid ´ cidq @i P T (3.30)
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3.5.3 Price Uplift

The Irish market is another example of a centrally dispatched system where generators bid

their actual short-run marginal cost. However, the Irish bidding code of practice (AIP,

2007) contemplates an addition to the price of an hourly uplift, denoted here as ηj, that is

calculated on a daily basis to guarantee that all plants recover their operating costs. The

resulting hourly system marginal price then becomes the sum of the marginal cost of energy

and the hourly uplift: ρCj pηjq “ µj ` ηj, @j P J .

The calculation of the uplift is performed ex-post of the daily unit commitment, for all

d P D, fixing the variables resulting from the unit commitment and minimizing the cost of

the uplift, and is subject to the constraint that all online power plants recover their operating

costs (3.31).

min
η

ÿ

iPI

ÿ

jPJ d

ηjxij

s.t.:
ÿ

jPJ d

rpρCj pηjq ´ C
V AR
i qxij ´ C

STUP
i zijs ě 0 @i P T

ηj ě 0 @j P J d (3.31)

Similar to the side payment rule, price uplifts compensate for nonconvex cost items that

are not covered by the marginal cost of energy (µj). However, in contrast to the side payment,

the hourly uplift will affect the remuneration of all the on-line units. Another characteristic

of this approach is the frequent presence of ‘price spikes’ as a consequence of adding the

uplift on top of the price.

The resulting profit of individual plants is the difference between energy revenues obtained

with the system marginal price and the sum of all fixed and variable costs:

πCi “ ´C
FIX
i `

ÿ

jPJ

“`

ρCj pηjq ´ C
V AR
i

˘

xij ´ C
STUP
i zij

‰

@i P T (3.32)
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3.5.4 Simple Bids

In the absence of a separate remuneration mechanism like the ones used in PJM, NY-ISO

or Ireland, auctions based on simple bids remunerate plants based solely on the wholesale

price, forcing plants to internalize in the simple bid all nonconvex costs incurred by the plant.

We implement this procedure by adding to the power plant’s variable cost the average of

the startup costs incurred by the plant over the course of one day (3.33) evenly distributed

over the hours of operation of the plant. Note that, as indicated earlier, the plant dispatch

resulting from this simple bidding does not have to coincide necessarily with the minimum

cost unit commitment, where nonconvex operation costs are considered explicitly.

ρDj “ max
iPI

#˜

CV AR
i `

ř

jPJ d CSTUP
i zij

ř

jPJ d xij

¸

uij

+

@j P J (3.33)

The annual profit of individual plants is the difference between the revenues from the

energy produced and the sum of fixed and operating costs.

πDi “ ´C
FIX
i `

ÿ

jPJ

“`

ρDj ´ C
V AR
i

˘

xij ´ C
STUP
i zij

‰

@i P T (3.34)

3.6 Market Equilibrium Heuristic Method

With adaptation, units expecting to make negative profits under a certain bidding rule would

not be installed in the first place. The opposite can occur if bidding rules over-compensate

some technologies and there is a positive profit expectation for new entrants. In fact, in a

market equilibrium solution where all power plants recover their costs, no new entrant would

make positive profits.

We propose here a set of rules to iterate on the welfare-maximizing generation fleet under

a certain bidding rule until we obtain an approximation to the market equilibrium solution.

This heuristic method screens all the technologies and adds or removes one unit repeatedly,

until the profits of every individual unit are positive and no new units can be added that

would make a profit. The technology screening is performed in an increasing variable cost
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fashion, because plants that are lower in the merit order (i.e., lower marginal costs) have

a greater impact on the energy delivered by units that are higher in the merit order. The

resulting capacity change for a given technology k, expressed in number of units, is denoted

as ∆kp¨q. A detailed description of the algorithm for this heuristic is provided in Fig. 3-10.

Require: ŷl “ y˚ for l “ 0
T 1 Ă I Ñ subset of nuclear plants
T 2 Ă I Ñ subset of coal plants
T 3 Ă I Ñ subset of combined cycle gas plants
T 4 Ă I Ñ subset of open cycle gas plants
assuming that: CV AR

iPT 1 ă CV AR
iPT 2 ă CV AR

iPT 3 ă CV AR
iPT 4

πip¨q Ñ profit function of plant i
Ii Ñ vector of 0’s with a 1 at the i-th position
for k “ 1 to 4 do

loop
if Di P T k | ŷli “ 0 and πipŷ

l
` Iiq ą 0 then

ŷl`1
“ ŷl ` Ii

l “ l ` 1
else if Di P T k | ŷli “ 1 and πipŷ

l
q ă 0 then

ŷl`1
“ ŷl ´ Ii

l “ l ` 1
else

break loop
end if

end loop
end for
∆kpŷ

l
q “

ř

iPT k ŷ
l
i ´

ř

iPT k y
˚
i

Ensure: πipŷ
l
q ě 0 @i P T and @i1|πipŷl ` Ii1q ě 0 @i P T

Figure 3-10: Heuristic method to obtain a market equilibrium approximation

We apply this heuristic method to bidding rules yielding average profit solutions outside

the ´10% and `10% bounds with the adapted capacity mix. The results are shown in the

next section.
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3.7 Market Impacts of Bidding Rules

3.7.1 Impact on Cost Recovery

Tables 3.1-3.4 display the profit and cost to consumers results from all the experiments

conducted, disaggregated by adaptation case, bidding rule applied, and renewable scenario.

In the non-adapted case, there are technology differential effects that can be further

disaggregated into three components: 1) a price reduction derived from a reduction of the net

demand; 2) a price increase from having more frequent non-convex costs impacting marginal

prices; and 3) an energy output reduction as some units will see part of their energy produced

displaced by renewable generation. Here, technologies with high variable cost will be more

likely to be displaced first than technologies with a low variable cost. The high-renewable

scenarios in the non-adapted case do not purport to represent any real situation, especially

if renewable penetration is very high (e.g., it would be hard to find a situation where 80

extra Gigawatts of wind and solar power are deployed without having any kind of response

from investors in thermal generation). These results, however, try to provide a complete

illustration of the full spectrum of non-adaptation levels, from a more likely low unexpected

renewable deployment, to a less likely high unexpected renewable deployment.

In the adapted case, the average profit values in the ‘do nothing’ case are negative as a

result of remuneration not reflecting the nonconvex parts of the cost and the lumpiness of

the plants. If we compare these results with those obtained with the non-adapted system,

we observe that the magnitude of the remuneration gap for all technologies caused by having

a non-adapted system significantly outweighs the gap caused by not remunerating startup

costs with the adapted system.
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Table 3.1: Results for the ‘Do Nothing’ Bidding Rule: Average Profit by Technology and
Scenario and Average Cost to Consumers by Scenario

A. ‘DO NOTHING’

Adapted System, y˚pSq

sπkpy
˚pSqq [p.u.] ĚCCpy˚pSqq

Renewable Scenario Nuclear Coal CCGT OCGT r${MWhs

S “ 0 -0.005 -0.042 -0.049 -0.079 68.427

S “ 1 -0.030 -0.058 -0.051 -0.057 67.308

S “ 2 -0.083 N/A -0.05 -0.032 63.625

S “ 3 -0.076 N/A -0.03 -0.016 62.996

S “ 4 -0.086 N/A -0.062 -0.065 61.535

S “ 5 -0.08 N/A -0.043 -0.051 60.158

S “ 6 -0.102 N/A -0.07 -0.099 58.811

S “ 7 -0.053 N/A -0.033 -0.048 62.063

S “ 8 -0.039 N/A -0.004 0.033 62.509

S “ 9 -0.065 N/A -0.035 -0.058 60.066

S “ 10 -0.091 N/A -0.062 -0.086 58.058

Non-Adapted System, y0pSq

sπkpy
0pSqq [p.u] ĚCCpy0pSqq

Renewable Scenario Nuclear Coal CCGT OCGT [$/MWh]

S “ 0 -0.005 -0.042 -0.049 -0.079 68.427

S “ 1 -0.281 -0.305 -0.444 -0.798 48.354

S “ 2 -0.359 -0.373 -0.55 -0.837 43.440

S “ 3 -0.431 -0.443 -0.617 -0.779 38.682

S “ 4 -0.502 -0.504 -0.676 -0.773 34.137

S “ 5 -0.575 -0.568 -0.726 -0.803 28.211

S “ 6 -0.638 -0.627 -0.755 -0.799 24.903

S “ 7 -0.703 -0.687 -0.78 -0.816 20.421

S “ 8 -0.723 -0.707 -0.801 -0.795 18.735

S “ 9 -0.772 -0.764 -0.832 -0.817 15.411

S “ 10 -0.796 -0.779 -0.845 -0.826 13.827

Average Profit by Technology and Scenario, sπkp¨q [p.u. of total cost]; and
Average Cost to Consumers by Scenario , ĚCCp¨q [$/MWh]. Renewable Ca-
pacity in each Scenario (S) is equal to 10 ¨ S GW of Wind and 10 ¨ S GW
of Solar PV. For Example, S “ 3 refers to a scenario with 30 GW of wind
capacity and 30 GW of solar PV capacity installed
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Table 3.2: Results for the ‘Side Payment’ Bidding Rule: Average Profit by Technology and
Scenario and Average Cost to Consumers by Scenario

B. ‘SIDE PAYMENT’

Adapted System, y˚pSq

sπkpy
˚pSqq [p.u.] ĚCCpy˚pSqq

Renewable Scenario Nuclear Coal CCGT OCGT r${MWhs

S “ 0 0.001 -0.038 -0.014 -0.041 69.495

S “ 1 -0.030 -0.058 -0.016 -0.024 68.06

S “ 2 -0.083 N/A -0.012 0.001 64.336

S “ 3 -0.072 N/A 0.014 0.027 63.986

S “ 4 -0.083 N/A -0.017 -0.032 62.503

S “ 5 -0.069 N/A -0.009 -0.013 61.394

S “ 6 -0.095 N/A -0.026 -0.056 60.056

S “ 7 -0.056 N/A 0.000 -0.009 62.733

S “ 8 -0.036 N/A 0.034 0.055 63.535

S “ 9 -0.065 N/A -0.007 -0.011 60.955

S “ 10 -0.082 N/A -0.032 -0.040 59.500

Non-Adapted System, y0pSq

sπkpy
0pSqq [p.u] ĚCCpy0pSqq

Renewable Scenario Nuclear Coal CCGT OCGT [$/MWh]

S “ 0 0.001 -0.038 -0.014 -0.041 69.495

S “ 1 -0.281 -0.304 -0.403 -0.732 49.176

S “ 2 -0.359 -0.363 -0.500 -0.760 44.396

S “ 3 -0.43 -0.423 -0.569 -0.682 39.619

S “ 4 -0.496 -0.492 -0.624 -0.669 35.257

S “ 5 -0.567 -0.557 -0.662 -0.706 29.477

S “ 6 -0.623 -0.611 -0.709 -0.705 26.242

S “ 7 -0.683 -0.672 -0.725 -0.723 22.060

S “ 8 -0.700 -0.687 -0.763 -0.699 20.263

S “ 9 -0.740 -0.746 -0.775 -0.722 17.549

S “ 10 -0.759 -0.768 -0.791 -0.738 16.120

Average Profit by Technology and Scenario, sπkp¨q [p.u. of total cost]; and
Average Cost to Consumers by Scenario , ĚCCp¨q [$/MWh]. Renewable Ca-
pacity in each Scenario (S) is equal to 10 ¨ S GW of Wind and 10 ¨ S GW
of Solar PV. For Example, S “ 3 refers to a scenario with 30 GW of wind
capacity and 30 GW of solar PV capacity installed
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Table 3.3: Results for the ‘Price Uplift’ Bidding Rule: Average Profit by Technology and
Scenario and Average Cost to Consumers by Scenario

C. ‘PRICE UPLIFT’

Adapted System, y˚pSq

sπkpy
˚pSqq [p.u.] ĚCCpy˚pSqq

Renewable Scenario Nuclear Coal CCGT OCGT r${MWhs

S “ 0 0.068 0.027 0.014 -0.001 73.370

S “ 1 0.039 0.009 0.007 0.004 71.926

S “ 2 0.010 N/A 0.027 0.031 69.708

S “ 3 0.010 N/A 0.04 0.065 68.705

S “ 4 0.019 N/A 0.022 0.007 68.206

S “ 5 0.025 N/A 0.023 0.026 66.62

S “ 6 0.013 N/A 0.012 -0.005 65.858

S “ 7 0.038 N/A 0.037 0.039 67.875

S “ 8 0.06 N/A 0.078 0.087 68.620

S “ 9 0.026 N/A 0.023 0.02 65.717

S “ 10 -0.004 N/A 0.000 -0.011 63.580

Non-Adapted System, y0pSq

sπkpy
0pSqq [p.u] ĚCCpy0pSqq

Renewable Scenario Nuclear Coal CCGT OCGT [$/MWh]

S “ 0 0.068 0.027 0.014 -0.001 73.370

S “ 1 -0.202 -0.227 -0.372 -0.677 53.907

S “ 2 -0.237 -0.254 -0.447 -0.642 51.895

S “ 3 -0.323 -0.343 -0.546 -0.579 45.934

S “ 4 -0.383 -0.392 -0.591 -0.554 42.127

S “ 5 -0.468 -0.466 -0.648 -0.613 35.253

S “ 6 -0.509 -0.524 -0.683 -0.558 33.529

S “ 7 -0.587 -0.598 -0.711 -0.639 27.924

S “ 8 -0.604 -0.614 -0.745 -0.601 26.281

S “ 9 -0.65 -0.682 -0.763 -0.624 23.251

S “ 10 -0.678 -0.698 -0.771 -0.639 21.467

Average Profit by Technology and Scenario, sπkp¨q [p.u. of total cost]; and
Average Cost to Consumers by Scenario , ĚCCp¨q [$/MWh]. Renewable Ca-
pacity in each Scenario (S) is equal to 10 ¨ S GW of Wind and 10 ¨ S GW
of Solar PV. For Example, S “ 3 refers to a scenario with 30 GW of wind
capacity and 30 GW of solar PV capacity installed
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Table 3.4: Results for the ‘Simple Bids’ Bidding Rule: Average Profit by Technology and
Scenario and Average Cost to Consumers by Scenario

D. ‘SIMPLE BIDS’

Adapted System, y˚pSq

sπkpy
˚pSqq [p.u.] ĚCCpy˚pSqq

Renewable Scenario Nuclear Coal CCGT OCGT r${MWhs

S “ 0 0.487 0.382 0.317 0.232 99.830

S “ 1 0.460 0.363 0.299 0.236 98.288

S “ 2 0.406 N/A 0.282 0.254 94.527

S “ 3 0.359 N/A 0.273 0.256 90.640

S “ 4 0.393 N/A 0.292 0.245 92.268

S “ 5 0.320 N/A 0.215 0.249 86.327

S “ 6 0.362 N/A 0.256 0.233 88.981

S “ 7 0.337 N/A 0.244 0.239 87.809

S “ 8 0.368 N/A 0.327 0.335 89.308

S “ 9 0.354 N/A 0.239 0.248 86.966

S “ 10 0.318 N/A 0.214 0.217 84.450

Non-Adapted System, y0pSq

sπkpy
0pSqq [p.u] ĚCCpy0pSqq

Renewable Scenario Nuclear Coal CCGT OCGT [$/MWh]

S “ 0 0.487 0.382 0.317 0.232 99.830

S “ 1 0.179 0.089 -0.186 -0.672 76.837

S “ 2 0.113 0.029 -0.325 -0.674 72.785

S “ 3 0.052 -0.045 -0.411 -0.612 69.568

S “ 4 -0.025 -0.107 -0.479 -0.587 65.035

S “ 5 -0.114 -0.186 -0.533 -0.641 58.529

S “ 6 -0.212 -0.286 -0.596 -0.589 53.024

S “ 7 -0.309 -0.369 -0.63 0 -0.670 47.014

S “ 8 -0.333 -0.39 0 -0.666 -0.637 44.091

S “ 9 -0.410 -0.487 -0.679 -0.672 40.109

S “ 10 -0.470 -0.522 -0.693 -0.669 36.148

Average Profit by Technology and Scenario, sπkp¨q [p.u. of total cost]; and
Average Cost to Consumers by Scenario , ĚCCp¨q [$/MWh]. Renewable Ca-
pacity in each Scenario (S) is equal to 10 ¨ S GW of Wind and 10 ¨ S GW
of Solar PV. For Example, S “ 3 refers to a scenario with 30 GW of wind
capacity and 30 GW of solar PV capacity installed
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Renewable Scenario (S) 

A. 'DO NOTHING' 

Nuclear Coal CCGT 
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Figure 3-11: Profit across renewable scenarios in % of total plant cost, with the ‘Do Nothing’
bidding rule.
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Renewable Scenario (S) 

B. 'SIDE PAYMENT' 

Nuclear Coal CCGT 
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Figure 3-12: Profit across renewable scenarios in % of total plant cost, with the ‘Side Pay-
ment’ bidding rule.
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Renewable Scenario (S) 

C. 'PRICE UPLIFT' 

Nuclear Coal CCGT 
OCGT Nuclear (adaptation) Coal (adaptation) 
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Figure 3-13: Profit across renewable scenarios in % of total plant cost, with the ‘Price Uplift’
bidding rule.
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Renewable Scenario (S) 

D. 'SIMPLE BIDS' 

Nuclear Coal CCGT 
OCGT Nuclear (adaptation) Coal (adaptation) 
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Figure 3-14: Profit across renewable scenarios in % of total plant cost, with the ‘Simple Bids’
bidding rule.
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The ‘side payment and the ‘price uplift’ bidding rules guarantee that under adaptation

all plants recover operating costs, but the ‘price uplift rule helps all technologies towards

recovering their total costs as the non-convex costs reflected in the uplift are added to the

marginal price. We illustrate in Figure 3-15 the average profit for each thermal technology

considered and for the first three bidding rules analyzed.
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Figure 3-15: Average profit as a percentage of the total cost of the unit, across all renewable
penetration scenarios with each of the bidding rules studied

Under adaptation, the ‘simple bids’ rule yields profits significantly greater than zero,

leading to a situation that may attract new entrants to the market. Therefore, we apply the

heuristic method described before to this case to obtain a market equilibrium approximation.

We choose to consider only investments in additional CCGT or OCGT units to test the

heuristic within a reduced search-space.

Table 3.5 shows in parenthesis the number of new plants added after applying the heuris-

tic. ĚCC results show that by letting plants reach a market equilibrium, we reduce the cost

to consumers. Yet, they also reveal that, in equilibrium, the solution from using simple bids

produces a situation of excess capacity where plants are still overcompensated.
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Table 3.5: Average Profit by Technology and Scenario, sπkp¨q [p.u. of total cost]; Capacity In-
crease ∆kp¨q (in parenthesis); and Average Cost to Consumers by Scenario , ĚCCp¨q [$/MWh]
for bidding rule D. Simple Bids and renewable capacity scenarios (S).

sπkpŷ
l
pSqq [p.u.], ∆kpŷ

l
pSqq [units] ĚCCpŷlpSqq

Scenario Nuclear Coal CCGT OCGT [$/MWh]

D. Simple Bids

S “ 0 0.428 0.324 0.212 0.042 95.037

(=) (=) (+1) (+1)

S “ 1 0.406 0.31 0.208 0.1 93.991

(=) (=) (+1) (-1)

S “ 2 0.348 N/A 0.195 0.139 90.262

(=) (=) (+2) (-2)

S “ 3 0.282 N/A 0.143 0.074 85.251

(=) (=) (+2) (=)

S “ 4 0.321 N/A 0.176 0.071 86.932

(=) (=) (+2) (=)

S “ 5 0.249 N/A 0.131 0.094 81.663

(=) (=) (+1) (=)

S “ 6 0.315 N/A 0.172 0.117 85.643

(=) (=) (+3) (-2)

S “ 7 0.294 N/A 0.161 0.117 84.619

(=) (=) (+1) (+1)

S “ 8 0.279 N/A 0.181 0.059 83.057

(=) (=) (+2) (=)

S “ 9 0.29 N/A 0.131 0.089 82.789

(=) (=) (+3) (=)

S “ 10 0.284 N/A 0.136 0.089 82.461

(=) (=) (+2) (+1)
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3.7.2 Impact on the Cost to Consumers

Figure 3-16 shows the impact of renewable capacity on the average cost paid by consumers

(ĚCC)5. We observe a significant divergence between the results from the adaptation and

the non-adaptation cases, as in the non-adaptation case renewables are forced into a system

that is already designed to cover the demand by itself, creating a situation of excess-capacity.

Renewables thus displace the most expensive plants, reduce the marginal cost of energy, and

reduce the number of hours with non-served energy, ultimately decreasing the wholesale

price of electricity.
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Figure 3-16: Average cost to consumers across all renewable penetration scenarios with each
of the bidding rules studied

In the adapted cases, we observe that although ĚCC tends to be lower with greater values

of renewable capacity, the decline is less steep than in the non-adaptation cases. We also

note that ĚCC with the ‘do-nothing’ rule and with a ‘side-payment’ are both very similar,

5Note that the average cost to consumers calculated does not include the cost of any incentives provided
to promote renewable investments. Also, the higher the penetration of renewables, the lower the market
prices, therefore rendering investment in renewables less attractive.
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and that bidding rules that add an uplift increase the cost to consumers by about 8% of the

initial value. Simple bids impose a much greater burden on the consumer, on the order of

35% greater than the ‘do-nothing’ case.

3.8 Sensitivity Analysis

As discussed in the theoretical background, if the generation fleet is in equilibrium, and

in the absence of common or internal constraints on capacity, then all plants must have a

profit equal to zero under ideal conditions (see Introduction for a review of these conditions).

Replicating this theoretical result with a real-sized system model, while accounting for the

lumpiness associated with the limited number of plant sizes, and the most binding technical

constraints, presents a significant challenge. The calibration of a complex model like the one

used in this thesis has helped us learn many details that would have been hard to predict

without the extensive experimentation in the analyses performed. This section presents a

summary of some of the sensitivity analyses performed to calibrate the model and some

interesting effects that were found.

3.8.1 Sensitivity to the VOLL

As the model uses an approximation of the NLDC, the cost associated with every hour

contained in the approximation is scaled by the factor Θ to approximate the total operation

cost in one year. Therefore, hours with non-served energy will be multiples of the factor Θ,

introducing an extra discontinuity in the total cost objective function. This discontinuity

reduces the accuracy of the representation of the peak demand, potentially overestimating

the number of hours priced at the VOLL and the remuneration of units (e.g., if a full-year

series has 3 hours with NSE, and the weeks selected contain one of those hours, the full-

year approximation will have Θ hours with NSE, overestimating the remuneration of the

units). High values of VOLL can amplify this effect, yielding profit results that are far from

the theoretical result. Figure 3-17 shows profit values for three of the thermal generation
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technologies considered under different values of lost load:
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Figure 3-17: Sensitivity of technology-specific average profits to different values of non-served
energy

One possible solution to overcome this effect and approximate equilibrium solutions closer

to the zero-profit level, would be not scaling up hours with non-served energy in the cost

function. However, this solution is not straightforward as other additional changes to how

the approximation is built would be required, so that the objective function reflects the cost

of 8,760 hours. Another possibility, is to use a low VOLL that mitigates the impact on profits

of having more hours with NSE in the approximation than in the full-year series. This is the

approach chosen in this thesis.

3.8.2 Sensitivity to the Solver Tolerance

The convergence rate of high-dimension model such as IMRES significantly increases as the

relative gap tolerance decreases. At the same time, pricing models require a low gap tolerance

to obtain prices that are as close as possible to those that would support equilibrium. The

experiments in this thesis used a tolerance ε “ 10´4 as a compromise solution that permits

solving the model in a reasonable amount of time while producing prices that get plants’
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profits close to zero. Solver tolerances greater than 10´4 solve IMRES more rapidly, but

produce solutions with a larger duality gap and further from equilibrium. Conversely, solver

tolerances below 10´4 find a solution to IMRES in a much longer time period at best, as

sometimes the solver does not even find a solution.

3.8.3 Impact of hourly ramps

The effect of hourly ramps on the solution was tested by running IMRES in both the adap-

tation and non-adaptation cases, with and without these constraints (Table 3.6). The test

did not show any significant difference between including hourly ramps or not. We observed

that, with adaptation, the capacity installed with and without including ramp constraints

was the same in both cases. The capacity factor and energy contribution of renewables

was found to be slightly higher without ramp constraints, because when these constraints

are binding the system decides to increase renewable curtailment. If the amount of energy

curtailed had been higher than the one found in this test, the opportunity cost of the energy

curtailed might have been sufficiently high for the model to decide to start up or shut down

one plant.

There are at least two possible explanations for the almost negligible effect of ramps in

this test: first, that the system counts with a sufficiently large number of units that allows

the system to coordinate the production of many units upwards or downwards in order to

withstand very steep ramps; and second, the steepest ramps might not necessarily occur

at timeframes equal or greater than one hour, and might occur in timeframes of seconds

or minutes. Therefore, ramps might play a more important role in smaller-sized systems

where there are not enough plants to increase their output simultaneously, or within a

smaller timeframe (for instance, a 5 minute timeframe) that is not reflected in this model.

Considering ramps at a smaller time scale with a capacity expansion model like IMRES

might increase the dimensionality challenge and other statistical methods or models that

focus on smaller time frame decisions might account better for this type of phenomena.
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Table 3.6: Ramp constraints sensitivity analysis. Total capacity, capacity factor and energy
contribution results for the adapted and the non-adapted system, with and without hourly
ramping constraints.

Adapted System, y˚pSq Non-Adapted System, y0pSq

w/ ramp w/o ramp w/ ramp w/o ramp

constraints constraints constraints constraints

Renewable contribution [%] 44.3 44.5 30.7 31

Curtailment [%] 8.9 8.5 36.9 36.1

Non-served energy [%] 0.263 0.264 0.003 0.004

Average Price [$/MWh] 58.086 58.191 9.247 9.655

Capacity [GW]

Nuclear 17 17 40 40

Coal 0 0 5.5 5.5

CCGT 36.4 36.4 25.6 25.6

OCGT 0 0 0 0

Capacity Factor [%]

Nuclear 98.4 97.9 93 92.7

Solar 8.4 8.5 5.8 5.2

Wind 16.6 16.6 11.5 12.3

Coal – – 21.4 20.4

CCGT 40 40 2.8 2.7

OCGT – – – –

Energy Contribution [%]

Nuclear 29.8 29.6 66 65.7

Solar 14.9 15.1 10.3 9.2

Wind 29.4 29.4 20.4 21.8

Coal – – 2.1 2

CCGT 25.9 25.9 1.3 1.2

OCGT – – – –
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3.8.4 Impact of Startup Cost

As has been mentioned throughout this thesis, one of the most important nonconvexities

found in the generation activity in real power systems is startup costs. This subsection

tests the effect of the magnitude of this parameter on the final profits obtained by different

technologies by running all the renewable scenarios with adaptation with all the bidding

rules studied. The experiment compares the results obtained using the original values of

startup costs (‘high’) (see Table A.3) with those obtained with a set of plants with startup

costs equal to one third of the original values (‘low’).

Figures 3-18 and 3-19 present a comparison of the average and total number of startups

per technology with low (dotted) and high (dashed) startup costs. Specifically, Figure 3-18

shows that if the startup cost of the individual plants is lowered to one third of the original

value, the startup regime of CCGTs is increased and the startup regime of OCGTs is reduced

on average. Figure 3-19 shows that the total number of startups increase when startup costs

are lower (as it would be expected), and that the cycling burden is shifted from OCGTs in

the high startup case to CCGTs in the low startup case. Additionally, the figure illustrates

how the total system-wide cost for starting up is reduced, as the startup costs in the low

case is one third of the high case, and the total number of startups in the ‘low’ case is less

than three times the number of startups in the ‘high’ case.

Figures 3-20-3-23 present the profit results of this analysis. Note that since we are re-

running IMRES with other values of startup costs, the values of the capacity variables as well

as the variables defining the operation of the plants will change, in addition to the profits

obtained by the plants.
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Figure 3-18: Sensitivity of the average number startups to the startup cost of the plants.
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Figure 3-19: Sensitivity of the total number startups to the startup cost of the plants.
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The ‘do-nothing’ case (Figure 3-20) shows that startup costs are responsible for a sig-

nificant fraction of the divergence between the actual profits obtained by the plants, and

the theoretical zero profit level obtained in equilibrium with a system where all costs are

convex. In the absence of any bidding mechanism that allows recovering startup costs, we

observe that technologies are closer to the theoretical result when startup costs are low, as

the nonconvexities in this case are smaller. Yet, bidding rules that account for nonconvex

costs are still necessary.

The ‘side payment’ bidding rule (Figure 3-21) shows a positive effect on the technologies

that bear with the cycling in the system (CCGTs and OCGTs), and do not affect the total

cost of other technologies that are below in the merit order (nuclear and coal). Remember

that, in the experiments with high startup costs, coal gets displaced with penetration levels

larger than S “ 1. This effect is also found with low startup costs.

With a ‘price uplift’ (Figure 3-22), we observe that all technologies recover again total

costs. The profits of CCGTs and technologies below them in the merit order increase relative

to the high-startup case, while the profits obtained by OCGTs remain on the positive side

but are now lower. This effect can be explained based on the changes in the startup regime

from ‘low’ to ‘high’ startup costs: with a low startup cost, units in general will cycle more,

and some of the cycling that was borne by OCGTs with high startup costs is now borne

by CCGTs. Also, as units cycle more, in this case the average uplift is higher, increasing

wholesale prices, which will be reflected on the profits of the technologies that cycle more,

and on those of other technologies below them in the merit order. This is why OCGTs do

not see the profit increase seen by other technologies with a lower variable cost.

Finally, the ‘simple bids’ case (Figure 3-23) shows that as the total cost of starting up

is lower, the price increase that internalizes the average daily startup cost is also lower

compared to the high startup cost case. Therefore, profits in the ‘low’ case are lower than

in the ‘high’ startup cost situation.
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Figure 3-20: Sensitivity of technology-specific average profits to different values of startup
cost, for the ‘do nothing’ case.
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Figure 3-21: Sensitivity of technology-specific average profits to different values of startup
cost, for the ‘side payment case.
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Figure 3-22: Sensitivity of technology-specific average profits to different values of startup
cost, for the ‘price uplift’ case.
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Figure 3-23: Sensitivity of technology-specific average profits to different values of startup
cost, for the ‘simple bids’ case.
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3.8.5 Impact of the Size of the Units

In addition to startup costs, another nonconvexity found in real systems is the lumpiness of

the plants. Figure 3-24 shows the profits obtained in the original case together with those

from case where the size of the units was reduced with respect to the size of the original

plants (Appendix A). Plants in the pool of candidate plants were reduced as follows: nuclear

plants were reduced by one half and one fifth, coal plants were reduced by one half and one

fifth, CCGTs were reduced by one half and one fifth, and OCGTs were reduced by one fourth

and one fifth.

Results in Table 3-24 show that as the size of plants is reduced, so is the the remuneration

gap. This result, however, is not reflected on OCGTs because their startup cost is smaller

compared to any other technology in the system, and these smaller OCGTs bear a more

intense cycling regime than regular-sized ones. This increase in startup costs expressed in

terms relative to a smaller unit size, make profit gaps larger.
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Figure 3-24: Sensitivity of technology-specific average profits to the size of units

148



3.9 Conclusion

The analyses in this chapter use IMRES, a capacity expansion model with embedded unit

commitment constraints, to explore the impact of bidding rules in power systems with large

shares of wind and solar PV, under two adaptation paradigms: a fully adapted generation

fleet, optimized for the renewable scenario; and a fleet optimized for zero renewables operated

with a certain non-zero renewable capacity.

Results show that bidding rules meant to ensure that plants recover nonconvex operation

costs have significant implications in the overall cost recovery of the generation plants and

the price paid by consumers. First, granting a side payment to power plants that do not

have their operating costs covered by the wholesale price can bring them closer to full-cost

recovery at very small cost to the consumers, but may fail to recover the total generation

costs of the different technologies. Second, adding the optimal price uplift that allows all

plants to recover operating costs increases the profits of all units, as startups increase the

energy price through the uplift, which has a larger impact on the consumer and still may

under-recover total generation costs. Third, allowing for the internalization of startup costs

in simple bids grants plants revenues that exceed their total cost, creating opportunities for

new entrants and imposing an unnecessary burden on the consumer.

In addition, this chapter explored the relative effects of bidding rules when there is an

unanticipated deployment of renewables that impacts on the economic equilibrium of the

system. Under this circumstance, an excess-capacity situation is created and generators

incur losses in income due to a quick depression of wholesale prices and a reduction of their

capacity factor, as a fraction of the demand is taken over by renewables. We found these

losses to be significantly greater than those incurred from not recovering startup costs. This

result underlines the criticality of having renewable energy plans that allow other players in

the market to adapt without incurring losses provoked by potential regulatory shocks.
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Chapter 4

Valuation of Risk at the Power

Generation Plant

This chapter is an extended adaptation of the following paper:

• “A Dynamic Model for Risk Pricing in Generation Investments” (de Sisternes and

Parsons, 2014).

4.1 Notation

This chapter uses a different notation than the one used in previous chapters of this thesis.

The notation particular to this chapter is summarized in Table 4.1.

Table 4.1: Indices

i P t0, 1, , Nu, where i is the index the time periods

j P t0, 1, , Jpiqu, where j is the index for the uncertainty paths at a given period i

ti “ T {Ni “ i{n P t0, 1, , T u, where ti is the time where period i is located

Table 4.2: Parameters

µ expected market return over the course of one year
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σ expected volatility of the returns over the course of one year

α expected demand growth over the course of one year

r risk free rate

N total number of periods in the simulation

T total number of years in the simulation

n “ N{T number of periods per year

∆t time duration of one period expressed in years

m “ µ{n expected market return per period

ν “ σ{
?
n standard deviation per period

Table 4.3: Variables

∆Rij ” ∆Rtj market return at time period i and path j; ∆Rij “ lnpSij{Si´1jq

Rij ” Rtj cumulative market return at time period i and path j

εij ” εtj independently distributed random variable, ε “ Φ´1

Φ cumulative distribution function (CDF) of the standard normal distribution

(with µ “ 1 and σ “ 0q

Sij ” Stj market price index at time period i and path j

πij ” πtj true probability of the state in time period i and path j

π˚ij ” π˚tj risk neutral probability of the state in time period i and path j

φij ” φtj stochastic discount factor of the state in time period i and path j

λ̄ technology-specific average risk premium

PV present value of the asset

ECFi ” ECFt expected cash flows of the asset, ECFτ “
řJ
j“0CFτjπpRτjq

CEQi ” CEQt certainty equivalent value of the asset CEQτ “
řJ
j“0CFτjπ

˚pRτjq

xij electricity demand index in time period i and path j

F pxijq log xij
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4.2 Introduction

The previous chapter showed how conventional thermal technologies are exposed to the

risk of unanticipated new renewable generation additions. Although the cost of wind and

solar photovoltaics is steadily decreasing, these technologies are not yet cost competitive

in many markets, making their deployment conditional on some sort of subsidy (feed-in

tariffs, tax credits etc). These incentives that boost renewable deployment might be strongly

correlated with the macro state of the economy, as programs that provide such economic

incentives require large budgetary funds to be administered. If incentives to renewables

are too aggressive and renewable deployment occurs unanticipatedly, the thermal generation

capacity might not have enough time to adapt –think, for instance, of the lengthy operational

life of a nuclear plant that might not be economical with a large renewable share–, affecting

critically to the profitability of units.

The past number of years has seen significant interest in the role of risk in the valuation

of electricity generating technologies. Companies are keenly aware that different projects

contain different levels of risk, that project risk may vary throughout the project life-cycle,

and that the contract terms negotiated for a specific project shift the risk dramatically.

Policy makers, too, have looked to shape the risk of certain investments in order to steer the

profile of new generation towards low carbon sources. Unfortunately, this heightened interest

has not been matched with adequate tools for properly evaluating different risk profiles.

One approach leans on the now widespread availability of computing to generate large

Monte Carlo distributions of payoffs to different assets or for the same asset financed with

different contract. Usually the different distributions are compared on the basis of means and

variances. For example, fixing the mean, a distribution with a higher variance is considered

worse than a distribution with a lower variance.

One shortcoming of this approach is its failure to connect with the standard tools of

modern valuation and asset pricing. This approach ignores the key insight from portfolio

theory that expected return is not a function of total variance, but rather of the component

of variance that is correlated to macroeconomic variables. It also ignores the key insight from
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derivative pricing that variance in the final payoff is a poor tool for ranking risk. The non-

linearity of many payoffs makes the problem more difficult than is acknowledged in a simple

mean-variance framework. This disconnect undermines the reliability of many conclusions

drawn from these Monte Carlo simulations, and it undermines the confidence we might have

in the specific values calculated using the simulations.

This chapter shows how to incorporate standard risk pricing principles into the popu-

lar Monte Carlo simulation analysis. The method presented is basically a version of what

is commonly known as the ‘real options’ approach to asset valuation (Dixit and Pindyck,

1994)(Cox et al., 1979). Another label for it is ‘contingent claims valuation’. Unfortunately,

for various reasons these tools are not yet widely employed by financial and policy analysts

working in the power industry. One reason may be the difficult structure of those approaches

and the lack of any obvious connection to the Monte Carlo simulations as most often em-

ployed by financial analysts in the power industry. This chapter attempts to take a different

approach designed to remedy that problem. The exposition is structured using the standard

framework for a typical Monte Carlo cash flow simulation so that the implementation can

be readily generalized. The framework proposed helps to make clear what the necessity of

an asset pricing approach places on the financial analyst: it is essential that the analyst

assess the relationship between the risk in the asset’s cash flows and the macroeconomic risk

that financial investors are concerned with. Without that, it is impossible to properly think

through how an assets risk is priced in the market, and equally impossible to assess how

different contracts or other changes impacting the asset’s risk will be valued. The framework

provided is flexible and can accommodate many different structures for the relationship be-

tween the risk in the asset’s cash flows and the macroeconomic risks. This chapter is intended

to help remedy that.

There have been attempts in the literature to account for the non-linear exposures of

cash-flows in certain assets, and to derive discount rates that reflect those exposures. For

instance, outside the realm of the purely financial industry, Myers and Howe account for

the non-linearity of R&D costs in the pharmaceutical industry and how that reflects on
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the cost of capital across different development stages of a drug (Myers and Howe, 1997).

However, this work does not extract the component of the variance that is correlated with

macroeconomic variables in order to appropriately price risk. Conversely, Ehrenmann and

Smeers establish a relationship between the market return and the realizations of a group of

stochastic parameters that affect cash flows (Ehrenmann and Smeers, 2010). They derive a

discount factor for each scenario via the CAPM, which are later used in a two-stage electricity

generation capacity expansion equilibrium problem. Nevertheless, this work does not account

for the dynamic evolution of the underlying risk factor (for instance, as a random walk or

some other stochastic process) and its effect on cash flows.

4.3 The General Algorithm

This section reviews a couple of principles of valuation and asset pricing that need to be

introduced in the analysis of risk in generation assets. In doing so, this section defines a gen-

eral algorithm that can be employed across a wide range of problems. An illustration of how

the steps of this algorithm are implemented is also provided. The illustration reveals how the

algorithm can encompass complicated risk structures, while simultaneously demonstrating

how the algorithm ties back to the most basic discounted cash flow exercises.

Most modern asset pricing models value a projects risky cash flows with reference to the

larger economic context of which the individual project is just a small part. This happens in

two steps. First, the larger context defines a standard unit of risk and the market price for

that standard unit. Second, the project is analyzed to determine how much of the standard

unit of risk is contained in the project, and then the price of risk for that project is the

product of the amount of risk measured in those standard units and the market price of risk

per standard unit.

For example, the Capital Asset Pricing Model (CAPM) looks to (i) the volatility of a well

diversified market portfolio of stocks and other securities and assets, and (ii) the expected

return premium earned on this market portfolio. The market portfolio is the standard unit of

risk, with a Beta of 1, and the premium is the price of risk paid per unit of Beta risk. Then,
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in evaluating a project, we determine the projects Beta –i.e., how much of the standard unit

of risk are contained in the project– and calculate a risk premium for the project equal to

the projects Beta multiplied by the market risk premium.

Methodologies like the CAPM work well for projects with risk that is simply proportional

to the market risk. When a projects risk is non-linearly related to market risk, a similar but

more complex algorithm is required. These more complex algorithms employ what is known

as a stochastic discount factor, which is what this chapter presents. But these more complex

algorithms still operate in the two steps described above. First, the algorithm identifies the

market price of a standard unit of risk, and, second, the algorithm determines how much of

this standard unit of risk is contained in the project.

In the algorithm presented, this first step is called the Macro Perspective, and the second

step is called the Micro Perspective. The analysis looks first away from the project and to

the larger economic context to identify how the pertinent risks are priced in the market.

Then, the analysis looks back to the project to identify how much of the pertinent risks are

contains in the project. Once these two steps are done, we can execute the valuation of the

project and conduct any number of analyses (Figure 4-1).

While a final analysis can be presented as being executed linearly, starting with the macro

analysis, moving on to the micro analysis, and then executing the valuation and any further

analysis, the actual work leading towards the final analysis will involve an iterative process

operating sometimes in one direction and sometimes in another. For example, depending

upon the project being analyzed, we may choose to focus on a different choice for the standard

unit of market risk.

It is appropriate now to formalize this discussion and recapitulate the points above inside

that formal framework. Let’s suppose we have a project that operates over a number of years,

t “ 1, T . The traditional discounted cash flow formula is given by the expression:

PV “
T
ÿ

t“0

ErCFts
p1`Raq

t (4.1)

For our purposes, it will be important to rewrite the same equation using the correspond-

156



1. Macro perspective
Defining Underlying Risk Factors

φtj

2. Micro perspective
Defining state-contingent cash flows

CFtj

3. Valuation

PV “
T
ÿ

t“0

˜

J
ÿ

j“0

CFtjπtjφtj

¸

expp´rtq

4. Further Analysis
Calculate implied discount rates

λ̄

Figure 4-1: Steps of the General Algorithm.

ing continuous time discount rate (see Appendix B):

PV “
T
ÿ

t“0

ErCFts exp p´ratq (4.2)

–where ra “ ln p1`Raq , and then to decompose the discount rate into the risk-free rate, r,

and a risk premium, λa:

PV “
T
ÿ

t“0

ErCFts exp p´λatq exp p´rtq (4.3)

In the capital asset pricing model (CAPM) (Copeland et al., 2005), the appropriate risk

premium, λa, is the product of the correlation between the historical return of the security

and the market portfolio (β), and the market risk premium rp “ prm ´ rq, where rm is the

return of the market portfolio and r is the risk-free rate of return. As a result, the required
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rate of return on asset “a” is ra “ r ` λa “ r ` βa rp, so that we have:

PV “
T
ÿ

t“0

ErCFts exp p´βarptq exp p´rtq (4.4)

In our terminology, identifying the market risk premium, rp, is the macro task and

determining the asset Beta, βa, is the micro task. Once these two tasks are complete, the

valuation is executed according to the equation1.

This standard discounting formula is simple in that it employs the expected cash flow,

and a single risk adjusted discount rate. However, it is often forgotten or overlooked that

this formula is a special case of a more general discounting method that employs the full

space of possible outcome states determining the cash flows, and applying different discount

factors to the cash flows in different states – see, for example, (Cochrane, 2005). The set of

different discount factors is known as the stochastic discount factor. The validity of reducing

the more general method to the standard discounting formula rests upon two assumptions

that are rarely met. First, it assumes that the risky cash flows being discounted are perfectly

proportional to the underlying risk factor so that the risk can be completely summarized

by a scalar such as β. This assumption assumes away the existence of price caps, price

floors and other nonlinearities which would make it impossible to rank assets by risk along

a single dimension. Second, the risk in the cash flows grows linearly through time. This

assumption will be violated if uncertainty is unevenly distributed over different horizons, as,

for instance, in projects where much of the uncertainty is resolved in early stages. In the

context of electricity generation, these two assumptions would entail ignoring, among others,

the relationship between the general state of the economy and electricity demand growth,

and the of regulatory changes to the stream of cash flows.

The stochastic discount factor methodology presented here extends the standard dis-

counting formula to handle cases in which one of these two assumptions no longer holds. It

1The CAPM is just one possible model for determining the market price of risk. Other models include
the Fama-French 3-factor model or the Arbitrage Pricing Model, to name a couple. And, derivative pricing
models exist which start from the market price of risk embedded in an underlying security, and then move
on to evaluate derivative securities with payoffs linked to the payoff on the underlying security.
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does this by making explicit the cash flows exposure to the underlying risk factor and by

discounting future cash flows at rates that are contingent on the realizations of the uncertain

factor. Assuming that exposure is well-defined, the method involves determining the value

of the risk factor in all possible future states and, based on that value, forecasting the cash

flows that the asset will generate in each state. Accordingly, risk is priced through explicitly

taking into account the correlation between the cash flows and the underlying risk factor.

Suppose that in any year t, the underlying priced risk factor can take on a discrete range

of values, j “ 1, J . Assume that each possible state has a probability associated (πtj), equal

to the probability of the realization of the risk factor, such that
řJ
j“0 πtj “ 1, @t. In

addition, for each possible state of the underlying priced risk factor, we know the project

cash flows contingent on that risk factor, CFtj. Then the present value formula is given by

Eq. .

PV “
T
ÿ

t“0

˜

J
ÿ

j“0

CFtjπtjφtj

¸

exp p´rtq (4.5)

–where φtj is a state contingent discount factor. Here is where the difference lies between

risk-adjusted discounting and state contingent discounting: while in the former method

cash flows are discounted using a fixed factor pe´λq that is common to all time periods and

uncertainty states, in the latter there is a different discount factor φtj for each state. In both

cases, the discount factors are taken from the market and are independent of the cash flows.

It may be helpful to illustrate the general methodology with a simple numerical example.

Then, the remainder of the chapter produces a detailed and more realistic implementation

with a clear tie to alternative electricity generating technologies. Table C-1 shows a standard

discounted cash flow valuation of PowerCo, a generator with 5 years of operations. The risk-

free discount rate is constant through time at 5%, the risk-premium is constant at 3%, and the

company has a Beta of 2.0. So PowerCo’s risk premium is 6%, and, adding the risk-free rate

the complete risk-adjusted discount rate is 11%. Table C-1 repeats the calculation a second

time, but breaking the discounting up into two steps according to the certainty-equivalent

method. The first step does the discounting for risk using just PowerCo’s risk premium

of 6%, and the second step then does the discounting for time using the risk-free rate of
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5%. In the following steps we show how to repeat this calculation using the more detailed

stochastic discount factor methodology. This section concentrates at first on replicating this

calculation, and then it shows how the stochastic discount factor methodology is more robust

to variations on PowerCo’s risk structure.

4.3.1 The Macro Perspective: Defining the Underlying Priced

Risk Factors

Table C-2 unpacks the probability distribution of the underlying risk factor for our example.

The most widely used underlying risk factor in corporate finance is the return on the market,

i.e., the return on a broadly diversified index of financial assets, usually stocks. That is the

risk factor used in this example. Let’s assume that the return on the market index is normally

distributed with a mean annual return of 6.4%, and an annual volatility of 18%. This example

approximates the probability distribution of the cumulative return at each horizon using a

binomial probability distribution defined on six possible outcomes or “states”, indexed 0-5.

At the one year horizon, the table shows a market return that ranges from a high of 47% to

a low of -34%. Assuming that the market index at time t “ 0 is set to 1, we can calculate

the corresponding market index values. At the one year horizon, the table shows a market

index value that ranges from a high of 1.594 to a low of 0.713. The binomial probability

distribution across these six outcomes appears next.

The table shows a range of cumulative market returns and market index values at five time

horizons, t “ 1, 2, , 5. The probability distribution at each horizon is from the perspective

of t “ 0, and each distribution has been approximated separately. The reader is cautioned

against thinking there is any tie between the set of states shown for the realized market

return in year 1 and the set of states shown for the realized market return in year 2. The

reader should think of the six states on each distribution separately. These are not six

scenarios tracked through time, but six possible outcomes at each point in time, and the

actual market index might arrive at any later outcome by many different paths through

time. Since the uncertainty about the market return is growing through time, the range
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of the market index from the highest point of the distribution to the lowest point of the

distribution is also growing through time. Since the table shows returns on an annualized

basis, this is less obvious when looking at the range of annualized returns.

This is all relatively standard fare. The new elements are the state-contingent risk premia

shown, and the corresponding state-contingent discount factors. Instead of a single risk

premium of rp “ 8%, we have a set of risk premia. In each year, each state has its own

risk premium. Some of these risk premia are very large–more than 30%! Others are even

negative, which implies that someone would pay to accept that risk. For the purposes of

illustrating the mechanics of the general algorithm, the state contingent discount factors are

provided without showing how to derive them. The following sections of the chapter develop

a fuller model of this methodology applied to electricity generating investments, showing

how to derive the state contingent discount factors.

4.3.2 The Micro Perspective: Defining the State-Contingent Cash

Flows for an Asset

Table C-3 unpacks how PowerCo’s revenues are exposed to the market risk factor. Production

is assumed to be independent of the market fluctuations, so that all variations in the revenue

are due to changes in the unit price. For each state of the market index, Table C-3 shows

a corresponding realization of PowerCo’s unit price and revenue. The probabilities shown

are the probabilities of the states, i.e. those shown in Table C-2. Let the subscript j denote

a specific outcome or state, with ptj denoting the unit price in state j at time t, and πtj

denoting the probability of state j at time t. Then, the expected unit price is the sum

product of the state contingent unit price and the probabilities:

Erpts “
J
ÿ

j“0

ptjπtj (4.6)

It matches the expected unit price used in Table C-1 to calculate the standard discounted

cash flow value. Denoting with CFtj the revenue in state j at time t, the expected revenue
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is the sum product of the state contingent revenue and the probabilities:

ErCFts “
J
ÿ

j“0

CFtjπtj (4.7)

It also matches the expected revenue used in Table C-1 to calculate the standard dis-

counted cash flow value.

4.3.3 Executing a Valuation

Table C-4 shows how we use the new information on stochastic discount factors to calculate

the present value of PowerCo’s revenue over the next five years. We calculate the full range

of possible revenues, multiply it times the respective probabilities, multiply that times the

respective discount factors, and then take the summation across states. This gives us the

certainty-equivalent revenue:

CEQt “

J
ÿ

j“0

CFtjπtjφtj (4.8)

Once we have the certainty-equivalent revenue, we discount it for time using the risk-free

discount rate:

PVt “ CEQt exp´rt (4.9)

Although this calculation involves more detail on the full range of possible outcomes for

the underlying risk factor and PowerCo’s revenues, it yields the same final present value.

The simpler discounted cash flow calculation in Table C-1 uses the expected cash flow.

The calculation shown in Table C-4 replaces that with an explicit specification of the sce-

narios that went into the expectation, and with a correspondingly explicit set of discount

factors:

PV “
T
ÿ

t“0

˜

J
ÿ

j“0

CFtjπtjφtj

¸

exp p´rtq (4.10)
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4.3.4 Analysis

The value of using state-contingent discount factors is that we can now very easily value

any variation on the original payoff structure that is also contingent on the underlying risk

factor. Suppose, for example, that PowerCo is owned as a partnership, and that revenues

are divided up according to the following sharing rule: partner #1 receives the first $0.37

per unit sold, while partner #2 receives any revenue over and above that. Tables C-5 and

C-6 show how these two partnership positions are valued using the state-contingent discount

factors. Partnership #1 is worth $10.201 billion, while Partnership #2 is worth $32.254

billion. The value of the two positions sum to the total value of the project, of course.

The two partnership stakes have very different risk exposures. Partner #1 has a nearly

riskless position. As one can see in Table C-5, only in years 3, 4 and 5, and then only in

the event of the lowest possible price, does partner #1 receive something less than $0.37 per

unit. Otherwise, the price received by partner #1 is constant regardless of the realization

of the risky unit price in the market. Indeed, we could have almost exactly valued partner

#1’s position using the expected cash flow and a riskless discount rate:

PV p#1q u
5
ÿ

t“0

pE0rCFtsq exp p´rtq “ $10.221. (4.11)

This is only slightly above the correct valuation made using the state contingent valuation

methodology.

However, we could not very easily have applied the DCF technique to value partner #2’s

share. Why not? The problem that arises is how to choose the right discount rate. All of

the project’s risk has been loaded onto partner #2’s share of the revenue. Look at the range

of revenue received by partner #2 as shown in Table C-6. The range is almost as wide as

the range for the total firm, even though partner #2’s stake is less than the value of the

whole firm. On the upside, partner #2’s realized rate of return will be greater than that of

the firm as a whole, and on the downside it will be lower. Clearly the old risk premium of

λa “ 6% that was used for the project as a whole is not the right number to use for partner
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#2’s share. If we tried to calculate the partnership value using the 6% discount rate, we

would significantly exaggerate the its value:

PV p#2q ‰
5
ÿ

t“0

pE0rCF#2tsq exp p´6%tq exp p´rtq “ $37.581. (4.12)

This overvalues partner #2s stake by 17%.

The right risk premium must be much higher, to reflect the loading of extra risk. But

how much higher? The simplest way to answer that question is to back out the discount

rate that gives the same answer as the calculation made with the state-contingent discount

factor.

The methodology of applying state-contingent discount factors is very flexible. The hard

part is specifying the array of states and the state-contingent discount factors, as shown in

Table C-2, and tying these to the cash flows on the asset we want to value, as shown in Table

C-3. Once this has been done, we are free to evaluate all variety of generation technologies

with different risk exposures.

The general algorithm is now applied to the problem of pricing risk in generation assets.

To do this the next section first defines the model of the underlying priced risk factor. It

then overlays on top of that a model of electricity price determination and its correlation to

the underlying priced risk factor. Finally, it defines specific electricity price related assets

which we want to value, and describes how their cash flows are determined.

4.4 The Underlying Priced Risk Factor: the Stock Mar-

ket Index

4.4.1 The Probability Distribution of Market Returns

The most widely used model of risk is the Capital Asset Pricing Model (CAPM) in which

the return on a diversified portfolio of stocks is the single priced risk factor. Consistent with

that model, let’s assume that the cumulative return on the market portfolio, R, evolves as a
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random walk or arithmetic Brownian motion. The stochastic process for R is described by

two parameters: the drift, µ, and the volatility, σ:

dR “ µdt` σdW (4.13)

– where dW is the increment to a Brownian motion.

Let’s denote by πpRτjq the probability distribution of the cumulative market return at

time horizon τ and uncertainty path j. Given the Brownian evolution of the cumulative

market return, this probability is given by a normal distribution function with mean µτ and

variance σ2τ . If we denote by f1p¨q the p.d.f. of the normal distribution N pµτ, σ
?
τq, and

by J the number of states sampled in that time period, the true probability of a given state

relative to the other states sampled is given by the following expression:

πpRτjq “
f1pRτjq

řJ
j“0 f1pRτjq

(4.14)

Figure 4-2 shows the mean of this distribution through time, together with an upper

and lower confidence bound. The figure also shows the full distribution at one slice of time.

Overlayed on top of the figure is one possible sample path for the cumulative market return.

4.4.2 The Stochastic Discount Factor

Let’s denote by φpRτjq the stochastic discount factor to be applied to cash flows earned at

time horizon τ and uncertainty path j, in the state defined by cumulative market return

Rτj. Already, because of the strong assumption on how the market returns evolve, we have

implicitly determined the stochastic discount factors that must be used. At each horizon, τ ,

the function created by multiplying the probability of the cumulative market return, with

the stochastic discount factor for that return, π˚pRτjq “ πpRτjqφpRτjq, has the features of

a probability distribution –if the distribution were defined on a discrete state space, then

those properties would be (i) the probability of every event lies between 0 and 1, and (ii) the

sum of the probabilities equals 1. The resulting distribution is often called the ‘risk-neutral’
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Figure 4-2: Graphical representation of the true probability distribution of market returns.

distribution2. Given the assumption about the evolution of the market return, the resulting

distribution must also be normally distributed, with mean pµ´ λqτ “ rτ and variance σ2τ ,

where r is the risk-free rate, µ is the total expected market return and λ “ µ´r is the market

risk premium. If we denote by f2p¨q the p.d.f. of the normal distribution N prτ, σ
?
τq, and by

J the number of states sampled in that time period, the risk-neutral probability of a given

state relative to the other states sampled is given by the following expression:

π˚pRτjq “
f2pRτjq

řJ
j“0 f2pRτjq

(4.15)

Figure 4-3 shows the mean and confidence bounds of this risk neutral distribution over-

layed on the mean and confidence bounds of the true distribution. The figure also shown

2see for instance (Duffie, 2001) for a rigorous treatment of risk neutral valuation
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the full risk-neutral distribution at one slice of time, overlayed on the true distribution at

that slice of time.

0 20 40 60 80 100
−200%

−100%

   0%

 100%

 200%

 300%

 400%

c
u
m
u
la
ti
v
e
re

tu
rn

,
R

τ
j
=

∑
τ t
=
1
∆
R

t
j

t ime (t)

(µ − λ)τ + 1.96σ
√

τ

(µ − λ)τ − 1.96σ
√

τ

Figure 4-3: Graphical representation of the risk-neutral probability distribution of market
returns.

Given the true probability distribution, and the risk-neutral distribution formed as the

product of the true distribution and the stochastic discount factor, we can back out the

stochastic discount factor if necessary. However, for all of our valuation work, what we need

is the product of the true probability and the stochastic discount factor. That is, what we

need is the risk-neutral probability distribution. So it is not necessary to recover just the

stochastic discount factor. Nevertheless, one could produce it if desired.

The state-contingent discount factor can thus be obtained by dividing the risk neutral
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probability and the true probability:

φpRτjq “
π˚pRτjq

πpRτjq
(4.16)

Intuitively, it can become apparent how the risk-neutral distribution accounts for both

the probability of the states and their risk: if one compares the point marked with an asterisk

in Figure 4-2 and the same point in Figure 4-3, the probability of that same state is larger

in the true probability distribution than in the risk-neutral distribution. Therefore, for the

case shown in the figure, φpRτjq ă 1, meaning that the risk premium associated with this

state is positive, and that investors will value cash flows in this state less than if those same

cash flows were received at present.

4.5 A Model of Electricity Prices

In order to apply the stochastic discount factor, we need to a model that ties the cash flows of

any asset being valued back to the underlying risk factor. Therefore, at least one link between

both needs to be established in order to build that connection. In this implementation let’s

assume that demand growth is directly correlated with the market index and that demand

has an effect on the electricity price. Other more complex relationships could have also been

established between the risk factor and other variables including regulatory shocks or fuel

prices.

Let x be an index parameter capturing the electricity demand at a certain state, so that

the evolution of x represents the evolution of electricity demand through time (it represents

changes in demand, but its value is not equal to total demand). x can be thought of as a

simplified representation of demand, that assumes a certain profile with some seasonality,

where the seasons evolve in the same proportions as the demand index. Let’s also assume

that the stochastic process describing the growth of electricity demand is governed by a

balanced-growth model, where demand growth is perfectly correlated with the underlying
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priced risk factor, albeit with a different drift, α:

dx

x
“ αdt` σdW (4.17)

–where σ is the volatility of the cumulative market return and dW is the increment to a

Brownian motion describing the market return.

Let p be an electricity price index, abstracting from fluctuations associated with daily,

weekly and seasonal cycles. This price index can be thought of as the profits of an industry

whose growth is evolving through time. Let q be an index of total installed generation

capacity, reflecting a standard portfolio of capacity types including baseload, peakers and

units providing a variety of whatever capacity and ancillary services may be required. The

price is linked to the level of demand and the level of installed capacity through an inverse

demand function with a constant elasticity ´1{γ. Formally:

p “ Dpq, xq “ xq´
1
γ [$/kW-period] (4.18)

As demand outgrows installed capacity, price rises. Let’s assume that at some level of

price, p˚, new capacity is installed instantaneously, so that the trigger price, p˚, is effectively

a price cap. Consequently, the electricity price becomes a ‘regulated Brownian motion’,

inheriting volatility from demand and the underlying priced risk factor, but not reflecting

that risk perfectly.

The trigger price equilibrium is inspired by Leahy (Leahy, 1993). If we consider that a

representative portfolio of capacity has both fixed and variable costs, the total costs of the

new entrant (I) is the sum of the present value of its cost of capital, K, plus the present value

of its variable costs, C{r, where C is considered a constant annuity equal to the variable cost

of the plant, c, times 8,760 hours, times the average utilization of the plant, u:

I “ K ` C{r [k$/MW] (4.19)

C “ c ¨ 8, 760 ¨ u [$/kW-yr] (4.20)

169



We now calculate the ‘flow equivalent’ (per unit of time) cost of investment, δI, which

is the level the initial price should have if its subsequent value is to recover the cost of

investment (Dixit and Pindyck, 1994), where δ is equal to the risk free rate per period (r)

minus the demand growth rate per period (α). Capacity is assumed to have no depreciation.

At the trigger price level (p˚ ą δI), the value of the option to invest, F pp˚q, is equal to

the value of exercising the option, V pp˚q ´ I. This is the ‘value matching’ condition found

in (Dixit and Pindyck, 1994). This calculation considers also no depreciation of the asset,

assuming that once the asset is installed it keeps producing the output flow forever. Here

the trigger price p˚ represents the net revenue that a unit will receive for generating one

megawatt throughout the period considered (one year, or a fraction of the year), and it is

the price at which the total generating capacity of the system will be increased, and making

prices to subsequently fall. Following Dixit and Pindyck, the optimal price trigger entry for

a new entrant is:

p˚ “
β

β ´ 1
δI [$/kW-period] (4.21)

Here, the factor β
β´1

ą 1 is the ‘option value multiple’ and reflects the price should be

high enough to account also for the value of waiting to invest and the ‘option value multiple’

(uncertainty and irreversibility of the investment), with β being the positive root of the

polynomial:

β “
1

2
´
α

σ2
`

d

ˆ

α

σ2
´

1

2

˙2

`
2r

σ2
(4.22)

This approach does not account for the fact that operation can be temporarily and

costlessly suspended when p ă C, and costlessly resumed when p ą C.3 The trigger price

(i.e., the net revenue obtained during one period) can be easily translated into hourly price

units by simply dividing the revenue obtained during that period by the energy produced

by the plant, by means of its utilization factor u:

ρ˚ “
p˚

8, 760 ¨ u
n [$/MWh] (4.23)

3This feature is accounted for on page 186 of (Dixit and Pindyck, 1994)
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4.6 Valuing Assets With Cash Flows Tied to the Elec-

tricity Price

Having defined the electricity price index and how it reflects the risk of the underlying priced

risk factor, and armed with the stochastic discount factors associated with this underlying

priced risk, we are now ready to value any asset with cash flows that are tied to the electricity

price. Let’s focus on three different assets.

The first is a pure financial asset, an electricity price swap which pays a cash flow equal

to the electricity price index on 1 MW. The risk of this financial asset represents the risk

intrinsic to the electricity price.

The second asset is a call option on the electricity price with a price strike equal to cb,

where cb is the marginal cost of an existing unit of generation capacity with a low marginal

operating cost (a baseload unit). Therefore, the risk of this option is equivalent to the risk

of an existing baseload plant. This power plant has a simple operating strategy in which

it is on and generating whenever the hourly electricity price is above marginal cost, and

off whenever the hourly electricity price is below. Care must be taken here in translating

between the hourly price earned and the industry index price which is an average across

the particular calendar patterns of the hourly price. Given the baseload units marginal cost,

operating strategy and the calendar pattern, its average number of hours of operation within

a seasonal cycle will vary with the level of the index price, as will the average price earned

in that cycle. We oversimplify the problem and assume that the cash flows earned by the

option equal to maxtρ´ cb, 0u
8,760
n

.

The third asset is another call option on the electricity price with an strike price equal

to cp, where cp is the marginal cost of an existing unit of generation capacity with a high

marginal operating cost. We call this the peaker unit. This unit, too, has the simple

operating strategy in which it is on and generating whenever the hourly electricity price is

above marginal cost, and off whenever the hourly electricity price is below. The same proviso

applies about translating between the hourly price earned. We oversimplify the problem and
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assume that cash flows earned by the option equal to maxtρ´ cp, 0u
8,760
n

.

Each of these assets can be valued directly with explicit formulas derived using the

continuous time mathematics. However, the objective of this chapter is to show how to use

Monte Carlo simulation to perform a valuation, so we turn now to an implementation of the

valuation model using a Monte Carlo simulation.

4.7 Implementation Via Monte Carlo Simulation

The risk neutral valuation method is applied to a two-technology power system (baseload

and peaker), with 50GW of initial installed capacity in the system, and with demand growth

perfectly correlated with the market return index. The values of the parameters used in the

model are given in Table 4.4.

Table 4.4: Parameters used in the implementation

Parameter Value Description

µ´ r 0.04 Annual market risk premium

σ 0.22 Annual market volatility

r 0.03 Annual risk free rate

α 0.02 Annual drift rate for demand

β 1.204 Investment opportunity parameter

I $7708/kW Present value of costs of new entrant

p˚ $113.936/kW-period Leahy price trigger

ρ˚ $86.709/MWh Price trigger in hourly price units

γ 1.2 Inverse demand elasticity

q0j 50 GW Initially installed generating capacity

x0j 20q0j Initial demand shock

cb 0.1ρ˚ Baseload maginal cost

cp 0.9ρ˚ Peaker maginal cost

Pb 1 GW Baseload unit capacity

Pp 0.2 GW Peaker unit capacity

In our Monte Carlo simulation, time periods are indexed by i P t0, 1, , Nu, where N “ nT
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is the total number of periods in which the time horizon of T years is divided. Each time

periods has length ∆t years, with ∆t “ 1{n. Sample paths are indexed by j P t0, 1, , Ju. We

run a 50-year simulation, using 4 periods per year. We calculate 100-sample paths.

4.7.1 Evolution of the Underlying Priced Risk Factor: the Stock

Market Index

The discrete time representation of the underlying risk factor (the market return, ∆Rij) is:

∆Rij “ m`νεij “ µ∆t`σ
?

∆tεij, where m “ µ{n is the expected market return per period;

ν “ σ{
?
n is the standard deviation per period; and the step εij is a independently distributed

random variable with a mean of zero and a standard deviation of one. In addition, let’s

assume that these steps are normally distributed (εij “ Φ´1) and sample possible uncertainty

paths for each time period using the Monte Carlo method (Rubinstein and Kroese, 2008):

• For each time period i, we draw a Latin Hypercube (McKay et al., 1979) sample

hi P p0, 1q
J , where hij „ Up0, 1q. Latin Hypercube Sampling is a variance reduction

technique that is based on the idea of stratified sampling. In this approach, the interval

is divided into J equally probable subintervals, and a uniform sample hi “ thi0, ..., hiJu

is generated from within each subinterval.

• With each hij we now apply the inverse-transform method to draw a sample from a

normal distribution of mean zero and standard deviation one. In this way, we can

generate the normally distributed variable εij (the error term of the random walk) by

calculating the inverse of the standard normal cumulative distribution (cdf) function:

εij “ Φ´1phijq.

The true probability of one state at a given time period, πij, is the probability of the cumu-

lative return at state i, Rij “
ři
k“1 ∆Rkj, through some certain path j. The distribution of

all possible outcomes in one period is normally distributed with mean the expected cumu-

lative return (as the mean value of the cumulative return grows with time), and a standard

deviation equal to the standard deviation of market returns times the square root of time. In
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other words, the true probability is the probability of a certain cumulative return outcome,

given the distribution of all possible outcomes at that period. This distribution changes from

one period to the next as a consequence of market returns evolving as a random walk.

Note also that the probability obtained is expressed relative to all the possible realizations

in that period. Instead, we are interested in expressing this probability relative to the

realizations sampled in that period. Therefore, as the distribution is being approximated

by the samples drawn, we need to normalize the probabilities obtained by the sum of the

probabilities of the other states sampled in the period.

The risk-neutral probability evolves similarly as the original distribution but with a drift

lowered by the risk premium, λ (i.e.: it is normally distributed with mean (µ ´ λ) and

volatility σ). It is important to notice that reducing the drift by the risk premium is not the

same as assuming risk-neutrality, since returns still evolve as a random walk. Conceptually,

the risk-neutral probability can be thought of as a distribution of returns that are stripped off

the risk premium, so that the probability of a risky return within this distribution accounts

simultaneously for the probability of the state and its risk.

4.7.2 Evolution of the Electricity Market Demand, Capacity and

Price Indices

The evolution of a demand shock (xij) is modeled as a geometric Brownian motion with drift

(Dixit and Pindyck, 1994), so that percentage changes in demand, ∆xij{xij, are normally

distributed. In this implementation we choose demand change to be perfectly correlated

with the market return, and we model it as a random walk with a step, εij, used to model

the evolution of market returns.

∆xij “ αxij∆t` σxij
?

∆tεij “ αxij
1

n
` σxij

1
?
n
εij (4.24)

If changes in the demand shock are normally distributed, then the demand shock is

lognormally distributed. Using Ito’s lemma, it can be proved that, if Fij ” F pxijq “ log xij,
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the increments in the logarithm of demand evolve as a simple Brownian motion with drift:

∆Fij “

ˆ

α ´
σ2

2

˙

1

n
`

σ
?
n
εij (4.25)

For a given time period, the demand shock can thus be expressed as a function of the

demand shock in the previous period and the increment of the logarithm of demand:

xij “ xi´1j exp p∆Fijq (4.26)

Figure 4-4 shows some results of the simulation. In the first panel, we show the logarithm

of the market index (equal to the cumulative market return), following a Brownian motion

with drift. The second panel shows the evolution of the demand for electricity. If the first two

panels are compared, it becomes clear how these two variables are correlated. The third panel

presents the evolution of electricity prices, which are connected with the demand through

the price elasticity. Finally, the fourth panel presents the evolution of the installed capacity,

which is a function of the electricity price and, as a result, it is also strongly correlated with

demand.

4.7.3 Valuation of the Three Assets

Let’s assume that the system is composed of multiple plants from two generating technolo-

gies: baseload and peaker, each of them with a different variable cost (c) and a different

maximum output capacity (P ). These are the technologies for which we want to price their

risk through the financial options described above, assuming that plants only operate when-

ever the electricity price is above the variable cost of the plant (the strike price of the option)

and that, when that occurs, they generate at their maximum output.

Therefore, the cash flows obtained by each call option will be the product of the spark

spread (the difference between price and variable cost), and the hours that the plant is

generating:

CFij “ max tρij ´ c, 0u
8, 760

n
(4.27)
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Figure 4-4: Market return, demand, electricity price and capacity results of a 50 year simu-
lation.

Top left panel: natural logarithm of the market index evolution (cumulative market returns);
top right panel: evolution of the log of the demand index; bottom left panel: 5, 25, 50, 75 and
95 percentiles of the price in [$/MWh]; bottom right panel: log of total installed capacity in
the system in MW.

Other more complex and realistic models could have been used to calculate cash flows.

However, this stylized model allows us to clearly reflect one particular phenomenon: the

production from peaking units will only occur when prices are sufficiently high, making their

cash flows more exposed to the market return than those of baseload units.

The asset can be valued as the sum of the present value of the cash flows received

throughout all the periods considered:

PV “
N
ÿ

i“0

˜

J
ÿ

j“0

CFijπijφij

¸

exp p´ri{nq “
N
ÿ

i“0

˜

J
ÿ

j“0

CFijπ
˚
ij

¸

exp p´ri{nq (4.28)

176



Table 4.5: Present value of the three assets for x0j “ 20q0j.

PVb [M$/MW] PVp [M$/MW] PVe [M$/MW]

3.2 0.0185 4.3

4.7.4 Implied Discount Rates for the Three Assets

If the expression above is compared with the analogous present value calculation using risk-

adjusted discounting, one can see how it is possible to translate back to an average risk-

adjusted discount rate, λ̄:

PV “
N
ÿ

i“0

˜

J
ÿ

j“0

CFijπij

¸

exp p´λ̄i{nq exp p´ri{nq “ PV pλ̄q (4.29)

Having used the earlier expression to solve for the present value on the left-hand, the only

unknown on the right-hand-side is the average risk-adjusted discount rate which we can then

solve for. This equation, however, is hard to solve numerically, but it can be transformed it

into an N-order polynomial if we apply the change of variable s “ exp p´λ̄{nq. The roots of

the resulting polynomial can be easily calculated with a commercial mathematical software

like MATLAB:

PV pλ̄q “ PV psq “
N
ÿ

i“0

˜

J
ÿ

j“0

CFijπij

¸

si exp p´ri{nq “

“ EjrCF0js ` EjrCF1js exp p´r{nqs` . . .` EjrCFNjs exp p´rN{nqsN (4.30)

Impact of Initially Installed Capacity

In the particular example used in describing this implementation as well as in real life

valuation exercises, initial conditions play an important role on the financial evolution of

the asset. It is not the same starting with a generation deficit where prices are high and

units are installed right away, as starting with a generation surplus where prices are low

and units underutilized. In order to gain insight on how the initial conditions affect the
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results, a sensitivity analysis is performed, calculating the technology-specific discount rates

at different initial demand shock values, translating into an initial electricity price value.

Table 4.6: Impact of the initial electricity price, ρ0, using 10 trials with 100 samples
each.The standard deviation is given in parenthesis.

Initial demand
shock/capacity

Initial
electricity

price [$/MWh]

λ̄e
[%]

λ̄b
[%]

λ̄p
[%]

5 7.27 1.89
(0.09)

3.32
(0.13)

5.33
(0.36)

10 12.70 1.66
(0.10)

2.49
(0.15)

4.86
(0.32)

20 28.58 1.26
(0.09)

1.62
(0.12)

3.90
(0.21)

30 44.99 1.00
(0.07)

1.24
(0.09)

3.71
(0.20)

40 61.96 0.86
(0.08)

1.04
(0.10)

3.49
(0.16)

50 79.56 0.78
(0.05)

0.94
(0.06)

3.37
(0.18)

60 86.71 0.69
(0.06)

0.83
(0.07)

3.05
(0.16)

These results show that lower ratios between the demand shock and generation (situations

with a low electricity price) entail a larger risk for both baseline and peaker technologies since

it will take longer to achieve higher prices. As the demand shock increases, so do prices,

reducing the risk inherent to electricity prices. The difference in the technology-specific

risk between baseload and peaking technologies is mostly due to the quantity risk, as the

quantity generated by peakers is more exposed to the electricity price than baseload plants.

The explanation for this is that units generate at times where price is greater or equal to

their variable cost, and peaking units are more limited by this condition given their high

variable cost. The effects described can be also observed in Figure 4-5 and Figure 4-6.
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Figure 4-5: Average discount rate of the asset, λ̄ vs. initial electricity price, ρ0.

Plot of the average discount rate for the three assets considered, baseload (λ̄b), peaker (λ̄p),
and financial option on the electricity price (λ̄e), as a function of the initial electricity price,
ρ0, which reflects the initial ratio between demand and capacity installed and the initial
conditions upon which investment decisions will be made.

Robustness of the Solution

The robustness of the Monte Carlo simulation is tested by repeating the simulation with a

different size of the number of scenarios sampled by period. The mean and the standard

deviation of the distribution is approximated through bootstrapping ten samples of the

estimated lambdas.

4.8 Conclusions

This chapter applied the stochastic discounting methodology, widely used in finance to value

securities and assets, to the particular case of two electricity generation technologies. It pre-

sented the general algorithm with a numerical example and described the general mechanics
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Figure 4-6: Log. of the present value of the asset, log pPV q vs. initial electricity price, ρ0.

Plot of the average logarithm of the present value of the three assets considered, baseload
(log pPVbq), peaker (log pPVpq), and financial option on the electricity price (log pPVeq), as
a function of the initial electricity price, ρ0, which reflects the initial ratio between demand
and capacity installed and the initial conditions upon which investment decisions will be
made.

of one particular implementation using Monte Carlo simulation. It then explained how the

macro and the micro levels can be coupled with a model that forecasts cash flows contingent

to the different realizations of an underlying risk factor.

It was demonstrated how different risk premia can be naturally derived from first prin-

ciples for different electricity generation technologies, and how different ways to present

risk can be used under different circumstances without changing the present value of the

cash flows being discounted. It was shown that the risk attributable to each technology

depends on the electricity price level at the time that the investment takes place. Finally, it

was illustrated the advantages of stochastic discounting over risk-adjusted discounting –the

commonplace in the electricity sector–, and how risk-adjusted discounting overestimates the
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Table 4.7: Impact of the number of scenarios sampled by period during the simulation.The
standard deviation is given in parenthesis.

Number of
samples

λ̄e
[%]

λ̄b
[%]

λ̄p
[%]

time
[s]

100 1.29
(0.06)

1.67
(0.08)

4.23
(0.33)

53

500 1.29
(0.03)

1.66
(0.04)

4.07
(0.17)

166

1,000 1.27
(0.02)

1.65
(0.03)

4.04
(0.10)

314

5,000 1.27
(0.01)

1.64
(0.02)

4.04
(0.04)

1,534

value of cash flows that are more exposed to the risk factor and underestimates the value of

cash flows less exposed.

Stochastic discounting can serve as an extremely helpful tool to make better investment

decisions in power generation, as long as we are capable to establish sound relationships

between the underlying risk factor and the assets cash flows.
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Chapter 5

Conclusions

5.1 Summary

This thesis has shown the market impacts of intermittent renewables (e.g., wind and solar

photovoltaic) on future investments in electricity markets, focusing on the average profit

made by each generation technology and the risks they are exposed to. The analysis distin-

guished between two situations: a system where the generation capacity mix is optimized

(‘adapted’) from ‘greenfield’, given a certain amount of installed renewable capacity; and a

system optimized for zero renewables, but where, on top of this optimal mix, some amounts

of renewable generation have been added (‘non-adapted’). Concurrently with distinguishing

between these two situations, this thesis explored how a set of wholesale market pricing rules

representative of the diversity of existing regulatory frameworks impact on the recovery of the

total generation costs. Accordingly, in the two adaptation cases explored, generators could

be at risk of not recovering their costs: in the ‘adapted’ situations, generators are exposed to

the risk of pricing rules, despite having a well-adapted generation mix; in the ‘non-adapted

situation, besides the pricing rule risk, generators are exposed to the risk of new regulation

that unexpectedly brings extra renewables on top of a well-adapted generation mix.

Besides looking at the average profit of each generation technology considered, the cases

studied were also assessed from a multi-dimensional perspective looking at the capacity
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installed from each technology, capacity factor, energy contribution, startup regime, total

system emissions, renewable curtailment, and the average cost paid by consumers.

Moreover, this thesis proposed a valuation method that dynamically prices the risk seen

by investors in generation, such as the regulatory risk from unexpectedly deploying renew-

able generation. Overall, the thesis provides insights about any additional risks for future

investors that a strong presence of renewables might introduce in wholesale markets, and the

role that the design of market rules would play in this. Each chapter in this thesis included at

the end a detailed conclusions section, and in this chapter we summarize the most important

ones.

5.1.1 Modeling Electricity Markets with Renewables

This thesis analyzed the market impacts of renewables using IMRES, a capacity expansion

model with unit commitment constraints, inspired in previous works that used a similar

approach to study the impact of operational flexibility needs on capacity decisions, in the

context of power systems with renewables. IMRES was designed to include the extra cost

from cycling the plants in investment decisions. Specifically, IMRES accounts for the extra

cost derived from respecting the operational constraints of the plants, and the chronological

variability of the net load. In addition to these features, IMRES is unique in that investment

decisions are taken at the individual power plant level, enabling a detailed cost recovery

analysis of every power plant in the system. With IMRES, as with any other generation

capacity expansion model, in equilibrium and in the absence of internal or common capacity

constraints on specific technologies, the profits obtained by all power plants in the system

are close to zero, with a small unavoidable divergence originated in the lumpiness introduced

by the discrete size of the plants and the differences in pricing rules originated by the diverse

treatments given to the non convex costs, such as those from starting up the plants.

One of the biggest challenges from using formulations that combine capacity decisions

with unit commitment is the high dimensionality of the resulting problem. Formulations

that do not consider detailed commitment constraints overcome this challenge using decom-
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position techniques such as Benders’. However, formulations like IMRES where the solution

space of the commitment subproblem is nonconvex, cannot guarantee the convergence of

the solver to an optimal solution because of the duality gap. Instead, IMRES simplifies the

problem using a limited number of representative weeks in the unit commitment component

of the model. This simplification reduces the dimensionality of the problem, while retaining

the chronological variability of the net load.

The week selection algorithms proposed by some authors revolve around choosing the

weeks containing extreme values of demand or wind output –combinations of high and low

values of both–, to guarantee that these events are accounted for in the resulting capacity

mix. Yet, the number of extreme events with more than one renewable energy resource

(e.g., wind and solar PV) increases significantly the number of representative weeks needed

to characterize both the load and the renewable resource in the system –think about the

number of different combinations of high and low demand, and high and low values of wind

and solar output–. Instead, the approach used with IMRES focuses directly on characterizing

the net load duration curve in the system. By focusing on the net load, we simultaneously

take into account demand and renewable energy output, as well as the correlation between

them. The algorithm is based on a simple idea: the weeks selected are the ones that combined

minimize the error between the actual net load duration curve and an approximation that is

built with the weeks selected. This algorithm, however, does not explicitly select the weeks

on the basis of representing the chronological variability of the net load, and the weeks

selected with this algorithm need to be tested on how well they represent this aspect. Still,

compared to other week selection methods, the algorithm proposed with IMRES performs

better in terms of representing the net load in the system and the chronological variability.

5.1.2 Electricity Market Impacts with and Without Adaptation

Throughout the analyses we distinguished between two situations where conventional gen-

erators could be at risk of not recovering their costs. In the first situation, generators are

exposed to the risk of the pricing rules, despite having a well-adapted generation mix. In the
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second situation, generators are exposed to pricing rules and to new regulation unexpectedly

bringing extra renewables on top of a well-adapted generation mix. In reality, most power

systems will be somewhere in between these two situations. In particular, as renewable ca-

pacity incentives are frequently administered without allowing other players in the market

to anticipate, power systems will be further away from equilibrium.

Profit Results

The metric used to represent the cost recovery of the different technologies in the system

is the average profit obtained by plants from the same technology (the difference between

revenues and total cost, expressed in terms of the total cost). Profits, in turn, depend

on how the optimal mix evolves in the future with more renewables, and whether new

renewable deployment occurs expectedly or not. We summarize first the results obtained for

the resulting capacity mix, capacity factor and wholesale prices in order to better explain

the main results on profits, summarized subsequently.

With adaptation, results showed that capacity evolves towards a more flexible mix, that

can better complement renewable output in order to instantaneously balance generation and

demand. Specifically, nuclear and coal capacities are progressively displaced, introducing

more gas-fired power plants (CCGTs and OCGTs). The average capacity factor –the level

of utilization of the plants– with adaptation remains relatively stable for all the technolo-

gies across the different renewable scenarios studied (98% for nuclear, 92% for coal, 45% for

CCGTs and 8% for OCGTs). Without adaptation, the thermal capacity mix remains con-

stant for all renewable scenarios, but the effect on the capacity factor considerably changes

depending on the technology: the utilization of nuclear remains relatively stable at 95%,

while the utilization of coal, CCGTs and OCGTs decreases as these technologies get dis-

placed by zero-variable-cost renewable energy. Specifically, between S “ 0 and S “ 10, the

utilization of coal decreases from 92% to 30%, the utilization of CCGTs decreases from 45%

to 10%, and the utilization of OCGTs decreases from 8% to 5% in S “ 1 and remains at

this level with subsequent larger penetration scenarios.
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The different adaptation situations have also a strong impact on the average prices ob-

tained. We took the dual variable of the demand balance equation as a proxy of the hourly

electricity price, and we observed that under adaptation prices remain relatively stable on

average across the renewable scenarios studied. Conversely, under non-adaptation, prices

decreased as a larger renewable capacity was installed in the system. This later effect is

caused by two main factors: the first one is that renewables have a zero variable cost and

push the most expensive technologies out of the merit order; the second is that renewables

are added on top of a system that is already adequately sized, creating an excess of capacity

situation and bringing the hours with non-served energy close to zero.

Finally, the main results on profits tied together the effects on wholesale prices, the

utilization of the plants, and their cycling regime, reflecting the risk that generation tech-

nologies see under the two situations considered. With adaptation, the average prices and

the capacity factor of the plants are shown to be stable for different levels of penetration of

renewables, which result in profits that are close to the theoretical market equilibrium re-

sult. Conversely, without adaptation, we saw that technologies are exposed to lower prices1

, a reduction of the capacity factor and an increase of the cycling regime. Yet, generating

technologies in the non-adapted case were not exposed equally to all these three effects:

we found that nuclear plants are mostly exposed to the ‘price effect’ without having their

capacity factor significantly changed; while coal plants, CCGTs and OCGTs are exposed to

the ‘price effect’, and a reduction of the capacity factor –‘quantity effect’–, making plants

incur in losses. This result underlines the importance of having an adapted system to allow

all plants to recover costs.

Additional System-wide Results

Besides results on profits, we also obtained other side information that could be valuable in

order to gain more insight on other system-wide considerations, like the use of different fuels

and the emissions associated with generation.

1It is important to remind here that each technology sees a different price to the other, as the hours
during which different plants are dispatched are different.
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The varying capacity factor of plants results in a different energy contribution of the

existing technologies to the total electricity demand. With adaptation, the share of nuclear

power steadily declines (from 70% without renewables to 32% with the highest renewable

penetration level considered), and the contribution from CCGTs increases as more renew-

ables are installed in the system. Without adaptation, nuclear provides a steady 70% of the

total electricity demand across all renewable scenarios because of its high minimum stable

output and its high startup cost, the contribution of coal is around 5%, and the remain-

ing share is supplied by CCGTs, which declines as more renewables are introduced in the

system (from 23% without renewables to 5% with the highest renewable penetration level

considered) .

The way in which electricity is generated reflects directly on the total emissions produced

by the system. With adaptation, as renewables are introduced, emissions drop sharply to

60% of the total emissions with no renewables, because coal is the first technology being

displaced. However, with larger renewable shares, we observe that total emissions hit a

floor corresponding to the emissions from gas-fired power plants, because once a certain

renewables penetration level has been reached, electricity is solely produced by a blend

of renewables, gas and nuclear power. Without adaptation, emissions decline slower, but

they can be reduced past the floor encountered with adaptation. The reason for this is

that without adaptation, electricity is mostly generated by a combination of renewables

and nuclear, with curtailment providing most of the flexibility needed to balance generation

and demand. It is expected that if more ambitious emissions targets are to be reached in

equilibrium, the system will require the deployment of other elements such as storage and

demand response, that increase the utilization of renewables as well as the flexibility in the

system, while reducing the cycling from conventional thermal generators (mostly provided

by gas-fired power plants, as it resulted in the simulations with the adapted system).
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5.1.3 Impact of Bidding Rules

One of the initial hypotheses of this research is that greater renewable shares increase the

cycling regime of thermal power plants. We observed that this effect actually takes place,

although the technologies that see their number of startups increased differ depending on the

adaptation situation. With adaptation, coal power plants are phased-out and the number

of cycles performed is reduced as more renewables are installed in the system; the average

number of start ups per CCGT varies in each scenario and does not show any clear trend;

the cycling regime of OCGTs, however, increase as more renewables are introduced in the

system. Without adaptation, the situation is remarkably different as now it is coal power

plants that bear the extra cycling, with CCGTs and OCGTs not showing a clear trend

upwards or downwards. The tendency is more clear if we look at results in terms of the

total aggregated number of startups performed by individual technologies: overall, with

adaptation the extra cycling falls on gas-fired power plants, while, without adaptation, the

extra cycling falls on coal plants.

These startup costs are nonconvex costs that are not reflected in the dual variable of the

demand balance equation (they are not reflected in the electricity price). Therefore, having

an adapted system, does not guarantee the cost recovery of the plants, as startup costs must

also be included somehow in the market price in order to recover total costs (operating and

investment), in order to have an adequate capacity mix in equilibrium. These nonconvex

costs are typically associated with the costs of starting up and the lumpiness introduced by

the indivisibility of plants. Besides these two factors common to all power systems, there is

an additional source of discontinuity in the cost function in IMRES originated in the selection

of a small number of weeks to represent a full year net load series (e.g., given a one year net

load series with a total of 5 hours with non-served energy, if one of the 5 hours with non-

served energy appears in the four weeks selected, as we expand by a factor of 13 the hours

in the four weeks selected to build the NLDC approximation, the NLDC approximation will

appear with 13 hours of non-served energy as opposed to 5). The effects produced by this

source of lumpiness were mitigated by selecting a relatively low value of lost load, reducing

189



the effect of non-served energy on plants’ profits.

We tested three different bidding mechanisms aimed at guaranteeing that plants recover

nonconvex operating costs, in addition to a nave ‘do-nothing’ case to assess the cost that is

not recovered taking the dual variable of the demand balance constraint as hourly price. 2

Results showed that, besides helping plants to recoup operating costs, the three bidding

mechanisms studied have different implications on the total cost recovery of plants and there-

fore on the cost paid by consumers for electricity. First, we found that a side payment, equal

to the operating costs that are not recovered through energy sales, brings all technologies

closer to full cost-recovery at a low cost to the consumer. Second, if the minimum cost uplift

that guarantees that all plants recover operating costs is added on top of the hourly price, the

resulting profits are greater than with a side payment, as the final price, including the uplift,

affects all units. We also found that the uplift contributes towards recovering investment

costs, and that all technologies were able to recover total costs on average. Yet, the cost to

the consumers is also higher in the short-term. In the long-term, having a higher price might

attract new entrants and, in turn, reduce the price. Lastly, when plants internalize their

startup costs in a simple bid, we found that prices as well as profits were significantly higher

than in all previous cases, overcompensating all technology classes. These positive profits

are an incentive for investors to install more capacity, which results in an equilibrium point

with more generating capacity installed than it is actually needed (as given by the optimal

capacity mix determined by IMRES). We proposed a heuristic method to iterate on the

solution until a new equilibrium where no new entrants would make a profit is found3. After

applying the heuristic algorithm, and with an equilibrium solution, we observed that prices

and profits were still and higher than with other bidding rules, imposing an unnecessary cost

burden on the consumer.

2In all the bidding rule cases studied, the prices were formed starting from the optimal mix and optimal
dispatch that were obtained by centralized optimization taking all costs into account (i.e., the capacity and
the dispatch in all cases is the same).

3Note, however, that with simple bids the ‘adapted’ generation mix and the unit commitment in reality
would have been different to the ones resulting from centralized optimization, as the commitment algorithm
is solely based on the simple bids received by the market operator. Yet, we started from the same generation
mix derived from using a centralized unit commitment, in order to be able to isolate the effect of the bidding
rules studied on prices from other effects.

190



Finally, when the differences in profits under adaptation resulting from the three different

bidding rules studied were compared to those under non-adaptation, we saw that the magni-

tude of the differences in profit from the three ways of accounting for nonconvex costs were

significantly smaller than the profit gaps caused by the excess of capacity in the non-adapted

cases. This result highlights that the most important factor affecting the profits of plants is

how far the capacity mix is from equilibrium.

5.1.4 Regulatory Implications

Unanticipated deployment of renewable generation has been shown to produce economic

losses to some generators4. These losses are the result of regulatory shocks that, given

their unanticipated character, disrupt the existing market equilibrium, making some of the

incumbent investments redundant. The losses can be thought of as stranded costs, using the

same denomination for the economic losses induced during the transition from the traditional

vertically integrated utility business model to competitive markets in generation.

In the short-term, the reduction of the capacity factor of any given plant can lead to

two outcomes: the owner of the plant might decide to keep the plant operating in order to

minimize its economic losses; or, in the unlikely situation that the total (fixed and variable)

operating costs are greater than the revenues that the plant receives, they might opt to

mothball or close the plant, which could have an impact on the security of supply of the

system as thermal capacity decreases.

In the long-term, regulatory uncertainty increases the risk of the plant. If this uncertainty

is found to have a correlation with macroeconomic factors, then the risk associated with that

uncertainty cannot be diversified away in a portfolio with other different assets and has to

be priced. This increase of risk reduces the value of thermal generation investments, making

them less attractive compared to other assets available in the financial market. Ultimately,

increasing the regulatory uncertainty seen by power plants by not allowing for anticipation as

4In this thesis we only explore the day-ahead market, and all technologies are found to incur losses under
non-adaptation. However, in reality, as renewable capacity increases, so does the need of reserves, and some
plants that see their utilization go down, might choose to participate in reserves markets, possibly mitigating
this negative impact. The study of this effect is left for future research.
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new renewable capacity is introduced in the system undermines the attractiveness of thermal

plant investments, as well as the security of supply in the system.

In the face of the negative effects from non-adaptation, there are two courses of action

that the regulator could take ex-post the regulatory shock: let the generators bear with

the economic losses from the unexpected new renewable capacity, or compensate generators

for these losses. If the regulator chooses not to do anything, the short-term cost to the

consumer is lower, but in the long-term investors in generation would see a high regulatory

risk in the market, investment will be suboptimal and market prices will increase. Conversely,

the regulator may decide to recognize the losses and compensate generators for them at the

expense of the final consumer. This option would reduce the regulatory risk seen by investors,

but would impose a temporary burden on the consumer.

Regarding bidding rules, we found that the three rules studied guarantee the recovery

of operating cost, as it was expected. However, these rules are not designed to recover

operating costs, but total costs. Therefore, we then explored the different tradeoffs among

them, focusing on how each affected the recovery of all remaining costs (fixed operating costs

and investment costs) for the inframarginal units, and how that translated into different costs

to the consumers. We found that providing generators with a side payment for the operating

costs that are not recovered through energy sales does not affect the recovery of investment

costs. Conversely, we found that adding to the price an uplift had an impact of the recovery

of investment costs and, on average, we observed that all technologies recovered total costs.

The price uplift rule increased the cost to the consumer compared to the cost with a side

payment, but not by a great amount. Lastly, we found that simple bids also allow all

technologies to recover total costs but translate into an excessive cost to consumers5.

5This conclusion, however, is subject to the caveat indicated above, that we are not starting from the
generation mix that would be obtained under the simple bids market rule, as the commitment results from
settling the simple bids and not from a centralized unit commitment.
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5.1.5 Accounting for Risk in Generation Investments

In general, the risk seen by power plants is very nonlinear, as an increase in the market return

of a portfolio representing all the assets in the market does not translate in a proportional

increase in the returns obtained by the power plants investment. Moreover, the distribution

of uncertainty across time is very heterogeneous, as the risk associated with some factors

–like regulatory shocks– does not increase proportionally with time. These two realities make

power plant investments to separate from the assumptions with traditional ways of pricing

risk like the CAPM. In this thesis we proposed stochastic discounting as an alternative to

the CAPM to price risk more accurately. Additionally, we proposed an algorithm to couple

the stochastic discounting method with Monte Carlo simulation, improving the capability of

the method to account for uncertainty.

Using a simple stylized capacity expansion model, we analyzed the intrinsic risk of two

technologies –baseload and peaker–, and we found similar effects to the ones found in the

first part of this thesis: baseload plants and peakers are exposed to a ‘price effect’, while

peaking plants are additionally exposed to a ‘quantity effect’, as their output is reduced

when prices are low. Therefore, we found that peaking technologies bear a higher risk than

baseload, debunking the notion that nuclear plants have a higher risk, arguing that they

have a higher capital cost. This notion is wrong because, although it is true that nuclear

plants have a higher capital cost, they can recover these costs easier than a peaker plant, as

peakers are more exposed to the electricity price risk factor.

5.2 Contributions

This research assessed the impacts of large shares of intermittent renewables on the risk seen

by thermal generators of not recovering their costs, focusing on two main risk factors: the

risk of the pricing rules used to recover operating costs, and the risk of having unexpected

additions of renewables capacity on top of a well-adapted generation mix. Additionally, this

thesis proposed a method to accurately price the risk of investments in electricity generation.
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In particular, the contributions of this thesis are:

1. Assessing the Extra Risk Brought in by Intermittent Renewables : producing a compre-

hensive cost-recovery analysis of power plants, quantifying the profits obtained under

three different bidding rules, and under two different adaptation situations. This thesis

showed that the regulatory risk from adding new unexpected renewable capacity to the

system can cause significant losses to a generation mix optimized for a different renew-

able capacity level. The thesis also showed that in equilibrium, thermal plants are also

exposed to the differences in remuneration brought by the three bidding rules stud-

ied. However, it was also shown that this risk is smaller than the risk of unexpectedly

adding extra renewable capacity to an adapted generation mix.

IMRES provides a versatile test-bench for a number of experiments and, besides the

analyses conducted for this thesis, IMRES has been used to assess the economic benefit

of three different flexibility options (demand side management, storage and ‘flexible’

plants) in power systems with a large penetration of intermittent renewables (IEA,

2014).

2. Modeling Power Systems with Renewables : introducing a new formulation for analyzing

electricity markets based on a capacity expansion formulation with unit commitment

constraints. The formulation is new in that it simultaneously reflects the impact of

operation constraints on cost, accounts for the chronological variability of the net load,

and considers building decisions on an individual power plants basis. Additionally, this

thesis has shown that four weeks selected based on approximating the NLDC, could

also provide a good approximation of the full-year series with regard to commitment

results. For each application of the selection week method, three error metrics have

been suggested to test that this result actually holds. Moreover, this thesis presented

a heuristic method that iterates on possible capacity expansion solutions until equilib-

rium is reached.

IMRES provides a versatile test-bench for a number of experiments and, besides the

analyses conducted for this thesis, IMRES has been used to assess the economic benefit
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of three different flexibility options (demand side management, storage and ‘flexible’

plants) in power systems with a large penetration of intermittent renewables (IEA,

2014).

3. Evaluation of Risk : bridging the gap between the methods currently used in the val-

uation of power plant investments and modern financial tools, by making explicit the

relationship between the cash flows obtained by two different generating technologies

and the evolution of an index representing the average market returns in the economy.

Additionally, this thesis proposed an algorithm to price risk dynamically, exploiting

the capabilities of the Monte Carlo method to consider many uncertainty paths.

5.3 Further Research

This thesis has increased our understanding of how intermittent renewables impact power

systems and electricity markets, focusing on the day-ahead market. At the same time,

this thesis opens the floor for new research that could improve or complement some of the

methods and experiments presented. Following the same structure of the previous section,

we next describe possible future research that could overcome some of the limitations in the

works presented in this thesis:

1. Assessing the Extra Risk Brought in by Intermittent Renewables : the analyses in this

thesis were limited to the day-ahead market. One important improvement would be

studying the interaction between renewables, reserve requirements and reserve markets,

and how reserve markets might help to reduce the profit gap under non-adaptation.

IMRES was prepared to study this interaction, and reserves were included in the main

formulation of the model. However, studying the market interaction between the day-

ahead market, reserve markets and how that affects investment decisions required using

the dual values of the different reserve constraints. During the experimentation in this

thesis, whenever these values were called on the model, the solver would not produce

a solution. Further work could be used in calibrating IMRES so that it provides the
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dual values of the reserve constraints and allows the study of the interaction between

day-ahead and reserve markets.

Additionally, further work could study the market effects of dynamic elements such as

storage or demand response in systems with renewables. As these elements become

more important to reduce renewable curtailment and integrate large shares of inter-

mittent renewables, studying their interaction with electricity markets will become

increasingly relevant.

In the same line, it would be interesting to explore the optimal capacity of storage or

demand side response necessary to complement power systems with renewables under

different situations: a power system with 100% renewable shares, a power system with

renewables and nuclear power, a power system with renewables and gas, etc.

2. Modeling Power Systems with Renewables : IMRES’ unit commitment module used

a week selection method that is solely based on approximating the NLDC. However,

although the commitment solution with the approximation has been very close to the

solution obtained with a unit commitment of the full-year series for the cases studied

in this thesis, this result is not mathematically guaranteed by the selection method.

One possible improvement could be considering the chronological variability of the net

load as an additional criterion for selecting representative weeks, to guarantee that

variability is well-represented in the four week approximation.

Alternatively to models based on using a small set of representative weeks, there are

other capacity expansion models with unit commitment constraints that consider the

full-year in the commitment component of the model. Based on this other approach,

one possible line of research would be analyzing the market effects of renewables on

power systems as it was done in this thesis. Using the full-year data in the commitment

instead of representative weeks would increase the accuracy of the analyses. Yet,

simplifications in the profit calculations, considering technologies instead of individual

plants as it is done here, would likely be required.

196



Future research on capacity expansion models that account for flexibility needs, could

address other modeling techniques, such as characterizing unit commitment as a state

space, and incorporate some of the operating constraints that are not included at

present, and embed it into a capacity expansion formulation.

IMRES treats the electricity network as a ‘copperplate’, ignoring the effect of trans-

mission constraints and losses. In some power systems, transmission constraints are

found to be the first cause for curtailment. Therefore, one important improvement

to this model would be adding transmission constraints, while keeping solution time

within reasonable limits.

Another assumption made with IMRES is that the market is perfectly competitive,

which is valid for systems where the market share of the individual agents is relatively

low. However, many power systems still operate under oligopolistic conditions, with

some large utilities owning generation assets of multiple technologies and abusing of

market power. Analyzing the combined effect of oligopolistic practices with renewables

could provide a more accurate picture of the market effects in this type of systems,

and could help explain the bidding behavior of some agents.

3. Evaluation of Risk : the microeconomic model of the power industry used in the valua-

tion of generating technologies is based on the Leahy model, which bears little resem-

blance to the dispatch models used in reality to determine electricity prices. Further

work should adapt this model to incorporate some of the features of real dispatch

models to increase the accuracy with which cash flows are calculated.
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Appendix A

Parameters Used in IMRES

Tables A.1, A.2 & A.3 present the parameters used for the thermal technologies included in

the analyses:

Table A.1: Fixed Costs of Thermal Power Plants

Tech. Capital Cost
[k$/MW]

Life [years] WACC [%] Fixed O&M
[$/MW-year]

Annualized Capital Cost
[k$/MW year]

Nuclear 5,335 40 7 88,750 489

Coal 3,167 40 10 35,970 360

CCGT 978 20 10 14,390 129

OCGT 974 40 10 6,980 106

Table A.2: Variable Costs of Thermal Power Plants

Tech. Variable O&M
[$/MWh]

Heat rate
[MBTU/MWh]

Fuel price
[$/MBTU]

Variable cost
[$/MWh]

Nuclear 2.04 10.49 0.43 6.5

Coal 4.25 8.8 2.22 23.8

CCGT 3.43 7.05 7.81 58.5

OCGT 14.7 10.85 7.81 99.4
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Table A.3: Technical Parameters of Thermal Power Plants

Tech. PMAX
i [GW] PMIN

i [GW] Ri [GW/h] CSTUPi

[M$/stup]
MU
i [hrs] MD

i [hrs]

Nuclear 1 0.9 0.19 1 36 36

Coal 0.5 0.35 0.21 0.125 6 6

CCGT 0.4 0.15 0.32 0.06 3 3

OCGT 0.2 0.05 0.36 0.01 0 0
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Appendix B

Multi-Period Discounting

The reader might be familiar already with the single-year version of discounting:

PVS “
T
ÿ

t“0

CFt
p1` rSqt

(B.1)

If payments are evenly spread throughout the year, having a nominal rate rC compounded

m times per year, and we assume that cash flows are received at the beginning of each year,

we have that:

PVC “
T
ÿ

t“0

CFt
p1` rC

m
qmt

(B.2)

If we make the compounding period infinitesimally small, using the definition of the expo-

nential number er “ limmÑ 8p1` r{mqm, it follows that:

PVI “
T
ÿ

t“0

CFt
limmÑ8p1` rI{mqmt

“

T
ÿ

t“0

CFte
´rI t (B.3)

From the previous expressions, it also follows the equivalence between the nominal rate

used in continuous compounding, rI , and the single year rate of return, rS, is: erI “ p1`rSq.

The method described in this paper uses the generalized case of continuous compounding,

and assume that a year is divided into n periods, that cash flows are received at each of

209



those n periods, and that compounding occurs continuously during the period:

PV “
N
ÿ

i“0

CFie
´ri{n, with N “ nT (B.4)
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Appendix C

PowerCo’s Example
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Figure C-1: PowerCo: Valuation Using a Risk-Adjusted Discount Rate (Parsons and Mello,
2012).

Method #1: Risk Adjusted Discount Rate Method -- simultaneously adjust for risk and time

[1] Year 1 2 3 4 5

[2] Production (000 units) 5,400 5,700 6,200 7,000 8,100

[3] Unit Price 1.21 1.47 1.78 2.15 2.60
[4] Revenue ($ 000) 6,545 8,369 11,021 15,058 21,073
[5] Risk-adjusted Discount Rate, ra 11% 11% 11% 11% 11%
[6] Risk-adjusted Discount Factor 0.896 0.803 0.720 0.646 0.579
[7] PV ($ 000) 5,864 6,720 7,935 9,724 12,211
[8] Total PV ($ 000) 42,455

Method #2: Certainty Equivalent Method -- separately adjust for risk then for time
[9] Revenue ($ 000) 6,545 8,369 11,021 15,058 21,073
[10] Certainty Equivalent Risk Premium, ! 6% 6% 6% 6% 6%
[11] Certainty Equivalent Discount Factor 0.942 0.887 0.836 0.789 0.744
[12] Certainty Equivalent Revenue ($ 000) 6,165 7,427 9,218 11,873 15,670
[13] Risk-free Discount Rate, rf 5.0% 5.0% 5.0% 5.0% 5.0%
[14] Risk-free Discount Factor 0.951 0.905 0.861 0.819 0.779
[15] PV ($ 000) 5,864 6,720 7,935 9,724 12,211
[16] Total PV ($ 000) 42,455

Notes:

[2]=given.

[3]=given.

[4]=[2]*[3].

[5]=given.

[6]=exp(-[5]*[1])

[7]=[4]*[6]

[8]=sum([7])

[9]=[4].

[10]=[5]-[13].

[11]=exp(-[10]*[1])

[12]=[9]*[11]

[13]=given.

[14]=exp(-[13]*[1]).

[15]=[12]*[14].

[16]=sum([15])
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Figure C-2: PowerCo: The Macro Perspective – the Underlying Risk Factor Model (Parsons
and Mello, 2012).

[1] Year 1 2 3 4 5

[2] Cum Market Return, annualized

0 47% 35% 30% 27% 24%

1 31% 23% 20% 18% 17%

2 14% 12% 11% 10% 10%

3 -2% 1% 2% 2% 3%

4 -18% -11% -8% -6% -4%

5 -34% -22% -17% -14% -12%
[3] Market Index (Initial Value = 1)

0 1.594 2.008 2.432 2.888 3.385
1 1.357 1.599 1.840 2.093 2.362
2 1.155 1.273 1.393 1.517 1.648
3 0.984 1.014 1.054 1.099 1.150
4 0.837 0.808 0.797 0.797 0.802
5 0.713 0.643 0.603 0.577 0.560

[4] Probabilities
0 3.1% 3.1% 3.1% 3.1% 3.1%
1 15.6% 15.6% 15.6% 15.6% 15.6%
2 31.3% 31.3% 31.3% 31.3% 31.3%
3 31.3% 31.3% 31.3% 31.3% 31.3%
4 15.6% 15.6% 15.6% 15.6% 15.6%
5 3.1% 3.1% 3.1% 3.1% 3.1%

[5] Expected Market Index 1.083 1.174 1.271 1.377 1.492
[6] Expected Market Return, annualized 6.4% 6.4% 6.4% 6.4% 6.4%
[7] Volatility of Market Return, annualized 18.0% 18.0% 18.0% 18.0% 18.0%

[8] State-Contingent Risk Premia, annualized
0 38.7% 27.8% 23.0% 20.2% 18.2%
1 23.8% 17.3% 14.4% 12.7% 11.5%
2 8.9% 6.7% 5.7% 5.2% 4.8%
3 -6.1% -3.9% -2.9% -2.4% -2.0%
4 -21.0% -14.5% -11.6% -9.9% -8.7%
5 -35.9% -25.1% -20.2% -17.4% -15.4%

[9] State-Contingent Discount Factors
0 0.679 0.573 0.501 0.446 0.402
1 0.788 0.708 0.650 0.602 0.563
2 0.915 0.875 0.842 0.814 0.788
3 1.063 1.081 1.092 1.099 1.103
4 1.234 1.336 1.415 1.483 1.544
5 1.433 1.650 1.835 2.003 2.161

[10] Certainty Equivalent Value of Market Index 1.05 1.11 1.16 1.22 1.28
[11] Risk-free Discount Rate, rf 5.0% 5.0% 5.0% 5.0% 5.0%
[12] Risk-free Discount Factor 0.951 0.905 0.861 0.819 0.779
[13] PV of Market Index 1.00 1.00 1.00 1.00 1.00
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Figure C-3: PowerCo: The Micro Perspective – Asset Exposure (Parsons and Mello, 2012).

[1] Year 1 2 3 4 5

[2] Production (000 units) 5,400 5,700 6,200 7,000 8,100
[3] Unit Price

0 2.54 4.03 5.92 8.34 11.46
1 1.84 2.56 3.39 4.38 5.58
2 1.33 1.62 1.94 2.30 2.72
3 0.97 1.03 1.11 1.21 1.32
4 0.70 0.65 0.64 0.63 0.64
5 0.51 0.41 0.36 0.33 0.31

[4] Revenue at PowerCo, ($ 000)
0 13,724 22,976 36,678 58,382 92,831
1 9,946 14,572 20,999 30,662 45,186
2 7,208 9,242 12,022 16,103 21,994
3 5,224 5,861 6,883 8,457 10,706
4 3,786 3,717 3,941 4,442 5,211
5 2,743 2,358 2,256 2,333 2,536

[5] Probabilities
0 3.1% 3.1% 3.1% 3.1% 3.1%
1 15.6% 15.6% 15.6% 15.6% 15.6%
2 31.3% 31.3% 31.3% 31.3% 31.3%
3 31.3% 31.3% 31.3% 31.3% 31.3%
4 15.6% 15.6% 15.6% 15.6% 15.6%
5 3.1% 3.1% 3.1% 3.1% 3.1%

[6] Expected Unit Price 1.21 1.47 1.78 2.15 2.60
[7] Expected Revenue ($ 000) 6,545 8,369 11,021 15,058 21,073
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Figure C-4: PowerCo: Valuation by the State-Contingent Discounting Method (Parsons and
Mello, 2012).

[1] Year 1 2 3 4 5

[2] State Contingent Revenue ($ 000)

0 13,724 22,976 36,678 58,382 92,831

1 9,946 14,572 20,999 30,662 45,186

2 7,208 9,242 12,022 16,103 21,994

3 5,224 5,861 6,883 8,457 10,706

4 3,786 3,717 3,941 4,442 5,211

5 2,743 2,358 2,256 2,333 2,536

[3] Probabilities

0 3.1% 3.1% 3.1% 3.1% 3.1%

1 15.6% 15.6% 15.6% 15.6% 15.6%

2 31.3% 31.3% 31.3% 31.3% 31.3%

3 31.3% 31.3% 31.3% 31.3% 31.3%

4 15.6% 15.6% 15.6% 15.6% 15.6%

5 3.1% 3.1% 3.1% 3.1% 3.1%
[4] State-Contingent Discount Factors

0 0.679 0.573 0.501 0.446 0.402
1 0.788 0.708 0.650 0.602 0.563
2 0.915 0.875 0.842 0.814 0.788
3 1.063 1.081 1.092 1.099 1.103
4 1.234 1.336 1.415 1.483 1.544
5 1.433 1.650 1.835 2.003 2.161

[5] Certainty Equivalent Revenue ($ 000) 6,165 7,427 9,218 11,873 15,670
[6] Risk-free Discount Rate, rf 5.0% 5.0% 5.0% 5.0% 5.0%
[7] Risk-free Discount Factor 0.951 0.905 0.861 0.819 0.779
[8] PV ($ 000) 5,864 6,720 7,935 9,724 12,211
[9] Total PV ($ 000) 42,455
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Figure C-5: PowerCo: Valuing Partnership #1(Parsons and Mello, 2012).

[1] Year 1 2 3 4 5
[2] Partnership #1 Unit Price Target 0.37 0.37 0.37 0.37 0.37
[3] Partnership #1 Revenue ($ 000)

0 1,998 2,109 2,294 2,590 2,997
1 1,998 2,109 2,294 2,590 2,997
2 1,998 2,109 2,294 2,590 2,997
3 1,998 2,109 2,294 2,590 2,997
4 1,998 2,109 2,294 2,590 2,997
5 1,998 2,109 2,256 2,333 2,536

[4] Probabilities
0 3.1% 3.1% 3.1% 3.1% 3.1%
1 15.6% 15.6% 15.6% 15.6% 15.6%
2 31.3% 31.3% 31.3% 31.3% 31.3%
3 31.3% 31.3% 31.3% 31.3% 31.3%
4 15.6% 15.6% 15.6% 15.6% 15.6%
5 3.1% 3.1% 3.1% 3.1% 3.1%

[5] State-Contingent Discount Factors
0 0.679 0.573 0.501 0.446 0.402
1 0.788 0.708 0.650 0.602 0.563
2 0.915 0.875 0.842 0.814 0.788
3 1.063 1.081 1.092 1.099 1.103
4 1.234 1.336 1.415 1.483 1.544
5 1.433 1.650 1.835 2.003 2.161

[6] Certainty Equivalent Net Cash Flow ($ 000) 1,998 2,109 2,292 2,574 2,966
[7] Risk-free Discount Rate, rf 5.0% 5.0% 5.0% 5.0% 5.0%
[8] Risk-free Discount Factor 0.951 0.905 0.861 0.819 0.779
[9] PV ($ 000) 1,900 1,908 1,973 2,108 2,311
[10] Total PV ($ 000) 10,201
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Figure C-6: PowerCo: Valuing Partnership #2 (Parsons and Mello, 2012).

[1] Year 1 2 3 4 5
[2] Partnership #1 Unit Price Target 0.37 0.37 0.37 0.37 0.37
[3] Partnership #2 Revenue ($ 000)

0 11,726 20,867 34,384 55,792 89,834
1 7,948 12,463 18,705 28,072 42,189
2 5,210 7,133 9,728 13,513 18,997
3 3,226 3,752 4,589 5,867 7,709
4 1,788 1,608 1,647 1,852 2,214
5 745 249 0 0 0

[4] Probabilities
0 3.1% 3.1% 3.1% 3.1% 3.1%
1 15.6% 15.6% 15.6% 15.6% 15.6%
2 31.3% 31.3% 31.3% 31.3% 31.3%
3 31.3% 31.3% 31.3% 31.3% 31.3%
4 15.6% 15.6% 15.6% 15.6% 15.6%
5 3.1% 3.1% 3.1% 3.1% 3.1%

[5] State-Contingent Discount Factors
0 0.679 0.573 0.501 0.446 0.402
1 0.788 0.708 0.650 0.602 0.563
2 0.915 0.875 0.842 0.814 0.788
3 1.063 1.081 1.092 1.099 1.103
4 1.234 1.336 1.415 1.483 1.544
5 1.433 1.650 1.835 2.003 2.161

[6] Certainty Equivalent Net Cash Flow ($ 000) 4,167 5,318 6,927 9,299 12,704
[7] Risk-free Discount Rate, rf 5.0% 5.0% 5.0% 5.0% 5.0%
[8] Risk-free Discount Factor 0.951 0.905 0.861 0.819 0.779
[9] PV ($ 000) 3,963 4,812 5,962 7,616 9,900
[10] Total PV ($ 000) 32,254
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Appendix D

The Black-Scholes Model as the Limit

of the Binomial Model

In this appendix we prove using continuously-compounded discounting that the Black-

Scholes model is the limit of a binomial distribution with probabilities π and 1 ´ π, and

returns equal to u and d respectively. This proof is based on the proof found in (Ingersoll,

1987), but expressed in terms of the continuously-compounded discounting notation, instead

of discretely-compounded. The same proof with a different notation can be found in other

textbooks such as (Cox and Rubinstein, 1985).

Let’s assume that the continuously-compounded rate of return on some stock S follows a

continuous-time random walk, dR “ pµ´ σ2

2
qdt`σdW , where dW is the normally distributed

incremental step in a Brownian motion. The equivalent discrete-time distribution of the

random walk is ∆Ri “ log pSi{Si´1q “ pµ ´
σ2

2
q∆t ` σε

?
∆t, such that the returns on the

stock are distributed log-normally, Si{Si´1 „ lnN ppµ ´ σ2

2
q∆t, σ

?
∆tq, with an expected

return over one period 1 ErSi{Si´1s “ eµ∆t, and variance VarrSi{Si´1s “ e2µ∆tpeσ
2∆t ´ 1q.

1Note that if a random variable X „ N pµ, σq, then eX „ lnN pµ, σq, and EreX s “ eµ`σ
2
{2. Some options

textbooks like (Ingersoll, 1987) and (Cox and Rubinstein, 1985) use discretely-compounded discounting, and
the returns on the stock and the rate of return follow a similar probability distribution because S{S0 “ 1`R.
Here, as we use continuously-compounded discounting, with returns log-normally distributed, the underlying
normal probability has to be shifted down by σ2{2 so that the expected returns of the log-normal distribution
have a mean of eµ∆t. Yet, there are two equivalent ways to write the same continuous process derived here.
In one, µ is defined as the variable that is the continuous rate of drift, i.e., the parameter multiplying ∆t. In
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Equations (D.1-D.3) show how the two moments of the process are derived:

ErSi{Si´1s “ Erepµ´σ2

2
q∆t`σε

?
∆ts “ epµ´

σ2

2
q∆tEreσε

?
∆ts “ eµ∆t (D.1)

ErpSi{Si´1q
2s “ Ere2pµ´σ2

2
q∆t`2σε

?
∆ts “ ep2µ´σ

2q∆tEre2σε
?

∆ts “ ep2µ`σ
2q∆t (D.2)

VarrSi{Si´1s “ ErpSi{Si´1q
2s ´ ErSi{Si´1s

2 “ ep2µ`σ
2q∆t ´ e2µ∆t “ e2µ∆tpeσ

2∆t ´ 1q (D.3)

We now define a binomial distribution with the same mean and variance of the log-normal

process just described. Let π be the binomial probability of a tree, where u and d are the

returns of each of the two branches of the tree, such that Su “ uSi´1 and Sd “ dSi´1. We

now impose on the tree the condition that its two moments are the same as those of the

log-normal process: ErSi{Si´1s “ eµ∆t and VarrSi{Si´1s “ e2µ∆tpeσ
2∆t ´ 1q.

#

ErSi{Si´1s “ uπ ` dp1´ πq “ eµ∆t (D.4a)

VarrSi{Si´1s “ pu´ dq
2πp1´ πq “ e2µ∆t

peσ
2∆t
´ 1q (D.4b)

Solving the system of equations for the values of u and d, we have that:

u “ eµ∆t

»

–1` p1´ πq

˜

eσ
2∆t ´ 1

πp1´ πq

¸
1
2

fi

fl (D.5)

d “ eµ∆t

»

–1´ π

˜

eσ
2∆t ´ 1

πp1´ πq

¸
1
2

fi

fl (D.6)

This binomial distribution, in the limit, approximates the continuous log-normal distri-

bution lnN ppµ´ σ2

2
q∆t, σ

?
∆tq.

We now define the risk-neutral distribution of the binomial tree, such that the expected

return on the stock with respect to the risk neutral probability is the risk free rate of return:

π˚ “ er∆t´d
u´d

. A risk neutral investor would be indifferent between an investment with a

certain rate of return equal to r∆t and the uncertain return in the risk neutral tree, yielding

that formulation, the annual expected stock value is given using µ` σ2

2 . In the second formulation, µ is the

return on the expected stock price. Then the parameter multiplying ∆t is µ´ σ2

2 . The original formulation
back in the time of Black-Scholes was the latter (the one used in this appendix), but both are equivalent.
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the same expected returns. The value of π˚ can be determined substituting the values of u

and d by their respective expressions derived above:

π˚ “
er∆t ´ d

u´ d
“

er∆t ´ eµ∆t

„

1´ π
´

eσ
2∆t´1

πp1´πq

¯
1
2



eµ∆t
´

eσ2∆t´1
πp1´πq

¯
1
2

“ π `

ˆ

er∆t

eµ∆t
´ 1

˙

˜

eσ
2∆t ´ 1

πp1´ πq

¸´ 1
2

(D.7)

We now solve for the mean and variance of the binomial risk-neutral distribution.

E˚rSi{Si´1s “ uπ˚ ` dp1´ π˚q “ π˚pu´ dq ` d “

“ er∆t ´ eµ∆t
` πeµ∆t

˜

eσ
2∆t ´ 1

πp1´ πq

¸
1
2

` eµ∆t
´ πeµ∆t

˜

eσ
2∆t ´ 1

πp1´ πq

¸
1
2

(D.8)

“ er∆t

Var˚rSi{Si´1s “ u2π˚ ` d2
p1´ π˚q ´ e2r∆t

“ d2
` π˚pu2

´ d2
q ´ e2r∆t (D.9)

“ e2µ∆t

»

–1` π
eσ

2∆t ´ 1

1´ π
´ 2π

˜

eσ
2∆t ´ 1

πp1´ πq

¸
1
2

fi

fl`

`

»

–π `

ˆ

er∆t

eµ∆t
´ 1

˙

˜

eσ
2∆t ´ 1

πp1´ πq

¸´ 1
2

fi

fl ¨

¨ e2µ∆t

»

–2

˜

eσ
2∆t ´ 1

πp1´ πq

¸
1
2

` p1´ 2πq
eσ

2∆t ´ 1

πp1´ πq

fi

fl´ e2r∆t
“

“ e2µ∆t
` e2µ∆tπ

eσ
2∆t ´ 1

1´ π
´ 2πe2µ∆t

˜

eσ
2∆t ´ 1

πp1´ πq

¸
1
2

`

` 2eµ∆ter∆t ` p1´ 2πqeµ∆ter∆t

˜

eσ
2∆t ´ 1

πp1´ πq

¸
1
2

´

´ 2e2µ∆t
´ p1´ 2πqe2µ∆t

˜

eσ
2∆t ´ 1

πp1´ πq

¸
1
2

`
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` 2πe2µ∆t

˜

eσ
2∆t ´ 1

πp1´ πq

¸
1
2

` e2µ∆tπp1´ 2πq
eσ

2∆t ´ 1

πp1´ πq
´ e2r∆t

“

“ ´ e2µ∆t
` e2µ∆t

peσ
2∆t
´ 1q ` 2eµ∆ter∆t`

` p1´ 2πqeµ∆t

˜

eσ
2∆t ´ 1

πp1´ πq

¸
1
2
`

er∆t ´ eµ∆t
˘

´ e2r∆t
“

pif π “ 0.5q “ e2µ∆t
peσ

2∆t
´ 1q ´

`

er∆t ´ eµ∆t
˘2

In the limit, this risk-neutral binomial process defines the continuous risk-neutral distri-

bution, which inherits the mean and variance of the binomial process. We know that the vari-

ance of a log-normal distribution with E˚rSi{Si´1s “ er∆t is Var˚rSi{Si´1s “ e2r∆tpeσ
˚2∆t´1q,

where σ˚ is the standard deviation of the lognormal distribution. If we equate this variance

to the variance of the risk-neutral binomial process we have that:

σ˚ “

„

ln

ˆ

e2µ∆t

e2r∆t

´

eσ
2∆t
´ 1

¯

´
1

e2r∆t

`

er∆t ´ eµ∆t
˘2
` 1

˙

1
2

“ (D.10)

“

«

ln

˜

e2µ∆teσ
2∆t ´ 2e2µ∆t ` 2er∆teµ∆t

e2r∆t

¸ff
1
2

“

pif epµ´rq „ 1q „ σ

Therefore, the underlying lognormal risk-neutral process is lnN ppr ´ σ2

2
q∆t, σ

?
∆tq. �
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