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Abstract

In this thesis, I study polycyclic aromatic hydrocarbons (PAHs) and perfluorocar-
boxylic acids (PFCAs). PAHs are by-products of burning and therefore have impor-
tant anthropogenic sources in the combustion of fuels, biomass, etc. PFCAs and their
atmospheric precursors are used in making firefighting foams, non-stick coatings, and
other surfactant applications.

I quantitatively examine the relative importance of uncertainty in emissions and
physicochemical properties (including reaction rate constants) to Northern Hemi-
sphere (NH) and Arctic PAH concentrations. NH average concentrations are more
sensitive to uncertainty in the atmospheric lifetime than to emissions rate. The largest
uncertainty reductions would come from precise experimental determination of PHE,
PYR and BaP rate constants for the reaction with OH.

I calculate long-chain PFCA formation theoretical maximum yields for the degra-
dation of precursor species at a representative sample of atmospheric conditions from
a three dimensional chemical transport model, finding that atmospheric conditions
farther from pollution sources have both higher capacities to form long chain PFCAs
and higher uncertainties in those capacities.

I present results from newly developed simulations of atmospheric PFCA for-
mation and fate using the chemical transport model GEOS-Chem, simulating the
degradation of fluorotelomer precursors, as well as deposition and transport of the
precursors, intermediates and end-products of the PFCA formation chemistry. I com-
pare the model results to remote deposition measurements and find that it reproduces
Arctic deposition of PFOA effectively. Given the most recent precursor emission in-
ventory, the atmospheric indirect source of PFOA and PFNA is 10-45 t/yr globally
and 0.2-0.7 t/yr to the Arctic.

Thesis Supervisor: Noelle Eckley Selin
Title: Esther and Harold E. Edgerton Career Development Associate Professor
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Chapter 1

Introduction

Persistent organic pollutants (POPs) are environmental contaminants which are char-

acterized by their persistence in some part of the environment, due to slow degrada-

tion by chemical or biological processes. POPs often bioaccumulate, are toxic, and

are often significantly or entirely released to the environment by human activities. In

this thesis, I study two sets of compounds that can be classified as POPs: polycyclic

aromatic hydrocarbons (PAHs) and perfluorocarboxylic acids (PFCAs). PAHs are

by-products of burning and therefore have important anthropogenic sources in the

combustion of fuels, biomass, etc. PFCAs and their atmospheric precursors are used

in making firefighting foams, non-stick coatings, and other surfactant applications.

1.1 Motivation for studying PAHs and PFCAs in the

atmosphere

Polycyclic aromatic hydrocarbons (PAHs) are mutagenic and carcinogenic environ-

mental contaminants[6]. PAHs travel through the atmosphere across national bound-

aries and are found in regions such as the Arctic far from sources [26, 38, 25, 28], where

they are found in the tissues of biota. PAH concentrations are higher than many

POPs by orders of magnitude. PAHs are regulated internationally as POPs, via the

Convention on Long-Range Trans-boundary Air Pollution (CLRTAP) [59]. Despite
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regulatory efforts, PAHs continue to be transported via the atmosphere to the Arctic.

Uncertainty surrounding pathways by which PAHs reach remote locations has been

the subject of recent research, especially concerning their gasâĹŠparticle partitioning

and oxidation. The pathways by which PAHs reach the Arctic have been studied

with numerical models of varying complexity [50, 67, 48, 62, 34, 19, 21] . However,

our understanding of these pathways is limited by substantial uncertainty associated

with the physicochemical properties (including reaction rate constants, partition co-

efficients and energies of phase change) that determine the atmospheric fate of PAHs.

Some physicochemical properties governing PAH behavior, such as oxidation rate

constants and black carbon partition coefficients, are poorly constrained by mea-

surements or have not been measured directly [8, 36, 53] . For some smaller PAHs,

physicochemical parameters important to their atmospheric fate have been relatively

more studied than for the larger PAHs. Even for these small PAHs, measurements

of physicochemical properties can differ by more than a factor of two [36]. Limited

knowledge of- and uncertainty associated with- emissions sources also contributes to

uncertainty in atmospheric transport, as emissions factors for some processes can vary

by orders of magnitude [76]. Model uncertainty has been studied for multimedia fate

models of persistent organics [17, 47, 41]. Multimedia model analyses have found that

chemical properties have a larger influence on persistence and long-range transport

potential than model parameters such as spatial scales, media heights/depths, and

land and water surface fractions [17]. Detailed Monte Carlo-type analyses have been

performed for multimedia models, finding that emissions and degradation constants

were the most influential sources of uncertainty in DDT concentrations [47] and that

partition coefficients and reaction rate constants accounted for more than half of the

uncertainty in mercury concentrations in the air and the surface ocean[44]. It is my

goal in Chapter 2 of this thesis to characterize the parametric uncertainty involved

with modeling atmospheric PAHs.

Perfluorocarboxylic acids (PFCAs) are environmental contaminants that are highly

persistent, bio-accumulative [40, 39, 13], and have been detected along with their at-

mospheric precursors far from emissions sources [73, 54, 56] in snow [71], precipitation
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[49], and biota [27]. Of particular environmental interest are the long-chain PFCA

(lcPFCA) homologues such as PFOA (8-Carbon chain), due to the increase of detri-

mental effects with chain length [40, 39, 13]. Reducing lcPFCA emissions has been the

intent of policy actions due to their health effects [60], resulting in decreasing direct

emissions globally. At the same time, emissions of atmospheric precursors of PFCAs

are rising [64], leading to an increasing indirect source of PFCAs to the environment.

These precursors, including fluorotelomer alcohols (FTOHs), react with atmospheric

photochemical species [15] in a multi-stage process to form PFCAs [75]. This mecha-

nism follows the degradation of 8:2 fluorotelomer (FT) products, which are the most

commonly emitted PFCA precursors [64], to form FT-aldehyde and further interme-

diate and stable end products including PFOA and other PFCAs. The FT-aldehyde

can be oxidized by OH or photolyzed to form peroxy and acylperoxy radicals. These

radicals react with NO, NO2, RO2, and HO2to form intermediates which can again

be radicalized by OH and ultraviolet light, with further radical reactions leading to

stable PFCAs or intermediates with reduced chain length. However, the importance

of precursor emissions as an indirect source of lcPFCAs to the environment is uncer-

tain. Estimated yields of PFCAs from precursors can vary based on differences in the

formation mechanism assumed, quantitative uncertainty in reaction rate constants,

and ambient concentrations of other atmospheric species.

Previous studies have estimated yields of lcPFCAs from the degradation of FTOHs

in the atmosphere [72, 61]. However, studies have indicated that other emitted at-

mospheric precursors exist in the form of other fluorotelomer compounds [75, 64, 65,

74, 9]. Rate coefficients for the reactions in the PFCA formation mechanism are

uncertain, affecting estimated yields. The atmospheric formation of PFCAs depends

on reactions of fluorinated intermediates [68, 12] with commonly studied photochem-

ical species, such as HO𝑥and NO𝑥species, as well as ultraviolet light. These species

vary greatly over different environments in the atmosphere, affecting the quantity of

lcPFCA produced. Until recently, the chemical pathways that lead to PFCA forma-

tion were incompletely characterized, and even currently many of the radical reactions

that lead to PFCAs have not been measured directly. Quantifying the uncertainty in
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this chemistry of formation is therefore an important step toward better understand-

ing atmospheric PFCA formation.

Modeling studies have used degradation mechanisms of differing complexities to

estimate the atmospheric production of PFCAs, and these differing mechanisms lead

to quantitatively different yields of lcPFCAs under differing atmospheric conditions.

[61] simulated the atmospheric degradation of 8:2 FTOHs using the IMPACT atmo-

spheric chemistry model, finding that PFOA yields ranged from 1-10% depending on

location and time. Yarwood et al. [72] used a higher resolution atmospheric chemistry

model over North America to estimate that degradation yielded approximately 6%

PFOA on average, and much less than 1% PFNA. Schenker et al. [46], using a global-

scale multispecies mass-balance model with simplified chemistry, found that precursor

transport and degradation could contribute to perfluorocarboxylates observed in the

Arctic, and that rate constant uncertainty was an important contributor to uncer-

tainty in their results [46]. In Chapter 3, I investigate PFCA formation with the most

complete degradation mechanism to date to our knowledge, including the reactions

presented in the studies of Wallington et al. [61] and Yarwood et al. [72], and the

review of Young and Mabury [75]. I quantitatively estimate the influence of uncer-

tainty in rate coefficients for calculations of PFCA yields and examine the influence

of different atmospheric chemical conditions on upper-limit PFCA formation.

From Chapter 3, it is apparent that the connection between chemistry, transport,

and deposition of PFCAs, their precursors, and intermediates in their formation, is

important to the quantity of PFCA formed in the atmosphere as well as deposited

to remote locations such as the Arctic. Atmospheric chemical transport models are

therefore an important tool to quantifying formation and fate of PFCAs in the at-

mosphere. In Chapter 4, I present results from newly developed simulations of atmo-

spheric PFCA formation and fate using the global CTM GEOS-Chem. Simulating

the chemistry studied in Chapter 3 for the degradation of the emitted PFCA precur-

sors 8:2 FTOH and fluorotelomer iodide (FTI), as well as deposition and transport of

the precursors, intermediates and end-products of the degradation chemistry. I find

again that yields of lcPFCAs vary greatly by geographic location, and that the annual
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response to increasing emissions is variable. I compare the model outputs to remote

deposition and concentration measurements and estimate the indirect atmospheric

source of PFCAs globally and to the Arctic.

1.2 Main tools

Throughout this thesis I will be making use of a pair of tools for studying the atmo-

spheric fates of PAHs and PFCAs: the GEOS-Chem atmospheric chemical transport

model and polynomial chaos expansions. GEOS-Chem is a model which accounts for

emissions, photochemistry, deposition, and atmospheric transport of chemical species

of interest in the atmosphere. Polynomial chaos expansions (PCE) are used to sim-

plify complicated and computationally expensive models such as GEOS-Chem for the

purposes of uncertainty analysis.

1.2.1 GEOS-Chem atmospheric chemical transport model

GEOS-Chem is a chemical transport model (CTM) which uses prescribed reanalysis

meteorology to calculate the transport of chemical species in the atmosphere. On

top of this transport, GEOS-Chem simulates the chemical reactions, photolysis, de-

position, and phase partitioning of the chemical species of interest. GEOS-Chem is

used for a variety of atmospheric chemistry applications, including photochemical air

pollution, mercury, PAHs, and now PFCAs, among others. It is widely used because

of its flexibility in simulating a variety of chemistries at a range of spatial scales, from

coarser 4∘x5∘ resolution down to less than 1∘ resolution in nested grid applications.

GEOS-Chem’s ability use actual meteorology and a fine resolution on a global scale

make it ideal for comparisons to measurements in remote locations, which is partic-

ularly important for POPs research. Throughout this work, I use GEOS-Chem in a

variety of applications, but consistently at 4∘x5∘ resolution. While for conventional air

quality studies this would be considered coarse resolution, in POPs applications, this

is considered fine scale. In Chapters 2 and 4, we choose this resolution as a balance

between computational efficiency and the ability to differentiate the measurement
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sites to which we compare GEOS-Chem. In Chapter 3, we choose this resolution to

balance capturing the variability in photochemical environment with computational

efficiency.

1.2.2 Polynomial chaos expansions for uncertainty analysis

PAHs have been studied using fine-scale models at both the global and regional

scales. Through comparison to spatially and temporally fine-scale measurements,

these studies show that highly spatially resolved models can be useful in predicting

the pattern of exposure to PAHs, an important factor for human health impacts.

While multimedia models are computationally efficient and thus can quantitatively

examine relative influences of parameters on uncertainty, they lack the spatial reso-

lution and ability that CTMs possess to resolve the episodic nature of atmospheric

transport. Monte Carlo-type methods like those used for multimedia models can be

prohibitively computationally expensive for more finely spatially resolved models. In-

dividual simulations run with complex atmospheric CTMs such as GEOS-Chem can

require hours to days of computational time, leading to years for the full Monte Carlo

analysis. Thus, first-order parameter sensitivity tests are often used to character-

ize uncertainty in spatially resolved models. One previous study reported quantita-

tive estimates of the relative importance of physicochemical parameter uncertainty

and emissions uncertainty in PCB153 and 𝛼-HCH simulations by the large-scale,

spatially-resolved (15∘x15∘) BETR Research model using a first- order error propa-

gation method. Though first-order error propagation methods are computationally

cheaper than Monte Carlo analysis, they do not directly quantify the effect of param-

eter uncertainty interactions. Polynomial chaos expansion (PCE)-based methods can

greatly reduce the computational cost of uncertainty propagation for CTMs compared

to Monte Carlo methods, while approximating the resulting uncertainty distributions

more closely than first-order methods by extending to higher order. PCE-based meth-

ods quantify the relative importance of each parameter, as well as account for their

interactions in the model system, a significant advantage over traditional model pa-

rameter sensitivity tests. They also provide computational efficiency while retaining
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the spatial and temporal fidelity of CTMs.

We calculate the uncertainties for model outputs using polynomial chaos expansion

(PCE) methods to propagate uncertainty from rate constants and physicochemical

properties to outputs calculated in both GEOS-Chem and box-model simulations.

PCE methods are used to create a polynomial representation of the model, which can

propagate uncertainty in model inputs to model outputs at reduced computational

expense. While being computationally less expensive, the polynomial representa-

tion is able to represent non-linear responses of the model and interactions between

the effects of changing multiple input parameters [58, 37, 11]. The PC estimator is

composed of orthogonal polynomials of the form

𝜂(𝜁) = 𝛼0 +
𝑑∑︁

𝑗=1

𝑀∑︁
𝑘=1

𝛼𝑗,𝑘𝐻𝑗(𝜁𝑘)+
𝑀−1∑︁
𝑘=1

𝑀∑︁
𝑙=𝑘+1

𝛽𝑘,𝑙𝐻1(𝜁𝑘)𝐻1(𝜁𝑙)+ . . .+𝑂𝑟𝑑𝑒𝑟(𝑑 > 2) (1.1)

where the estimator 𝜂 of degree 𝑑 is a function of the polynomials 𝐻𝑗 of order 𝑗, the

𝑀 variables 𝜁𝑘 representing model inputs, the expansion coefficients 𝛼𝑗,𝑘 and 𝛽𝑘,𝑙,

and higher order coefficients. Not shown in the equation are cross terms of degree

>2, which include the product of up to 𝑑 Hermite polynomials of different variables,

analogous to the second order cross terms shown. In the following studies, we truncate

the polynomial after second or third order to further reduce computational cost.

To calculate the expansion coefficients, a model run at a unique set of inputs is

performed for each term in the equation [57], with the inputs for the model runs for

each degree’s terms being the values corresponding to the roots of the next degree’s

polynomials. The outputs of these model runs and the corresponding sets of input

values are used to set up a system of equations to solve for the expansion coefficients

[37]. We use the polynomial estimator to directly calculate the parameters of the

uncertainty distributions of the model outputs of interest without relying on Monte

Carlo methods [37]. We also calculate the fraction of the variance in model outputs

contributed by each rate constant or physicochemical parameter using the expansion

coefficients [37, 11].
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1.3 Overview

In Chapter 2, I study the uncertainty in GEOS-Chem PAH simulations that stems

from uncertain model inputs such as physicochemical properties and emissions esti-

mates. Using PCE, I quantify uncertainty, identify the leading contributors to uncer-

tainty, and use measurements along with uncertainty information to better constrain

the uncertain model inputs.

In Chapter 3, I investigate atmospheric PFCA formation from emitted precursors

using a box model driven by GEOS-Chem outputs of photochemical species such as

HO𝑥and NO𝑥, to quantify the variability in PFCA yields in different atmospheric

environments, and using PCE, to quantify uncertainty in these yields.

In Chapter 4, I introduce simulations of PFCA formation in GEOS-Chem itself,

accounting for emissions of precursors, the chemistry that leads to PFCAs, and the

transport and deposition of all of the products of the chemistry. I compare simulations

to remote measurements of concentrations and deposition and calculate global and

Arctic fluxes of PFCAs due to atmospheric formation and transport.

Chapter 5 includes concluding remarks and further discussion.
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Chapter 2

Quantitative assessment of

parametric uncertainty in Northern

Hemisphere PAH concentrations

Adapted with permission from: Quantitative Assessment of Parametric Uncertainty

in Northern Hemisphere PAH Concentrations; Colin P. Thackray, Carey L. Friedman,

Yanxu Zhang, and Noelle E. Selin Environmental Science & Technology, 2015, 49 (15),

9185-9193 DOI: 10.1021/acs.est.5b01823

Copyright (2015) American Chemical Society

2.1 Abstract

We quantitatively examine the relative importance of uncertainty in emissions and

physicochemical properties (including reaction rate constants) to Northern Hemi-

sphere (NH) and Arctic polycyclic aromatic hydrocarbon (PAH) concentrations, us-

ing a computationally-efficient numerical uncertainty technique applied to the global-

scale chemical transport model GEOS-Chem. Using polynomial chaos (PC) methods,

we propagate uncertainties in physicochemical properties and emissions for the PAHs

benzo[a]pyrene, pyrene and phenanthrene to simulated spatially-resolved concentra-

tion uncertainties. We find that the leading contributors to parametric uncertainty in
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simulated concentrations are the black carbon-air partition coefficient and oxidation

rate constant for benzo[a]pyrene, and the oxidation rate constants for phenanthrene

and pyrene. NH geometric average concentrations are more sensitive to uncertainty in

the atmospheric lifetime than to emissions rate. We use the PC expansions and mea-

surement data to constrain parameter uncertainty distributions to observations. This

narrows a priori parameter uncertainty distributions for phenanthrene and pyrene,

and leads to higher values for OH oxidation rate constants and lower values for Eu-

ropean PHE emission rates.

2.2 Introduction

Polycyclic aromatic hydrocarbons (PAHs) are mutagenic and carcinogenic environ-

mental contaminants [6]. As persistent organic pollutants (POPs) that are trans-

ported through the atmosphere across national boundaries after emission, PAHs are

regulated internationally by the Convention on Long-Range Trans-boundary Air Pol-

lution (CLRTAP) [59] . Despite regulatory efforts, PAHs continue to be transported

via the atmosphere to the Arctic [26, 38, 25, 28], far from source regions. In this

study, we quantitatively examine the relative importance of emissions and physic-

ochemical parametric uncertainty to Northern Hemispheric (NH) and Arctic PAH

concentrations, using efficient numerical uncertainty techniques applied to the global-

scale chemical transport model (CTM) GEOS-Chem.

The pathways by which PAHs reach the Arctic have been studied with numerical

models of varying complexity [50, 67, 48, 62, 34, 19, 21]. However, our understanding

of these pathways is limited by substantial uncertainty associated with the physic-

ochemical parameters (including reaction rate constants, partition coefficients and

energies of phase change) that govern the atmospheric fate of PAHs. Some physico-

chemical parameters representing PAH behavior, such as oxidation rate constants and

black carbon partition coefficients, are poorly constrained by measurements or sev-

eral have not been measured directly [8, 36, 53]. For some PAHs, e.g. phenanthrene

(PHE; three ring), physicochemical parameters important to their atmospheric fate
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have been relatively more studied than for the larger PAHs like benzo[a]pyrene (BaP;

five ring) and pyrene (PYR; four ring). Even for PHE, measurements of physico-

chemical parameters can differ by more than a factor of two [36]. Limited knowledge

of emissions sources and associated uncertainty also contributes to uncertainty in at-

mospheric transport, as emissions factors for some processes (e.g. waste incineration,

biomass burning) can vary by orders of magnitude [76].

Model uncertainty has been studied for multimedia fate models of persistent or-

ganics [17, 47, 41]. Multimedia model analyses have found that chemical properties

have a larger influence on persistence and long-range transport potential than model

parameters such as spatial scales, media heights/depths, and land and water surface

fractions [17]. Detailed Monte Carlo analyses have been performed for multimedia

models, finding that emissions and degradation constants were the most influential

sources of uncertainty in DDT concentrations [47] and that partition coefficients and

reaction rate constants accounted for more than half of the uncertainty in mercury

concentrations in air and the surface ocean [44].

PAHs have been studied using finer-scale models at both the global and regional

scales [50, 19, 21, 22, 20]. Through comparison to spatially and temporally fine-

scale measurements, these studies show that highly spatially resolved models can be

useful in predicting the pattern of exposure to PAHs, an important factor for human

health impacts. While multimedia models are computationally efficient and thus can

quantitatively examine relative influences of parameters on uncertainty, they lack the

spatial resolution and ability that CTMs possess to resolve the episodic nature of

atmospheric transport.

Monte Carlo-type methods like those used for multimedia models [47] can be

prohibitively computationally expensive for more finely spatially resolved models, as

they require on the order of thousands of samples for detailed analyses. Individual

simulations run with complex atmospheric CTMs such as GEOS-Chem can require

hours to days of computational time, leading to years for the full Monte Carlo analysis.

Thus, first-order parameter sensitivity tests are often used to characterize uncertainty

in spatially resolved models [19, 20, 69].
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One previous study [69] reported quantitative estimates of the relative importance

of physicochemical parameter uncertainty and emissions uncertainty in PCB153 and

𝛼-HCH simulations by the large-scale, spatially-resolved (15∘x15∘) BETR Research

model using a first-order error propagation method. Though first-order error prop-

agation methods are computationally cheaper than Monte Carlo analysis, they do

not directly quantify the effect of parameter uncertainty interactions. Polynomial

chaos (PC)-based methods can greatly reduce the computational cost of uncertainty

propagation for CTMs compared to Monte Carlo methods, while approximating the

resulting uncertainty distributions more closely than first-order methods by extending

to higher order. Parametric uncertainty in complex chemical mechanisms has been

quantified using PC methods in a number of applications [43, 30, 37, 11]. PC-based

methods quantify the relative importance of each parameter, as well as account for

their interactions in the model system, a significant advantage over traditional model

parameter sensitivity tests. They also provide computational efficiency while retain-

ing the spatial and temporal fidelity of CTMs.

We present here a first application of PC-based methods to a global atmospheric

CTM of POPs. We use this analysis to quantify the contributions of emissions and

physicochemical parameter uncertainty to NH- and Arctic-average concentrations of

PHE, PYR, and BaP. We then combine the results of our PC analysis with measure-

ments from long-term observation sites to constrain the values of these parameters.

2.3 Methods

To quantify uncertainty in the GEOS-Chem PAH simulations, we compare simulated

concentrations and associated uncertainties to measurements at non-urban sites, and

use these measurements and their uncertainties in a Bayesian analysis to constrain

the probability distributions of the physicochemical parameters. Throughout this

work we will refer to model "parametric uncertainty", which is the uncertainty in

simulated concentrations resulting directly from the uncertainty in the model input

parameters; i.e. physicochemical properties and emissions magnitudes.
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2.3.1 GEOS-Chem Model

The simulations we assess in this study are carried out using the GEOS-Chem PAH

chemical transport model [19]. This model has been used in previous studies to

simulate long-range atmospheric transport of PAHs and has allowed comparison to

measurements where it has been able to resolve meteorologically-driven episodic high-

concentration events [19]. Evaluation of the model against measurements in both

mid-latitudes and the Arctic, and traditional sensitivity tests have been conducted

previously; we refer the reader to the referenced papers for a detailed assessment of

model performance [19, 21]. Here, we briefly describe major features of the model,

including meteorology, emissions, chemistry, and gas-particle partitioning. GEOS-

Chem uses assimilated meteorology from the NASA Goddard Earth Observing Sys-

tem’s GEOS-5 dataset at a temporal resolution of 6 hours, a horizontal resolution of

0.5∘ x 0.667∘ re-gridded to 4∘ x 5∘ for computational efficiency, and 47 levels vertically.

The simulations for this study were run for the years 2006-2008. PAH emissions in

the model come from the inventory of Zhang and Tao [76], which represents annual

emissions from the year 2004, is resolved on the national scale, and includes details for

individual sectors and PAHs but is not time-resolved, meaning the emissions are not

seasonally or annually varying. Emissions are discussed in more detail in following

sections. Each model run begins with a "spin-up" period of one simulated year to

negate the transient effects of initial conditions.

Upon emission, the model partitions PAHs between the gas and aerosol phases

using a black carbon-air partition coefficient (K𝐵𝐶) to represent partitioning to black

carbon (BC) aerosol and an octanol-air partition coefficient (K𝑂𝐴) to represent par-

titioning to organic carbon (OC). The overall gas-particle partitioning is governed by

a dual OC absorption and BC adsorption model [19] based on the Dachs-Eisenreich

[14] equation. Both OC and BC concentrations are prescribed as monthly averages

in the PAH simulations, pre-calculated from full chemistry GEOS-Chem simulations

[62, 7] for computational efficiency. Gas-particle partitioning is re-calculated at each

chemistry time step of GEOS-Chem (60 min). The effect of using this coarse time
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resolution of prescribed particle concentrations was found to be small compared to

the parametric uncertainties discussed below [21]. Each of these partition coefficients’

temperature dependence is determined by an internal energy of phase change accord-

ing to the van’t Hoff relationship. These internal energies are governed by enthalpies

of phase change. The enthalpy of vaporization ∆H𝑣𝑎𝑝 is the uncertain parameter that

determines the sensitivity of particle partitioning to changing temperature, while the

enthalpy of solvation in liquid water ∆Hsol in combination with ∆H𝑣𝑎𝑝 determines

that of wet deposition.

We simulate the oxidation of gas phase PAHs by reaction with hydroxyl radi-

cals (OH). Monthly average OH concentrations are prescribed by a GEOS-Chem full

chemistry simulation [4] with a daily cycle overlaid on these monthly averages. PAH

reaction with OH is represented by a second order reaction with reaction rate con-

stant k𝑂𝐻 . On-particle oxidation by ozone is simulated using the parametrization of

Kahan et al [31]. Both gas- and particle-phase PAHs undergo wet deposition in the

simulations. Gas-phase PAH is scavenged by liquid water according to the air-water

partitioning coefficient K𝐴𝑊 , which is temperature dependent according to ∆H𝐴𝑊 (a

combination of ∆H𝑠𝑜𝑙 and ∆H𝑣𝑎𝑝) following the van’t Hoff relationship. Dry depo-

sition for gas-phase PAH is simulated according to Wang et al. [63], with lipophilic

uptake scaled by the K𝑂𝐴 [19]. A complete evaluation of GEOS-Chem simulations

of PAHs can be found in the original work by Friedman and Selin [19]. The seven

uncertain physicochemical parameters mentioned above are included in our analysis

for each PAH.

2.3.2 Polynomial chaos

The PC-based estimator uses orthogonal polynomials to approximate GEOS-Chem

model output as a function of model inputs. The polynomial expansion of the model

output to be estimated takes the form

𝜂(𝜉) = 𝛼0 + Σ𝑑
𝑗=1Σ

𝑀
𝑘=1𝛼𝑗,𝑘𝐻𝑗(𝜉𝑘) + Σ𝑀−1

𝑘=1 Σ𝑀
𝑙=𝑘+1𝛽𝑘,𝑙𝐻1(𝜉𝑘)𝐻1(𝜉𝑙) + + 𝑂𝑟𝑑𝑒𝑟(𝑑) (2.1)
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where the estimator 𝜂 of degree d is a function of the polynomials 𝐻𝑗 of order j, the

M variables 𝜉𝑘 representing model inputs, the expansion coefficients 𝛼𝑗,𝑘 and 𝛽𝑘,𝑙 ,

and higher order coefficients. The terms not shown in the equation are cross terms of

degree greater than two, which include the product of up to d Hermite polynomials

of different variables, analogous to the second order cross terms shown. In this study,

we truncate the polynomial after third order. To obtain the expansion coefficients,

one model run at a unique set of inputs is performed for each term in equation 2.1

[57]. The set of inputs for the model runs for each degree’s terms are the values

corresponding to the roots of the next degree’s polynomials. The outputs of these

model runs and the corresponding sets of input values are used to set up a system of

equations to solve for the expansion coefficients [37]. Further description, along with

validation, of the PC expansion can be found in Chapter 1. We use the polynomial

estimator to directly infer properties of the uncertainty distribution of model output

(in this case total (gas plus particulate phase) PAH mass concentration) without

relying on Monte Carlo methods, which is accomplished using the analytical forms

of the mean, variance and skewness from the polynomial coefficients [37]. We also

calculate the portion of the total output variance contributed by each input parameter

using the expansion coefficients [37, 11].

2.3.3 Physicochemical parameter uncertainties

We conduct an extensive review of the literature for experimentally determined val-

ues of each of seven uncertain physicochemical parameters for the three PAHs investi-

gated in this study, and construct probability distributions based on the available data

(summarized in Tables 2.2-2.4). The distributions (Table 2.5 and discussed below),

are for the parameters that most directly affect the simulated atmospheric fate and

transport of the PAHs based on previously-conducted traditional model sensitivity

testing [19]. Model processes that are sources of uncertainty for all chemicals (in-

cluding non-POPs) simulated by GEOS-Chem, such as advection and wet deposition

schemes, are not the focus of this study.

Partition coefficients (air-water: K𝐴𝑊 , black carbon-air: K𝐵𝐶 , octanol-air: K𝑂𝐴):
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Since the partition coefficients used in the model are experimentally determined and

reported in log form, we estimate their uncertainty distributions as normal distribu-

tions of the log values, with the means and standard deviations derived from literature

values (see SI for details and references). K𝐵𝐶 , which describes the fraction of PAH

found in the BC phase given an amount of BC particulate matter, is the combination

of K𝐴𝑊 and the BC-water partition coefficient (K𝐵𝐶−𝑊𝑎𝑡𝑒𝑟) [3],

𝑙𝑜𝑔(𝐾𝐵𝐶) = −𝑙𝑜𝑔(𝐾𝐴𝑊 ) + 𝑙𝑜𝑔(𝐾𝐵𝐶−𝑊𝑎𝑡𝑒𝑟) (2.2)

where K𝐵𝐶−𝑊𝑎𝑡𝑒𝑟 gives the ratio of concentrations of PAH in the BC particulate phase

to dissolved PAH at equilibrium. Since K𝐵𝐶 itself is not an independent parameter

due to its relationship to K𝐴𝑊 , we use the independent K𝐵𝐶−𝑊𝑎𝑡𝑒𝑟 instead as the

uncertain parameter for this study.

Enthalpies of phase change (∆H𝑣𝑎𝑝 and ∆H𝑠𝑜𝑙): We estimate the uncertainty

distributions for the enthalpy of vaporization (∆H𝑣𝑎𝑝) and the enthalpy of solvation

(∆H𝑠𝑜𝑙) for PHE, PYR and BaP as normal distributions with the means and standard

deviations of a collection of literature values of ∆H𝑣𝑎𝑝 or ∆H𝑠𝑜𝑙 for each PAH (see SI

for details and references).

On-particle ozone oxidation rate constant (k𝑂3): For all three PAHs, we use the re-

ported "A" and "B" kinetic parameter values and their uncertainties from Kahan et al.

[31] as model inputs. Across all atmospheric ozone concentrations, the B-parameter

dominates the contribution to uncertainty in k𝑂3 , so we neglect A-parameter uncer-

tainty in our analysis.

OH oxidation rate constant (k𝑂𝐻): For PHE, we estimate the uncertainty distri-

bution from three literature values and their associated uncertainties [8, 33, 2]. The

mean value of the normal uncertainty distribution is estimated by the uncertainty-

weighted mean of these three values, and the standard deviation of the distribution

is estimated by the standard deviation of the weighted mean.

While there is no literature value for BaP’s or PYR’s k𝑂𝐻 , values can be ob-

tained from the Atmospheric Oxidation Program software AOPWIN, which uses an

32



ionization potential-activity relationship [5],

𝑙𝑛(𝑘𝑂𝐻) = −4.345 − 2.494(𝐼𝑃 ) (2.3)

where 𝑘𝑂𝐻 has units of cm3 molec−1 s−1 and IP is the ionization potential in units of

eV. We use the mean and standard deviation of the National Institute of Standards

and Technology collection of reported ionization potentials for BaP [42] to estimate

a normal distribution that results in a log-normal distribution of IP-derived k𝑂𝐻

values. Similarly, for PYR we use the mean and standard deviation of the collection

of reported PYR IPs [32] to estimate the uncertainty distribution for PYR’s k𝑂𝐻 .

2.3.4 Regional emissions uncertainties

Emissions uncertainty results from uncertainties in both emission activities (quantity

of a given type of emitting process) and emission factors (PAH emission quantity per

activity). The total PAH emission 𝐸 due to a process i can be divided into those two

elements:

𝐸𝑖 = 𝐴𝑖𝐹𝑖 (2.4)

where 𝐴𝑖 is the emissions activity of process 𝑖 and 𝐹𝑖 is the emission factor for that

process. 𝐹𝑖 can be uncertain to a much larger degree than 𝐴𝑖 [76] because the con-

ditions under which each emitting process is carried out in reality are highly varying

but summarized by a single value. Measurements of 𝐹𝑖 of the same process by dif-

ferent experimenters can yield orders of magnitude differences [76]. For example, 𝐹𝑖

associated with diesel fuel in the transport sector will depend on such factors as the

type of fuel burned, type of engine burning the fuel, and temperature and condition

of the engine. PAH emissions processes with the largest uncertainties in 𝐹𝑖 include

primary aluminum production, use of traffic gasoline, diesel, and kerosene, industrial

coal burning, and non-transport petroleum combustion [76].

Given that there are distinct source contributions to PAH emissions and their un-

certainties in different regions of the globe, we define discrete emissions regions, and
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calculate an a priori probability distribution for the total emissions of each region.

We choose the regions of North America, Europe, South Asia, East Asia and Africa

because of the large magnitude of emissions (South Asia, East Asia, Africa), and

proximity to the Arctic (North America and Europe). We estimate the uncertainty

distribution of total emissions of each region using Monte Carlo sampling over each

country’s 𝐴𝑖 and the 𝐹𝑖 uncertainty distributions [76] and assume that the spatial

distribution of emissions within each region remains fixed. Regional emission distri-

butions are then used as input parameters, along with physicochemical parameters,

in the above-described PC analysis.

2.3.5 In-situ observations

We use observed annual average total (gas+particulate) BaP, PYR, and PHE con-

centrations from each of 10 sites monitored by the Co-operative Programme for Mon-

itoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe

(EMEP), Integrated Atmospheric Deposition Network (IADN), and Environment

Canada (EC) observation networks in the Northern Hemisphere (NH) for compar-

ison to model values. All observations were collected at land-based non-urban sites

using high-volume air samplers. Particle-bound PAHs were collected on glass fibre

filters, and volatile PAHs were adsorbed to polyurethane foam (PUF) plugs. Spatial

coverage includes the Great Lakes, Northern Europe, and two Arctic sites. Site loca-

tions, concentrations and references are summarized in Table 2.6, and are the same

sites used for model-measurement comparison by Friedman and Selin [19].

For site-by-site comparison to simulated concentrations, we calculate observa-

tional errors following Chen and Prinn [10]. The observational error for compar-

ison to a model grid box accounts for statistical representativeness (accounting for

some stations’ non-continuous sampling), analytical method precision error, site inter-

calibration error, and spatial mismatch error (i.e. a single point’s representativeness

of the whole grid-box). These errors (see Table 2.6) represent the variability in ob-

served values that is impossible to capture with any model, and are thus separate

from model uncertainty. These errors range from ±25% to a factor of 3, depending
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on the measurement site and the PAH in question.

2.3.6 Constraint of physicochemical parameters by observa-

tions

Using the annual average measurements outlined above, and PC-estimated concen-

trations based on annual average model output, we constrain the physicochemical pa-

rameter uncertainty distributions by Bayesian inference, combining information from

observations and a priori parameter uncertainties. We compare 1) the PC polynomial-

estimated concentration in the model grid box encompassing a measurement location

for a given set of physicochemical and emissions parameter values to 2) the observed

concentration at the same location. By mapping the predicted concentrations as a

function of the uncertain parameters using the PC estimator, we define a weighted

least-squares cost function of the form:

𝜒(𝜉)2 = Σ𝑁
𝑖=1(

𝑌𝑖 − 𝜂𝑖(𝜉)

𝜎𝑖

)2 (2.5)

where summation is over the N measurement locations, 𝑌𝑖 is the observed value at a

particular site, 𝜂𝑖(𝜉) is the polynomial estimate at parameter values 𝜉 , and 𝜎𝑖 is the

total "observation errors" from above at measurement site 𝑖 . With the least-squares

comparison above, the likelihood function 𝑃 (𝑌 |𝜉) is related to the cost function via

𝑃 (𝑌 |𝜉) ∝ 𝑒−𝐾(𝜉)2 (2.6)

This makes use of the PC estimators and the site measurements and their errors

to estimate the likelihood of observing the concentrations 𝑌 as a function of the

parameter values 𝜉 . To update the a priori uncertainty distributions, we use Bayes’

rule for the a posteriori distribution 𝑃 (𝜉|𝑌 ):

𝑃 (𝜉|𝑌 ) ∝ 𝑃 (𝜉)𝑃 (𝑌 |𝜉) (2.7)
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where 𝑃 (𝜉) is the prior uncertainty distribution. This results in a description of the

relative probabilities of each physicochemical parameter value, given the available

constraining measurements.

2.4 Results

We calculate polynomial estimators as described above, and evaluate their predicted

log-concentrations against independent full GEOS-Chem model runs. Over the pa-

rameter space covered by the physicochemical property uncertainty distributions, the

polynomial estimator matches the validation data-set with r2 greater than 0.99 for all

three PAHs. We use the polynomial estimators to calculate model uncertainty dis-

tributions for NH and Arctic (above 66∘N) surface concentration geometric averages

for annual and Northern Hemisphere winter (DJF) and summer (JJA) periods for all

three PAHs, attribute fractions of this uncertainty to individual model parameters,

and constrain parameter uncertainty distributions using observation site data.

2.4.1 Comparison to measurements

Figure 2-1 shows a comparison of monthly average concentrations simulated using

the PC-based estimator and associated parametric uncertainties to measured average

concentrations and measurement uncertainties for non-urban sites for each PAH. The

simulations capture the measurements within the ±2𝜎 parametric uncertainty interval

for all three PAHs, with PYR and BaP capturing the measurement means within the

±𝜎 interval.

Simulated PHE concentrations show agreement with measurements during the

winter-spring and summer-fall transitions, but measured means are higher than sim-

ulated during JJA and lower during DJF [19]. In the summer, the measured mean falls

within the ±𝜎 bounds of the model, but during the winter months (Nov, Dec, Jan,

Feb), the measured concentrations fall between the -𝜎 and -2𝜎 model values. This

discrepancy could be due to unresolved seasonality of emissions, or secondary sources

which are not represented in the simulations, but have been tested and discussed pre-
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viously [21]. PYR simulated concentrations are lower than observed concentrations

for all except the winter months. The observed values do, however, fall into the ±𝜎

range of the model uncertainty distribution for all months. BaP simulated concen-

trations have the highest parametric uncertainty, and the observed concentrations

fall into the ±𝜎 range of the model for all months of the year, with the simulated

seasonal cycle following the observed cycle closely. Northern Hemisphere and Arctic

model uncertainty in concentration Figure 2-3 shows model parametric uncertainty

distributions for BaP, PYR and PHE, for both NH and Arctic average concentrations,

and for annual, winter, and summer temporal averages. Across all three PAHs, JJA

average simulated concentrations are lower with higher uncertainty than DJF aver-

ages. PHE concentrations have the least parametric uncertainty, with a range (95%

confidence interval) spanning approximately one order of magnitude for annual, sum-

mer, and winter averages. PYR and BaP parametric uncertainty ranges during the

summer span more than two orders of magnitude, and close to an order of magnitude

during the winter.

In the Arctic, parametric uncertainty is at its lowest for all three PAHs during the

winter, when there is little to no sunlight to drive photochemical oxidation. Average

concentrations of PAHs are highest during the winter, and lowest during the summer

in the Arctic because of the presence of OH for oxidation, and this relative abundance

of OH also drives the sensitivity of the PAH concentrations to oxidation rate constant

uncertainty. The seasonal difference in the Arctic average PAH concentration is more

pronounced than the NH average, with summer-winter differences for all three PAHs

of more than three orders of magnitude.

2.4.2 Contributors to model parametric uncertainty

The important sources of model parametric uncertainty are substantially different be-

tween NH and Arctic average concentrations, and across the three PAHs. Table 2.6

shows the fractional contribution of leading parameters to the total resulting model

parametric concentration uncertainty for PHE, PYR, and BaP. At the hemispheric

scale, PHE concentration parametric uncertainty is driven year-round by uncertainty
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in the oxidation rate constant. Since PHE is mostly in the gas phase (90%-100% [19]),

uncertainty in its gas-phase lifetime is the most important contributor to paramet-

ric uncertainty in the NH average simulated concentrations. In the Arctic average,

however, uncertainty in European emissions gains importance, contributing close to

a third of the parametric uncertainty annually and 64% in the winter. The relative

importance of emissions and reduced importance of oxidation rate constant uncer-

tainty during Arctic winter is due to the lack of atmospheric OH radicals. During the

summer, European emissions uncertainty remains a significant secondary contributor,

but k𝑂𝐻 uncertainty makes up the largest fraction of the total for the model.

The contributors of PYR parametric concentration uncertainty follow a similar

pattern to those of PHE. Because of the large uncertainty in the oxidation rate con-

stant for PYR (see Table 2.5) and the fact that >50% of atmospheric PYR is in the

gas phase [19], the parametric concentration uncertainty in the NH annual average

is dominated by uncertainty in k𝑂𝐻 . Like for PHE, the second-most important con-

tributor to parametric uncertainty is European emissions. BaP has the most varied

contributions of the three PAHs studied. For the NH annual average, uncertainty in

K𝐵𝐶−𝑊𝑎𝑡𝑒𝑟 contributes 63% of the total uncertainty, with k𝑂𝐻 uncertainty contribut-

ing 30%, and the uncertainty in ∆H𝑣𝑎𝑝, European, and North American emissions

making up the other 7%. This behavior changes little between the winter and sum-

mer season.

In the Arctic, K𝐵𝐶−𝑊𝑎𝑡𝑒𝑟 is the leading source of parametric uncertainty for BaP.

It contributes 55% annually, while k𝑂𝐻 contributes 35% and 6% is due to ∆H𝑣𝑎𝑝.

During the relatively photochemistry-free winter months, the contribution from k𝑂𝐻

drops to 3%, and the difference is made up by increases in the contributions of ∆H𝑣𝑎𝑝

(to 11%), and European emissions (to 29%). In the summer, the opposite occurs and

k𝑂𝐻 uncertainty contributes 52% of the total.

Across all three PAHs, the contribution of physicochemical parameter uncertainty

makes up more than 94% of the NH average parametric uncertainty. This is because

a large fraction of the globe is far from emission sources, so wide spatial average

concentrations are more sensitive to the uncertainty in the atmospheric lifetime than
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they are to emissions magnitude. In the case of PYR, parametric uncertainty in

the atmospheric lifetime is almost entirely due to uncertainty in the oxidation rate

because of the extremely high uncertainty in oxidation rate constant. For PHE, k𝑂𝐻

also contributes most to uncertainty because PHE is mostly found in the gas phase.

In the case of BaP, the uncertainty in the atmospheric lifetime is due to both the

highly uncertain gas phase oxidation rate, but also the amount of BaP found in the

particulate phase, which is primarily controlled by BC partitioning. Because of its

nature as a mostly particulate matter-bound PAH, BaP uncertainty has a larger

contribution from the uncertainty in K𝐵𝐶−𝑊𝑎𝑡𝑒𝑟 and ∆H𝑣𝑎𝑝, which together control

partitioning to BC.

Closest to each emissions source region, uncertainty in that region’s emissions

becomes most import, as removal during transport has not had time to take effect.

Europe is the region with sources closest to the Arctic, and therefore European emis-

sions uncertainty contributes more to simulated Arctic concentration uncertainty than

other regional emissions. The emissions uncertainty contribution reaches a maximum

during the winter, when concentrations of all three PAHs are highest due to lower

loss rates, making it an important factor in the quantification of PAH transport to

the Arctic.

2.4.3 Observation-constrained parameter distributions

We constrain the probability distributions of parameter values using the spatially

distributed modeled and observed concentrations as described in the Methods sec-

tion. Figure 2-2 shows the observation-derived likelihood distributions, and prior and

posterior probability distributions of the two most important parameters for model

uncertainty at the measurement sites. PHE’s and PYR’s leading parameters are

constrained by the analysis, while BaP’s are effectively unconstrained.

As shown in Figure 2-2(a), for PHE, the highest observation-constrained likelihood

comes when k𝑂𝐻 is highest and the European regional emission rate is low. The result

is that the posterior distributions for k𝑂𝐻 and E𝐸𝑢𝑟𝑜𝑝𝑒 have maxima at higher and

lower values, respectively. Figure 2-2(b) shows a similar constraining effect of the
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observations for PYR’s k𝑂𝐻 , which is shifted higher, while the EEurope posterior

distribution is narrowed around the same value as the prior distribution. Figure

2-2(c) shows that the measurement comparison added no constraints to the prior

parameter distributions for BaP (neither confirming nor denying the assumed prior),

due to the larger uncertainties in both its simulated and observed concentrations.

After constraint by the measurement data, we estimate new most likely values for

PYR’s and PHE’s k𝑂𝐻 and rate of emission in Europe. The a priori best estimate

of k𝑂𝐻 for PYR was 7x10−11 cm−3s−1 , while the updated best estimate is 1x10−10

cm−3s−1 . The prior estimate of k𝑂𝐻 for PHE of 1.9x10−11 cm−3s−1 is updated to

2.3x10−11 cm−3s−1 . We lower our best estimates of European emissions for PHE

from 5.8 kt/yr to 4.1 kt/yr.

2.5 Discussion

Through the uncertainty attribution described above, we identify the key parameters

for which reducing uncertainty would improve our ability to model long-range trans-

port of PAHs. For PHE and PYR, k𝑂𝐻 uncertainty has the largest impact on model

results, while for BaP k𝑂𝐻 , K𝐵𝐶−𝑊𝑎𝑡𝑒𝑟, and ∆H𝑣𝑎𝑝 all contribute to uncertainty in

simulated concentrations. These results are similar to findings for multimedia models

of other environmental toxics, which indicate that degradation rates and partition

coefficients are the largest contributors to parametric uncertainty [47, 44]. Across all

three PAHs, more precise experimental quantification of k𝑂𝐻 could greatly reduce

parametric model uncertainty. In particular for PYR and BaP, the lack of experi-

mental values of k𝑂𝐻 leads to an additional step in the propagation of uncertainty,

as the value of k𝑂𝐻 used in the model is itself a parametrization. With reduced k𝑂𝐻

uncertainty, we would be better able to constrain PAH emissions using observations

of concentrations, and we would improve our ability to use modeling to inform policy

[29].

Close to sources, emissions uncertainty gains importance, and reductions in emis-

sions uncertainties should target the leading contributors to those uncertainties. PAH
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emissions processes with the largest uncertainties in emissions factors include the use

of traffic gasoline, diesel, and kerosene, industrial coal burning, and non-transport

petroleum combustion. Precise quantification of these emissions factors would greatly

reduce emissions uncertainty, especially in the North American and European regions.

Some of the uncertainty involved, however, is unsolvable in current set-up of emis-

sions inventories, since a single emission factor applies to all e.g. traffic gasoline use,

despite PAH emissions from gasoline use depend on combustion temperatures, type

of engine, type of exhaust system, etc. Such uncertainties would require a much more

detailed type of emissions inventory that would be impractical to apply globally.

We are able to quantitatively attribute simulated concentration uncertainty to

individual model parameters while accounting for non-linear model responses in a

computationally efficient manner. Because of the method’s relatively low number of

required model runs, it could be applied to other spatially resolved environmental

models for low-cost but detailed identification of leading contributors to parametric

uncertainty. The detailed parametric uncertainty analysis that this method provides

is an important aspect of environmental transport model simulations that is com-

monly unreported in the literature. This type of analysis should be carried out for

other substances and models, as the conclusions from our simulations of PAHs specif-

ically may not apply to other substances or models. This is evident in comparison

to the first-order uncertainty analysis for BETR Research PCB153 simulations [69],

which suggests that emissions uncertainties account for more than 90% of the sim-

ulated atmospheric concentration parametric uncertainty under current climate and

emissions.

We constrain physicochemical and emissions parameters using measurements, with

updated uncertainty distributions for k𝑂𝐻 and E𝐸𝑢𝑟𝑜𝑝𝑒 for PHE and PYR. While

this method represents a quantitative improvement over traditional model sensitiv-

ity tests, in which parameters are altered based on forward matches to observations,

our approach also has important limitations. The constraint relies on the compar-

ison of concentrations measured at a point to the average concentration within a

GEOS-Chem grid-box. While we account for this through an estimate of represen-

41



tativeness error, spatial heterogeneities within the grid-box are not represented and

could introduce an unquantified bias in the comparisons due to this mismatch of spa-

tial resolutions. We do not optimize for the spatial distribution of emissions in this

study, which precludes the ability to account for a local emission source that could

be driving observed concentrations at a site. Our analysis also relies on the quantifi-

cation of the emissions parameters and their uncertainty at the inventory’s national

level, and any potential biases in these estimates would propagate to our results. For

example, an underestimation of the uncertainty in biomass burning emissions factors

in the inventory would propagate through the model to result in an underestimate of

concentration uncertainty.

While we quantify the impact of uncertainties in regional emission magnitudes

and physicochemical properties on simulated concentrations in detail, there are other

sources of uncertainty in simulated concentrations. Emissions can vary substantially

temporally, and on spatial scales finer than those considered here. These temporal

and spatial resolution mismatches between the simulations and reality will have a

more limited effect on large spatial and time averages than on shorter-term localized

concentrations. Along with direct emissions, secondary emissions (revolatilization)

from surface media can affect atmospheric PAH concentrations, and these secondary

sources are not resolved in this work. The accuracy and time-resolution of prescribed

concentrations of particulate matter and OH used in the model can also introduce

uncertainty, but this uncertainty is significantly smaller than that due to their asso-

ciated chemical parameters [21]. There is also non-parametric uncertainty associated

with the particle partitioning scheme used, as deviations from measurements can be

large, especially for smaller PAHs [36] whose concentrations have lower sensitivity to

particle partitioning. Theoretical issues have been identified with the parametrization

of partition coefficients [23], which we have not accounted for here. Limitations of

particle partitioning schemes for PAHs in GEOS-Chem have been investigated in de-

tail previously [20]. Considering these uncertainties, our results suggest that for BaP,

further constraints on partitioning properties would improve our ability to capture

long-range transport.
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Chemical transport modeling is susceptible to a variety of sources of uncertainty

that are not unique to the simulation of PAHs. Advection in the atmosphere is car-

ried out on a large scale that is only representative of the actual advection in the

atmosphere on a coarse scale. This advection is based on meteorological reanalysis

fields that have their own uncertainty. Prescribed precipitation also contributes to

uncertainty in wet deposition. However, many of these processes in GEOS-Chem are

evaluated and constrained using simulations of other atmospheric constituents (e.g.

carbon monoxide, ozone) for which measurement data are less uncertain and more

widely available [35, 70, 52]. The source of uncertainty most difficult to quantify is

that which is associated with PAH-specific processes not represented by the model

(e.g. on-particle oxidation reactions other than ozonation). A process that is not

described by the model would not be represented in a parametric uncertainty anal-

ysis, and depending on the importance of the process could be a major source of

unquantified uncertainty.

Based on model sensitivity, the most effective locations for hypothetical future

measurement sites that could be used to improve the constraint of the most impor-

tant PAH physicochemical properties are far from sources and are generally in regions

where wet deposition is relatively less important, particularly in the Southern Hemi-

sphere. These locations, however, have very low PAH concentrations, below common

quantification limits. The resulting measurement constraint paradox is that the loca-

tions that would best constrain physicochemical properties have concentrations that

are the most difficult to measure. This means that greatly reducing model paramet-

ric uncertainty by observational constraint will require very low detection limits at

long-term remote sites. Measuring these low concentrations is potentially achievable

for the gas phase using passive air samplers, which accumulate greater contaminant

mass over longer periods of time than traditional active samplers [29].

The results we present give important insight into the parametric uncertainty dis-

tributions of simulated PAH concentrations and their relationship to specific inputs.

Our analysis demonstrates that there is a need to reduce the large parametric uncer-

tainties stemming from physicochemical property data for PAHs, and identifies the
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Table 2.1: Uncertainty of physicochemical properties in GEOS-Chem PAH simula-
tions (means and standard deviations of normal distributions)

properties which contribute most to model parametric uncertainty. While our analy-

sis shows that long-term measurement sites can be used to constrain physicochemical

property values for PHE and PYR, highlighting the importance of such measurements

of atmospheric PAHs, better experimental quantification of PAH properties would

provide the greatest reductions in simulated concentration uncertainty. We identify

quantitatively which physicochemical properties of PHE, PYR and BaP could be

targeted experimentally to greatly reduce simulated concentration uncertainty.

2.6 Selected Supporting Information

The full supporting information includes physicochemical property data and associ-

ated uncertainties, emissions uncertainty information, measurement site info, data,

and errors, seasonal parametric uncertainty comparisons, and parametric uncertainty

contributions as a function of latitude and longitude. This information is available

free of charge via the Internet at http://pubs.acs.org/ and a subset is included below.
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Figure 2-1: Measured and simulated total (gas and particulate) concentrations at
non-urban sites for PHE (top), PYR (middle), and BaP (bottom). The black lines
are means across the measurements at all non-urban sites, and their error bars show
the standard deviation of the mean for each month. The blue lines are the simulated
means across the same sites, with the shaded regions marking the 𝜎 and 2𝜎 intervals
of the parametric uncertainty distributions for each month.
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Figure 2-2: Constraint of parameter uncertainty distributions by measurement data.
(a) PHE, (b) PYR, (c) BaP distributions for the two most important parameters
each. Prior distributions (dashed lines), observation-based likelihoods (dot-dashed
lines), and posterior distributions (solid lines) shown
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Figure 2-3: Total surface atmospheric concentration uncertainty distributions for
BaP (blue), PYR (red), and PHE (green). Annual average (solid lines), winter aver-
age (dot-dashed lines), and summer average (dotted lines) shown for both Northern
Hemispheric (top) and Arctic (bottom) spatial averages.
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Table 2.2: Physicochemical parameter data for PHE
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Table 2.3: Physicochemical parameter data for PYR
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Table 2.4: Physicochemical parameter data for BaP
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Table 2.5: Site info, annual average total concentrations (and ± 1 standard deviation
of observational error) for PAH observation sites.
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Table 2.6: Contributions of leading physicochemical property and regional emission
uncertainties to overall uncertainty in Northern Hemisphere (NH) and Arctic con-
centrations of PHE (i and ii), PYR (iii and iv), and BaP (v and vi). Contributions
are expressed as percentages of total uncertainty accounted for by each individual
parameter rounded to the nearest percentage point. Parameters contributing <1%
are not included.
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Chapter 3

Uncertainty and variability in

atmospheric PFCA formation

This chapter has been published for discussion and is currently under review by the

journal Atmospheric Chemistry and Physics. (No.: acp-2016-679)

3.1 Abstract

Perfluorocarboxylic acids (PFCAs) are environmental contaminants that are highly

persistent, bio-accumulative, and have been detected along with their atmospheric

precursors far from emissions sources. The importance of precursor emissions as an

indirect source of PFCAs to the environment is uncertain. Modeling studies have

used degradation mechanisms of differing complexities to estimate the atmospheric

production of PFCAs, and these differing mechanisms lead to quantitatively different

yields of PFCAs under differing atmospheric conditions. We evaluate PFCA for-

mation with the most complete degradation mechanism to date to our knowledge,

using a box model analysis to simulate the atmospheric chemical fate of precursors

to long-chain PFCAs.

We calculate long-chain PFCA formation theoretical maximum yields for the

degradation of precursor species at a representative sample of atmospheric condi-

tions from a three dimensional chemical transport model, and estimate uncertainties
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in such calculations for urban, ocean, and Arctic conditions using polynomial chaos

methods. We find that atmospheric conditions farther from pollution sources have

both higher capacities to form long chain PFCAs and higher uncertainties in those

capacities.

Our calculations of theoretical maximum yields indicate that under typical North-

ern Hemisphere conditions, less than 10% of emitted precursor may reach long-chain

PFCA end products. This results in a possible upper bound of 2-50 t/yr of long-chain

PFCA (depending on quantity of emitted precursor) produced in the atmosphere via

degradation of fluorotelomer products. However, transport to high-yield areas could

result in higher yields. While the atmosphere is a potentially growing source of

long-chain PFCAs in the Arctic, oceanic transport and interactions between the at-

mosphere and ocean may be relatively more important pathways to the Arctic for

long-chain PFCAs.

KEYWORDS: PFCA, PFAS, FTOH, perfluoroalkyl, perfluorocarboxylic acids,

per- and polyfluorinated chemicals

3.2 Introduction

Perfluorocarboxylic acids (PFCAs) are environmental contaminants that are highly

persistent, bio-accumulative [40, 39, 13], and have been detected along with their

atmospheric precursors far from emissions sources [73, 54, 56] in snow [71], precip-

itation [49], and biota [27]. Of particular environmental interest are the long-chain

PFCA (lcPFCA) homologues such as PFOA (8-Carbon chain), due to the increase of

detrimental effects with chain length [40, 39, 13]. While lcPFCAs are not regulated

internationally, reducing lcPFCA emissions has been the focus of some national policy

actions due to their detrimental health effects [60], and as a result, direct emissions

have been decreasing globally. At the same time, emissions of atmospheric precursors

of PFCAs are rising [64], leading to an increasing indirect source of PFCAs to the

environment. These precursors, including fluorotelomer alcohols (FTOHs), react with

atmospheric photochemical species [15] in a multi-stage process to form PFCAs [75].

56



However, the importance of precursor emissions as an indirect source of lcPFCAs to

the environment is uncertain. Estimated yields of PFCAs from precursors can vary

based on differences in the formation mechanism assumed, quantitative uncertainty

in reaction rate constants, and ambient concentrations of other atmospheric species.

Here, we use a box model analysis to quantitatively estimate potential upper-limit

atmospheric yields of PFCAs, incorporating uncertainty in the precursor degradation

mechanism and variability of atmospheric PFCA formation due to photochemical

background conditions.

Previous studies have estimated yields of lcPFCAs from the degradation of FTOHs

in the atmosphere [72, 61]. However, studies have indicated that other emitted at-

mospheric precursors exist in the form of other fluorotelomer compounds [75, 64, 65,

74, 9]. Rate coefficients for the reactions in the PFCA formation mechanism are

uncertain, affecting estimated yields. The atmospheric formation of PFCAs depends

on reactions of fluorinated intermediates [68, 12] with commonly studied photochem-

ical species, such as HO𝑥and NO𝑥species, as well as ultraviolet light. These species

vary greatly over different environments in the atmosphere, affecting the quantity of

lcPFCA produced.

Modeling studies have used degradation mechanisms of differing complexities to

estimate the atmospheric production of PFCAs, and these differing mechanisms lead

to quantitatively different yields of lcPFCAs under differing atmospheric conditions.

Wallington et al. [61] simulated the atmospheric degradation of 8:2 FTOHs using the

IMPACT atmospheric chemistry model, finding that PFOA yields ranged from 1-10%

depending on location and time. Yarwood et al. [72] used a higher resolution atmo-

spheric chemistry model over North America to estimate that degradation yielded

approximately 6% PFOA on average, and much less than 1% PFNA. Schenker et al.

[46], using a global-scale multispecies mass-balance model with simplified chemistry,

found that precursor transport and degradation could contribute to perfluorocarboxy-

lates observed in the Arctic, and that rate constant uncertainty was an important

contributor to uncertainty in their results [46].

In our work, we evaluate PFCA formation with the most complete degradation
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mechanism to date to our knowledge, including the reactions presented in the stud-

ies of Wallington et al. [61] and Yarwood et al. [72], and the review of Young and

Mabury [75]. We use a box model analysis to simulate the atmospheric chemical fate

of fluorotelomer aldehyde (FTAL), a common early product in the degradation of

many of the different precursor species, including FTOHs. We quantitatively esti-

mate the influence of uncertainty in rate coefficients for calculations of PFCA yields

using polynomial chaos methods, which have been used previously in the context of

chemical reaction mechanisms [43] and atmospheric chemistry modeling in particular

[11, 58]. We further examine the influence of different atmospheric chemical con-

ditions on upper-limit PFCA formation based on output from a three-dimensional

chemical transport model. We conclude by estimating potential upper limits for at-

mospherically formed PFCAs from emitted precursors, and compare our yield results

to observed atmospherically formed PFCAs.

3.3 Methods

We use a box model representation of the chemical reactions that lead to atmospheric

PFCA formation to calculate yields per unit precursor species. We calculate yields of

PFOA (8 Carbons) and PFNA (9 Carbons) from the degradation of 8:2 fluorotelomer

precursors. We use prescribed concentrations of photochemical species from data

sources described below. To quantify an upper limit of possible atmospheric PFCA

formation, we calculate yields of PFOA and PFNA in the absence of non-chemical

loss processes. Thus, our calculations represent an upper limit of the PFCA formation

capacity of the atmosphere at given photochemical conditions.

3.3.1 Mechanism and Box Model

In our box model, we use a precursor degradation mechanism which builds on the work

of previous modeling efforts [61, 72] and includes reactions from recent literature [75].

The chemical reactions included are listed in Appendix A. The mechanism defines

the degradation of fluorotelomer aldehyde, which we use as a generic precursor as it
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is the first degradation product of many emitted volatile fluorotelomer compounds

such as FTOHs and FT-iodides. Since this generic precursor is the common product

among the reactants that precede it, its use as a starting point will not affect yield

calculations. This FT-aldehyde can be oxidized by OH or photolyzed to form peroxy

or acylperoxy radicals. These radicals, in turn, react with NO, NO2, RO2, and HO2to

form stable intermediates. These stable intermediates can again be radicalized by

further reaction with OH and ultraviolet light, with more analogous radical reactions

leading to either stable PFCAs or shorter chain intermediates. Reaction products

which have chain lengths shorter than PFOA are neglected in our calculations. The

degradation chemistry is depicted in Figure 3-1, with each line representing a different

reaction and each node representing a different intermediate species or end product.

We use a box model of the PFCA formation chemistry to calculate yields of PFOA

and PFNA from precursor species. The single-box model simulates the chemical

reactions discussed above, treating the concentrations of HO𝑥, NO𝑥, Cl, and RO2as

constant and neglecting non-chemical loss processes such as wet and dry deposition.

Simulations begin with a unit of precursor species and are carried out until all of

the initial precursor has reached one of the reaction end-points (PFNA, PFOA, or

shorter-chain PFCAs). The yield of each end species is defined as the fraction of the

initial precursor that forms that species.

3.3.2 Variability of PFCA formation

To quantify the variability of PFCA formation capacity due to variations in the

atmospheric chemical background of the Northern Hemisphere, we use photochemical

species concentration output from the chemical transport model GEOS-Chem [4]. We

use concentrations of OH, HO2, NO, NO2, and temperature output from a GEOS-

Chem version 9.01.02 full chemistry simulation of the years 2006 and 2007 after a one

year spin up.

We calculate RO2concentrations based on concentrations of methane, ethane, and

propane from the GEOS-Chem simulation and a pseudo-steady state approximation:

59



Figure 3-1: Each line represents a different reaction and each node represents a dif-
ferent intermediate species or end product. Reactions are color coded by the non-
fluorinated reactant involved.
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[𝑅𝑂2] ≈
[𝐶𝐻4][𝑂𝐻]𝑘𝐶𝐻4+𝑂𝐻 + [𝐶2𝐻6][𝑂𝐻]𝑘𝐶2𝐻6+𝑂𝐻 + [𝐶3𝐻8][𝑂𝐻]𝑘𝐶3𝐻8+𝑂𝐻

[𝑁𝑂]𝑘𝑁𝑂+𝑅𝑂2 + [𝐻𝑂2]𝑘𝐻𝑂2+𝑅𝑂2

(3.1)

Available photons for photolysis reactions were calculated as a function of latitude

and time of year based on an assumption of clear sky conditions [45], and a peak

actinic flux of 1x1015 photons cm−3 s−1 at 90 degrees solar zenith angle [51]. We use

daily GEOS-Chem output concentrations from winter (January) and summer (July)

of 2007 as a representative sample of the variability of atmospheric conditions in the

Northern Hemisphere.

For the photochemical conditions corresponding with each surface grid box and

time of the GEOS-Chem output, we perform a box model run to calculate yields and

formation times of PFOA and PFNA. This results in 1656 chemical environments for

each of the summer and winter conditions.

3.3.3 Uncertainty Propagation

We calculate the uncertainty in yields and formation times for PFCA formation in

three case environments. We use conditions chosen from the above GEOS-Chem out-

put data set representing three distinct photochemical environments as representative

test cases. We have selected one each of urban, Arctic, and ocean environments for

their distinctive PFCA formation behaviors. The photochemical concentrations of

each environment are detailed in Table 3.2. The urban environment is located over

urban China, and is characterized by high NO𝑥concentrations. The ocean environ-

ment, in contrast, is located over the equatorial Pacific Ocean and is characterized by

very low NO𝑥concentrations. The environment illustrative of Arctic PFCA formation

is located over Greenland, and is much colder and has a moderate level of NO𝑥.

We use polynomial chaos (PC) methods to propagate uncertainty from rate con-

stants to yields calculated by the box model. PC methods create a polynomial expan-

sion representation of the model to propagate uncertainty in inputs to the outputs

at low computational cost while being able to represent non-linear responses of out-
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puts to model input parameters, as well as interactions between input parameters

[58, 37, 11]. The PC-based estimator uses orthogonal polynomials to approximate

GEOS-Chem model output as a function of model inputs. The polynomial expansion

of the model output to be estimated takes the form

𝜂(𝜁) = 𝛼0 +
𝑑∑︁

𝑗=1

𝑀∑︁
𝑘=1

𝛼𝑗,𝑘𝐻𝑗(𝜁𝑘) +
𝑀−1∑︁
𝑘=1

𝑀∑︁
𝑙=𝑘+1

𝛽𝑘,𝑙𝐻1(𝜁𝑘)𝐻1(𝜁𝑙) + . . . + 𝑂𝑟𝑑𝑒𝑟(𝑑 ≥ 𝑂 > 2)

(3.2)

where the estimator 𝜂 of degree 𝑑 is a function of the polynomials 𝐻𝑗 of order 𝑗,

the 𝑀 variables 𝜁𝑘 representing model inputs, the expansion coefficients 𝛼𝑗,𝑘 and 𝛽𝑘,𝑙,

and higher order coefficients. Not shown in the equation are cross terms of degree

>2, which include the product of up to 𝑑 Hermite polynomials of different variables,

analogous to the second order cross terms shown. In this study, we truncate the

polynomial after third order. To obtain the expansion coefficients, one model run

at a unique set of inputs is performed for each term in the equation [57]. The set

of inputs for the model runs for each degree’s terms are the values corresponding to

the roots of the next degree’s polynomials. The outputs of these model runs and the

corresponding sets of input values are used to set up a system of equations to solve

for the expansion coefficients [37]. We use the polynomial estimator to directly infer

properties of the uncertainty distribution of model output (in this case theoretical

maximum fractional yields of PFOA and PFNA) without relying on Monte Carlo

methods, which is accomplished using the analytical forms of the mean and variance

from the polynomial coefficients [37]. We also calculate the portion of the total output

variance contributed by each rate constant using the expansion coefficients [37, 11].

We carry out a second-order expansion in the 40 uncertain reaction rate constants

to calculate uncertainty distributions of PFOA and PFNA yields and attribute the

importance of each reaction rate constant to the resulting uncertainty.

3.3.4 Environment Categorization

In order to categorize the differences in photochemical environments, we use the

DBSCAN clustering algorithm [16] to find clusters in summer average OH-HO2-NO
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concentration space. These three species were chosen because they are the most

common non-fluorinated reactants in the modeled chemistry, and because they led

to the delineation of the observed behavior in yield-time space apparent by visual

inspection (see Section 3.4.4). The DBSCAN algorithm is density-based, clustering

based on the proximity of nearest neighbors in the chosen parameter space. The

algorithm requires a priori values for its two parameters, 𝜀, which roughly describes

the size of the "neighborhood" around a datum, and 𝑁𝜀, the number of other data

that must be within that neighborhood to be considered a cluster. The clustering is

relatively insensitive to choice of 𝑁𝜀 [16], but the number of clusters found in the data

set depends on the value of 𝜀 chosen. We choose an 𝑁𝜀 value of 10 and the 𝜀 value (0.3)

that gives the smallest number of clusters >1 for simplicity in categorization. This

results in two major clusters accounting for >85% of the data, with the remaining

data unclustered.

3.4 Results

We calculate the variability in PFOA and PFNA theoretical maximum yields for

summer and winter Northern Hemisphere conditions, and quantify the uncertainty

in these theoretical yields for three representative test cases. We also investigate

the distinct chemical regimes in the formation of PFNA in different regions of the

atmosphere under average summer conditions.

3.4.1 Variability in yields due to photochemical environment

Figure 3-2 shows histograms of theoretical maximum yields of PFOA and PFNA for

each of the photochemical environments from GEOS-Chem output. Each count in the

histogram corresponds to a calculation of yields carried out at the conditions from a

single day and Northern Hemisphere grid-box (latitude-longitude location) from the

GEOS-Chem output. For PFOA during the summer, the majority of photochemical

environments result in yields of between 1% and 10%, with approximately a quarter

of the environments yielding <1% and a third of environments yielding between 10%
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and 30%. During the winter, the peak of PFOA yields remains between 1-10% but

many more environments yield <1% and fewer yield >10% compared to during the

summer.

PFNA, on the other hand, sees a peak less than 1% during the summer, but shows

a third of its environments between 1% and 10%, with a small fraction of environ-

ments leading to yields higher than 80%. During the winter, PFNA formation skews

toward very low yields of <0.1%. The long tails of PFNA formation environments

are discussed further in Section 3.4.4.

3.4.2 Uncertainty in yields due to rate constant uncertainty

Figure 3-3 shows uncertainty in PFOA and PFNA yields due to uncertainty in the rate

constants in the degradation mechanism. For both species, yields are negligible under

the high-NO𝑥urban conditions. Under oceanic conditions far from NO𝑥sources, the

PFOA yield is approximately 20%, with an uncertainty range of approximately 3%,

and the PFNA yield is more than 80%, with an uncertainty range of approximately

5%. Under Arctic conditions, PFOA yield uncertainty ranges between 18% and 22%,

and PFNA shows a distribution ranging from 17% to 20%. For both species, and

especially PFNA, the range of yields due to differing photochemical conditions is

much larger than the range of yields due to uncertainty at any given conditions.

3.4.3 Rate coefficient contributions to yield uncertainty

Fractional contributions of individual reactions’ rate coefficient uncertainties to the

resulting yield uncertainty for PFOA and PFNA formation are summarized in Table

3.3. Most reactions in the mechanism contribute to uncertainty similarly for PFOA

yield under urban conditions, with reaction 16 having the largest contribution. The

rate of this reaction between poly-fluorinated peroxy radicals and RO2radicals to

form a poly-fluorinated alcohol is one of the main factors determining whether the

yielded product is PFNA or a shorter chain PFCA (including PFOA), which makes

it important for the uncertainties in yields for both of those end products. For ocean
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conditions, reaction rate constants 15, 16, 36 and 37 dominate the contributions to

PFOA yield uncertainty. Arctic conditions show reaction 37’s rate constant uncer-

tainty also playing a large role, but reaction 34 also makes a substantial contribution.

Reactions 15 and 16 represent a branching in the degradation chemistry where flu-

orinated peroxy radicals can either branch toward PFNA formation or PFOA and

shorter chain PFCAs. Likewise, reactions 34, 36, and 37 are at a branching point

where shorter peroxy radicals can either react to form PFOA or even shorter chain

PFCAs.

PFNA yield uncertainties are dominated by a different subset of the reaction

mechanism for the Arctic environment, and see a contribution from a large number

of reaction rates for the urban and ocean cases, led by reactions 16 and 2 (reaction

of OH with the initial precursor), respectively. In the Arctic, reaction rate constant

16 uncertainty dominates, with reaction 14 (another peroxy radical reaction) also

contributing significantly. In summary, rate constants of reactions of NO and RO2with

poly- and per-fluorinated peroxy radicals are the dominant sources of theoretical

maximum yield uncertainties for PFOA and PFNA.

3.4.4 Regime behavior in PFNA yields and formation times

Figure 3-4 shows calculated PFNA yield for each GEOS-Chem grid box and associated

time of formation for summer conditions, with DBSCAN algorithm clusters in the

OH-HO2-NO space of the sample of summer atmospheric photochemical conditions.

Two distinct regimes appear in the plotted space, one in which yield is low across

formation times, and one in which longer formation times are associated with higher

yields. As figure 3-4 shows, the clusters in OH-HO2-NO space correspond to regimes

of formation for PFNA, and to spatial regions of the atmosphere. Each of the two

clusters respectively compose the majority of each of the two regimes in PFNA yield

- time of formation space. Figure 3-4(b) shows that the same clusters also correspond

to Arctic and lower-latitude environments, respectively. Within the lower-latitude

mode, PFNA yield increases with decreasing NO concentrations, with the lowest

yields occurring over land in more polluted areas and the highest yields occurring
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over the oceans far from NO𝑥sources.

3.5 Discussion

We find a wide variety of theoretical maximum yields for both PFOA and PFNA

across the Northern Hemisphere’s photochemical environments. With many regions

yielding less than 1% of each due to the presence of large enough quantities of NO𝑥,

but PFOA yields of up to 40% and PFNA yields of up to 80% in some areas, the

specific photochemical environment has a strong effect on the capacity of the atmo-

sphere to yield lcPFCAs from the degradation of emitted precursors. We find that

the uncertainty in these theoretical maximum yields depends on the environment as

well, but is at most on the order of a few percent, much smaller than the variability

caused by the diversity in photochemical environments.

We find two distinct regimes of PFNA formation capacity in the atmospheric

environment, which correspond to photochemical environments found in the Arctic

and at lower latitudes, respectively. The former shows relatively constant theoretical

maximum yields across different conditions within the Arctic, with a large range of

formation times that are independent of the yields. The second regime, on the other

hand, shows that at lower latitudes there is a large range of both yields and formation

times, and that longer formation times are associated with higher theoretical maxi-

mum yields. Within this regime, the higher the concentration of NO, the shorter the

formation time and the lower the yield capacity. Figure 3-5 illustrates this behav-

ior, showing the flux through different reactions in the chemical mechanism over the

course of a box model run at the conditions of the three representative environments

introduced in Section 3.3.3. The nodes in the diagram represent intermediate or end-

product species in fluorotelomer degradation, while the lines represent the reaction

fluxes, with the thickness of the lines proportional to the flux. Figure 3-5(a) and (b)

show that at lower latitudes the amount of NO present strongly drives fluxes towards

either short chain PFCAs (Urban, high-NO conditions) or long chain PFCAs (Ocean,

low-NO conditions). The reactions of peroxy radicals with NO are too fast in the
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presence of substantial NO𝑥to allow branching toward PFNA or PFOA formation.

The highest theoretical maximum yields and longest formation times are associ-

ated with conditions over the oceans far from sources and far from common photo-

chemical pollution sources. Emissions of lcPFCA precursors into polluted air masses

reduces the potential for those precursors to form lcPFCAs. Put another way, emis-

sions of precursors in otherwise less-polluted regions are conducive to more lcPFCA

formation per precursor emitted.

The calculations that we present are of lcPFCA theoretical maximum yields, and

are the upper limits of PFOA and PFNA formation for given atmospheric condi-

tions. In the atmosphere, non-chemical loss processes that we neglect in our model

limit actual lcPFCA yields compared to their theoretical maxima. In the case of

PFNA, as the areas with highest theoretical maximum yields are associated with the

longest formation times, they will see larger discrepancies between theoretical and

actual yields than areas with lower theoretical maximum yields. Although regions far

from NO𝑥sources have the greatest capacity for PFNA formation, they also are most

vulnerable to having concentrations of degradation intermediates reduced by wet de-

position and scavenging before the degradation has reached an end product (e.g. over

the equatorial oceans). We also use a generic precursor (perfluorinated aldehyde) in

our calculations, which is the common first degradation product of most of the mass

fraction of the fluorotelomer precursors emitted by current estimates [64]. Some fluo-

rotelomer precursors, however, such as fluorotelomer olefins, have initial degradation

products which are intermediates in the discussed degradation mechanism. If the

fraction of emitted fluorotelomer products which are FT-olefins is large, this could

quantitatively affect our results.

We calculate the theoretical maximum yields of lcPFCAs from precursor degrada-

tion under many atmospheric conditions, but the degradation mechanism is indicative

of daytime chemistry. In the Arctic during the summer this is not problematic, but

in the winter it neglects the possibility of significant nighttime chemistry involving

species such as N2O5and H2O2that to our knowledge has not been studied. Future

research could put theoretical or experimental constraints on the possible importance

67



of these reactions.

With respect to theoretical maximum yields in different seasons, winter conditions

lead to lower yields of both PFNA and PFOA, sometimes by orders of magnitude.

Young et al. [73] report a similar seasonal dependence from the Devon Ice Cap, with

summer concentrations of PFOA and PFNA being an order of magnitude higher

than winter concentrations in the accumulated snow profiles. For the years 2004 and

2005, the average winter PFNA concentration in those snow measurements is 18 times

smaller than the average summer concentration, and for PFOA the winter average is

7 times smaller. In our calculations, those same ratios over the Canadian Arctic are

18 and 10, respectively. As the long-chain PFCA deposited on the Devon Ice Cap

is most likely atmospherically generated [73, 24], this suggests consistency between

our calculations of PFNA and PFOA theoretical yields and observational evidence of

lcPFCA yielded through formation in the atmosphere.

The importance of the photochemical environment to lcPFCA formation, par-

ticularly the importance of the presence of NO𝑥, means that future air pollution

reductions or increases could impact atmospheric lcPFCA yields. For instance, large

reductions in NO𝑥emissions would lead to more lcPFCA products. However, given

our results, we find that NO𝑥concentration reductions would have to be on the order

of magnitude scale to affect theoretical maximum yields significantly.

We estimate uncertainty ranges in theoretical maximum yields for PFOA and

PFNA under the ocean case conditions to be 17-22% and 78-85%, respectively, with

most of the uncertainty for PFOA stemming from uncertainty in rate constants at a

branching point in the degradation mechanism. In the Arctic case conditions, PFOA

maximum yield has a similar value and level of uncertainty as for ocean conditions,

while PFNA yields have a much lower value and slightly lower level of uncertainty.

Again, under these conditions, the majority of the uncertainty is due to uncertainty

in two peroxy radical reaction rate constants at branching points in the mechanism.

Better understanding the quantitative relationship between rate constants at these

branching points will have the greatest effect on reducing the uncertainty in theoretical

maximum yields.
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We quantify the uncertainty in theoretical maximum yields, which depend exclu-

sively on the rate constants. In the atmosphere, where deposition can play an im-

portant role in lcPFCA formation, many other sources of uncertainty for yields will

arise, such as rates of deposition, frequency of rainout and washout events, solubility

and aqueous chemistry of intermediate species, among others. While the uncertainty

due to rate constants is quantifiable based on the chemistry used in our calculations,

any missing reactions in the degradation chemistry will be unquantifiable. If our

mechanism is incomplete due to currently unidentified reactions, our estimates of un-

certainty would underestimate the full uncertainty of the chemistry. Our estimates

of the variability of lcPFCA theoretical maximum yields in the atmosphere are also

uncertain due to uncertainty in the photochemical conditions used, which are output

from the GEOS-Chem model. These uncertainties would be minor in this applica-

tion, as the photochemical concentrations vary over orders of magnitude, while their

relative uncertainties are much smaller than these variations. The uncertainty in

GEOS-Chem calculations of photochemical environment is not quantified here, nor is

the uncertainty due the model grid box size’s inherent smoothing of photochemical

extremes. Model grid box size is unlikely to change our results in any meaningful

way since the polluted regions whose representation would suffer from this type of

smoothing already produce negligible quantities of lcPFCA.

The maximum yields calculated above allow us to estimate potential upper limits

on the amount of atmospherically produced long-chain PFCAs given the emitted pre-

cursor quantities. The current estimate [64] of volatile 8:2 fluorotelomer compound

global releases has an upper bound of 500 t/yr for the year 2010, the only year for

which such a detailed estimate is available. Given the theoretical maximum yields we

have calculated, this translates to 50 t/yr of lcPFCA produced atmospherically based

on median yield values from our calculations. This may be an overestimate, however,

considering the spatial distribution of theoretical maximum yields. In regions that

precursors are emitted (over continental North America, Europe and Asia), theoret-

ical maximum yields are less than 1%. If the precursors and intermediates reside in

this type of environment for extended periods of time, the upper limit of atmospheric
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lcPFCA production could be 5 t/yr or lower. However, larger yields can result when

precursors are transported to higher-yield environments. These estimates of upper

limit atmospheric production scale linearly with emissions, so emissions rates lower

than the upper bound estimates would lead to correspondingly lower atmospheric pro-

duction maxima. Depending on how long precursor and intermediate species reside in

the different atmospheric regions and the distribution of emissions, yields of lcPFCAs

can vary greatly. Future calculations with a detailed chemical transport model that

also accounts for both deposition processes and transport in the atmosphere would

allow for a best estimate of total lcPFCA production in the atmosphere over time.

While the U.S. EPA Stewardship Program strives to greatly reduce lcPFCA precur-

sors emitted due to American manufacturers, there remains the possibility of growth

of precursor production in Asia in the future, meaning that atmospheric lcPFCA for-

mation could become increasingly important as a source globally and to the Arctic.

In the future, if production does shift to shorter chain fluorotelomer products, our

findings will apply to correspondingly shorter chain PFCAs formed in the atmosphere,

as the chemistry studied is analogous across the homologue series.

Wallington et al. [61] estimated 0.4 t/yr of PFOA entering the Arctic due to

atmospheric production via 8:2 FTOH degradation; the amount entering the Arctic

is less than half of global atmospheric PFOA production. This was calculated as-

suming 1000 t/yr of FTOH emitted to the atmosphere, which is twice the current

upper bound of total fluorotelomer emissions to air. Wania [66] estimated that the

amount of atmospherically generated PFCAs deposited in the Arctic peaked in 2005

at 0.154 t/yr, and that 11-21 t/yr is transported to the Arctic via the ocean. Both

of these studies estimate atmospherically generated quantities of lcPFCAs which fall

reasonably beneath our calculated theoretical maxima. Our results indicate, however,

that the region over the oceans is the leading atmospheric environment for lcPFCA

formation, meaning that transport to the Arctic via the ocean can be importantly

affected by lcPFCAs formed atmospherically at lower latitudes. A detailed coupled

atmosphere-ocean model could give important insights to future studies.
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3.6 Conclusions

We calculate PFOA and PFNA formation theoretical maximum yields for the degra-

dation of precursor species at a representative sample of atmospheric conditions, and

estimate uncertainties in such calculations for urban, ocean, and Arctic conditions.

We find that atmospheric conditions farther from pollution sources have both higher

capacities to form long chain PFCAs and higher uncertainties in those capacities. The

greatest uncertainty reductions can be achieved by better quantifying rate constants

at the branching points of the degradation chemistry. We find that there are distinct

regimes of PFNA formation behavior in different photochemical environments, dic-

tated by the quantities of HO𝑥and NO𝑥species, but less variability in the formation

of PFOA.

While we study the daytime chemistry in detail, future studies should investi-

gate the role of nighttime chemistry in lcPFCA formation. The role of non-chemical

removal processes from the atmosphere is also an important part of atmospheric

lcPFCA formation, and its environmental connection to yields of formation should

be investigated.

Our calculations of theoretical maximum yields indicate that most likely less than

10% of emitted precursor can reach lcPFCA end products in the Northern Hemi-

sphere, even ignoring non-chemical losses. This results in an upper bound of 2-50

t/yr of lcPFCA (depending on quantity of emitted precursor) produced in the atmo-

sphere via degradation of fluorotelomer products. Only a fraction of that is destined

to directly deposit in the Arctic. While the atmosphere is a potentially growing source

of lcPFCA in the Arctic, oceanic transport of directly emitted lcPFCAs and atmo-

spherically generated lcPFCAs at lower latitudes are likely more important pathways

to the Arctic for lcPFCA.
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Table 3.1: List of reactions.
Reaction Rate constant expression uncertainty source
C8F17CH2C(O)H + hv350 -> C8F17CH2OO 1.5x10−21 7.5x10−22 1

C8F17CH2C(O)H + OH -> C8F17CH2C(O)OO 2.0x10−12 0.4x10−12 1

C8F17CH2C(O)H + Cl -> C8F17CH2C(O)OO 1.9x10−11 0.2x10−11 1

C8F17CH2C(O)OO + NO2 -> C8F17CH2C(O)OONO2 1.1x10−11(298./T) 0.1x10−11 3

C8F17CH2C(O)OONO2 -> C8F17CH2C(O)OO 2.8x1016exp(T/-13580) 0.2x1016 3

C8F17CH2C(O)OO + NO -> C8F17CH2OO 7x10−12exp(T/340) 0.5x10−12 3

C8F17CH2C(O)OO + HO2 -> C8F17CH2OO 3.1x10−13exp(T/1040) 0.3x10−13 3,1

C8F17CH2C(O)OO + HO2 -> C8F17CH2C(O)OH 1.2x10−13exp(T/1040) 0.1x10−13 3,1

C8F17CH2C(O)OO + CH3O2 -> C8F17CH2OO 1.8x10−12exp(T/500) 3.6x10−13 2

C8F17CH2C(O)OO + CH3O2 -> C8F17CH2C(O)OH 2.0x10−13exp(T/500) 4.0x10−14 2

C8F17CH2C(O)OH + OH -> C8F17CH2OO 2.02x10−14exp(T/920) 0.6x10−14 2

C8F17CH2C(O)OH + OH -> C8F17C(O)H 1.13x10−14exp(T/920) 0.32x10−14 2

C8F17CH2OO + HO2 -> C8F17CH2OOH 4.1x10−13exp(T/750) 0.4x10−13 3

C8F17CH2OO + NO -> C8F17CH2O 2.8x10−12exp(T/300) 0.14x10−12 3

C8F17CH2OO + CH3O2 -> C8F17CH2O 1.9x10−14exp(T/390) 0.26x10−14 2

C8F17CH2OO + CH3O2 -> C8F17CH2OH 7.6x10−14exp(T/390) 1.06x10−14 2

C8F17CH2OH + OH -> C8F17C(O)H 1.02x10−13exp(T/-350) 0.1x10−13 4

C8F17CH2OH + Cl -> C8F17C(O)H 6.5x10−13exp(T/-350) 1.0x10−13 2

C8F17CH2OOH + OH -> C8F17CH2OO 4.0x10−12exp(T/200) 1.0x10−12 2

C8F17CH2O -> C8F17OO 2.5x101 0.1x101 4

C8F17C(O)H + hv350 -> C8F17OO 1.6x10−21 0.12x10−21 1

C8F17C(O)H + OH -> C8F17C(O)OO 6.1x10−13 0.5x10−13 1

C8F17C(O)H + Cl -> C8F17C(O)OO 2.8x10−12 0.7x10−12 1

C8F17C(O)H + H2O -> C8F17CHOHOH 1.0x10−23 1

C8F17CHOHOH + OH -> C8F17C(O)OH 1.22x10−13 0.26x10−13 1

C8F17C(O)OO + NO2 -> C8F17C(O)OONO2 1.1x10−11(298./T) 0.1x10−11 3

C8F17C(O)OONO2 -> C8F17C(O)OO 2.8x1016exp(T/-13580) 0.2x1016 3

C8F17C(O)OO + NO -> C8F17OO 8.1x10−12exp(T/270) 0.6x10−12 3

C8F17C(O)OO + HO2 -> C8F17C(O)OH 3.1x10−13exp(T/1040) 0.4x10−13 3,1

C8F17C(O)OO + HO2 -> C8F17OO 1.2x10−13exp(T/1040) 0.4x10−13 3,1

C8F17C(O)OO + CH3O2 -> C8F17OO 1.8x10−12exp(T/500) 3.6x10−13 2

C8F17C(O)OO + CH3O2 -> C8F17C(O)OH 2.0x10−13exp(T/500) 4.x10−14 2

C8F17OO + NO -> C8F17O 2.8x10−12exp(T/300.) 1.4x10−13 3

C8F17OO + HO2 -> C8F17O 4.1x10−13exp(T/500.) 0.4x10−13 4

C8F17OO + CH3O2 -> C8F17O 2.7x10−12exp(T/-470.) 1.9x10−13 3

C8F17OO + CH3O2 -> C8F17OH 1.0x10−13exp(T/660) 0.6x10−14 3

C7F15C(O)F + H2O(l) -> C7F15C(O)OH 3.86x10−6 0.7x10−6 1

1Young and Mabury [75], 2JPL Evaluation [18] using hydrocarbon analog, 3 Wallington
[61], 4 Yarwood [72]
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Table 3.2: Case environment conditions. Photochemical concentrations in cm−3,
temperatures in K

Urban Ocean Arctic
NO 2x1010 1.7x107 1x108

OH 2x107 5.4x106 1.6x107

NO2 2x1011 5x107 1x108

HO2 9x106 1x108 3.7x105

RO2 8x106 1.6x109 2.2x108

h𝜈 9.4x1014 9.76x1014 1x1015

Temperature 299 299 265

Table 3.3: Fractional yield uncertainty contributions of rate constants (%)
Rxn PFOA PFOA PFOA PFNA PFNA PNFA Reaction
# urban ocean Arctic urban ocean Arctic
1 <1 <1 <1 <1 2 <1 C8F17CH2C(O)H + h𝜈 -> C8F17CH2OO
2 <1 <1 <1 2 10 <1 C8F17CH2C(O)H + OH -> C8F17CH2C(O)OO
6 <1 <1 <1 1 2 <1 C8F17CH2C(O)OO + NO -> C8F17CH2OO
7 <1 <1 <1 1 2 <1 C8F17CH2C(O)OO + HO2 -> C8F17CH2OO
8 7 <1 <1 <1 2 <1 C8F17CH2C(O)OO + HO2 -> C8F17CH2C(O)OH
10 5 <1 <1 8 2 4 C8F17CH2C(O)OO + RO2 -> C8F17CH2C(O)OH
11 <1 <1 <1 2 2 5 C8F17CH2C(O)OH + OH -> C8F17CH2OO
12 <1 <1 <1 2 2 4 C8F17CH2C(O)OH + OH -> C8F17C(O)H
14 <1 7 <1 <1 1 27 C8F17CH2OO + NO -> C8F17CH2O
15 <1 10 <1 <1 3 <1 C8F17CH2OO + RO2 -> C8F17CH2O
16 23 48 <1 15 3 57 C8F17CH2OO + RO2 -> C8F17CH2OH
29 6 <1 <1 9 3 <1 C8F17C(O)OO + NO -> C8F17OO
30 <1 <1 <1 1 1 <1 C8F17C(O)OO + HO2 -> C8F17C(O)OH
34 5 <1 35 1 3 <1 C8F17OO + NO -> C8F17O
35 3 2 <1 3 3 <1 C8F17OO + HO2 -> C8F17O
36 <1 13 <1 2 3 <1 C8F17OO + RO2 -> C8F17O
37 8 18 63 2 1 <1 C8F17OO + RO2 -> C8F17OH
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Figure 3-2: Histograms of variability in PFOA (a and b) and PFNA (c and d) theoret-
ical maximum yields for both summer (a and c) and winter (b and d) conditions. Each
count corresponds to a GEOS-Chem grid-box’s output photochemical environment.

Figure 3-3: Uncertainty distributions of PFOA (left) and PFNA (right) yields for
urban, ocean, and Arctic conditions. In both cases, urban yields are much less than
1%
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Figure 3-4: (a) Each photochemical environment plotted in yield-formation time
space. Color indicates membership of a cluster in OH-HO2-NO space. Black circles
indicate unclustered points. (b) Geographic location of clusters. Colors correspond
to the same clusters in both figures.

Figure 3-5: Total flux through each reaction for the degradation mechanism for urban
(a), ocean (b) and Arctic (c) conditions. Each line represents a reaction, with color
of the line indicating the photochemical family of the non-fluorinated reactant, and
the thickness of the line is proportional to the total flux through the reaction over
the course of a simulation.
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Chapter 4

GEOS-Chem simulations of

atmospheric PFCA formation

4.1 Abstract

Perfluorocarboxylic acids (PFCAs) are environmental contaminants that are highly

persistent, bio-accumulative, and have been detected along with their atmospheric

precursors far from emissions sources. The importance of precursor emissions as an

indirect source of PFCAs to the environment is uncertain. Modeling studies have

estimated the atmospheric source of PFCAs using models and degradation pathways

of differing complexities, leading to quantitatively different results.

We present results from newly developed simulations of atmospheric PFCA forma-

tion and fate using the chemical transport model GEOS-Chem. We simulate the most

up-to-date chemistry available to our knowledge for the degradation of the precursors

8:2 FTOH and fluorotelomer iodide (FTI), as well as deposition and transport of the

precursors, intermediates and end-products of the formation chemistry. We find that

yields of long-chain PFCAs vary greatly by geographic location and season, and that

the annual response to increasing emissions is variable. We compare our model re-

sults to remote deposition measurements and find that our model reproduces Arctic

deposition of PFOA effectively. We find that given the most recent precursor emis-

sion inventory [64] the atmospheric indirect source of PFOA and PFNA is 10-45 t/yr
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globally and 0.2-0.7 t/yr to the Arctic.

4.2 Introduction

Perfluorocarboxylic acids (PFCAs) are persistent environmental contaminants that

bio-accumulative [40, 39, 13], and, along with precursor species, have been detected

far from emissions sources [73, 54, 56, 71, 49, 27]. Long-chain PFCAs (lcPFCAs) are

particularly important environmentally because of the increase of detrimental effects

with chain length [40, 39, 13]. Reducing lcPFCA emissions has been the intent of

policy actions due to their health effects [60], resulting in decreasing direct emissions

globally. Emissions of PFCA atmospheric precursors are rising [64], leading to an

increasing importance in the indirect environmental source of PFCAs. Atmospheric

PFCA precursors such as fluorotelomer alcohols (FTOHs) undergo photochemical

reactions [15] which form PFCAs after a many-step reaction mechanism [75]. The

importance of this indirect source of environmental lcPFCAs is uncertain.

Previous studies have modeled lcPFCA formation from the degradation of FTOHs

in the atmosphere [72, 61]. However, studies have indicated that other emitted at-

mospheric precursors exist in the form of other fluorotelomer compounds [75, 64, 65,

74, 9].The atmospheric formation of PFCAs depends on the reaction intermediate

species [68, 12] with common photochemically important species, such as HO𝑥and

NO𝑥. In different atmospheric environments, these species vary over orders of mag-

nitude, affecting the ability of the atmosphere to produce lcPFCAs [Chapter 3]. This

means that the connection between chemistry, transport, and deposition of PFCAs,

their precursors, and intermediates in their formation, is important to the quantity

of PFCA formed in the atmosphere as well as deposited to remote locations such as

the Arctic. Atmospheric chemical transport models are therefore an important tool

to quantifying formation and fate of PFCAs in the atmosphere.

Wallington et al. [61] simulated the atmospheric degradation of 8:2 FTOHs using

the IMPACT atmospheric chemistry model. They found that PFOA yields range

from 1% to 10% depending on time of year and location. Yarwood et al. [72], using
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a high-resolution atmospheric chemistry model with North American coverage, esti-

mated yields of PFOA at approximately 6% on average due to precursor degradation,

and yields of PFNA of much less than 1%. Using a global-scale multispecies mass-

balance model and simplified chemistry, Schenker et al. [46] found that precursor

atmospheric transport followed by degradation could contribute to observed Arctic

PFCAs. Previous work [Chapter 3] found using a detailed box model of updated

chemistry that the capacity of the atmosphere to form PFOA and PFNA from flu-

orotelomer precursors in the absence of non-chemical removal varies over orders of

magnitude based on location and season due to strong dependence on photochemical

environment, and that in regions far from NOx pollution sources, yields of lcPFCA

can be larger than 30%.

In this work, we present results from newly developed simulations of atmospheric

PFCA formation and fate using the global chemical transport model GEOS-Chem.

We simulate the most up-to-date chemistry available to our knowledge for the degra-

dation of the emitted PFCA precursors 8:2 FTOH and fluorotelomer iodide (FTI), as

well as deposition and transport of the precursors, intermediates and end-products

of the degradation chemistry. We find that yields of lcPFCAs vary greatly by ge-

ographic location, and that the annual response to increasing emissions is variable.

We compare our model results to remote deposition measurements and find that our

model reproduces Arctic deposition of PFOA effectively. We find that given the most

recent precursor emissions inventory [64], the atmospheric indirect source of PFOA

and PFNA is 10-45 t/yr globally and 0.2-0.7 t/yr to the Arctic.

4.3 Materials and Methods

We introduce GEOS-Chem simulations of the atmospheric chemistry that leads to

atmospheric PFCA formation and the transport and fate of precursor, intermediate

and PFCA species. We use the GEOS-Chem model [4] framework to simulate the

transport and fate of fluorotelomer precursors, from their chemical degradation to

their deposition and the deposition of their reaction products. We build on estab-
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lished GEOS-Chem simulations of atmospheric photochemistry for reliability and to

facilitate future atmospheric PFCA modeling work.

4.3.1 PFCA formation chemistry model

In our model, we use the precursor degradation mechanism from [Chapter 3] which

builds on the work of previous modeling efforts [61, 72] with additional reactions from

more recent literature [75]. The chemical reactions included are listed in Table 3.6.

The mechanism defines the degradation of 8:2 FTOH and 8:2 FTI, which are the

most commonly emitted fluorotelomer PFCA precursors [64], to form FT-aldehyde

and further intermediate and stable end products including PFOA and other PFCAs.

The FT-aldehyde can be oxidized by OH or photolyzed to form peroxy and acylperoxy

radicals. These radicals react with NO, NO2, RO2, and HO2to form intermediates

which can again be radicalized by OH and ultraviolet light, with further radical reac-

tions leading to stable PFCAs or intermediates with reduced chain length. Reaction

products which have chain lengths shorter than PFHxA (6 Carbons) are aggregated

in our model.

We add the fluorotelomer degradation chemistry to the existing GEOS-Chem

v10.01 full chemistry simulation, which calculates the concentrations of HO𝑥, NO𝑥,

RO2, etc. on a global Eulerian grid using a detailed set of chemical reactions, detailed

emissions inventories, prescribed meteorology from GEOS-5 reanalysis, and wet and

dry deposition schemes. This combination of GEOS-Chem photochemistry with the

fluorotelomer degradation mechanism at a relatively high spatial resolution of 4∘x5∘

provides a detailed representation of the temporal and spatial variability in atmo-

spheric PFCA formation, which is important in estimating the atmospheric source of

PFCA to remote regions [Chapter 3].

Due to the solubility of PFCAs and some of the intermediates in their formation,

wet deposition and scavenging is an important non-chemical removal process to ac-

count for in our simulations. For wet removal, we use a scheme analogous to that

for existing soluble GEOS-Chem species such as H2O2. Wet removal can occur as

rainout and washout from both large-scale and convective precipitation, as well as
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scavenging in updrafts. Fluorinated species in the model are found in liquid water

according to their Henry’s Law constants. We calculate Henry’s Law coefficients us-

ing the Henrywin application in the EPISUITE software package, which uses a group

additive method for estimating physicochemical properties of species for which experi-

mental determinations are unavailable. For some highly fluorinated species, including

FTOHs, this method can be highly inaccurate [1]. Different methods of estimation

give Henry’s Law constants differing by multiple orders of magnitude, and the effect

of these uncertainties should be investigated in future work.

For emissions of 8:2 FTOH and FTI, we use the inventory of Wang et al. [64]

which gives total fluorotelomer production estimates for the period 1962 to present,

and a constant estimate of the non-polymer C8 homologue fraction, which we use

to calculate annual release of 8:2 fluorotelomer precursor. We assume that released

precursor is 90% FTOH and 10% FTI. The inventory gives constant average an-

nual emissions for groups of years, and we interpolate these average values to result

in smooth changes between years while conserving the inventory’s total cumulative

emissions. We assume that the spatial distribution of emissions due to use and dis-

posal of fluorotelomer products is the same as the anthropogenic emissions of NOx

over land. This results in a pattern of emissions similar to those of Stemmler and

Lammel [55] who weighted their emissions by GDP.

Simulations are conducted for years 2004-2012 with 2004 used twice, once as a

spin-up year.

4.3.2 Comparison to observations

We compare our model output 8:2 FTOH concentrations as well as PFOA and PFNA

depositions at remote sites to measurements of these quantities. Gas-phase FTOH

concentrations were measured over the period 2004-2006 on Cornwallis Island in the

Canadian Arctic [56], on a cruise from Europe to the Canadian Arctic Archipelago

[54] and in the city of Toronto [54] by high volume air samplers. We compare these

measurements to monthly average modeled concentrations for the months in which

the measurements were conducted. PFOA and PFNA annual deposition fluxes were
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measured [73] for the years 2004 and 2005 at a collection of ice caps in the Arctic

Archipelago by analyzing snow samples. We directly compare our annual deposition

fluxes for each of these years to the fluxes measured. In both comparison cases, we

include a "representativeness error" [58] in the measurements which estimates the

effect of comparing a point measurement to a model grid-box using the local spatial

variability in the model output.

4.4 Results

4.4.1 Measurement comparison at remote sites

Figure 4-1 shows measured and modeled concentrations of 8:2 FTOH for the locations

described above. The error bars on the measurements indicate statistical variability

over the measurement period and representativeness error. Model concentrations of

8:2 FTOH agree within uncertainty for the remote high-latitude measurement sets.

In both the Cornwallis Island and cruise cases, model mean concentration is lower

than measured mean concentration, but the variability ranges overlap significantly.

This lends confidence to the model’s ability to simulate the fate of 8:2 FTOH in -

and transport to - the Arctic environment. In the case of the Toronto measurements,

model concentrations are significantly lower than the observed values. This could

be due to differences in spatial distributions of emissions in our model compared to

reality or it could be the dilution effect of a relatively large model grid box compared

to a smaller scale city source.

Figure 4-2 shows the model-measurement comparison for deposition to four ice

caps in the Canadian Arctic Archipelago. Each bar is the annual deposition flux

for each ice cap for the years 2004 and 2005. The error bars for the measurements

represent the representativeness errors for the model-measurement comparison. The

figure shows that the model captures the deposition of PFOA at the Arctic sites well,

with the single exception being deposition to the Devon Ice Cap in 2005. Figure 4-3

shows the same comparison, this time for PFNA. In simulating PFNA deposition,
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the model performs less well than for PFOA. Across all site and years, the model flux

is lower than the observed flux, although in some cases within the error bars. This

discrepancy could be due to PFNA formation pathways that are unrepresented in the

model. A sensitivity test was performed for one of these proposed mechanisms, the

gas-phase formation of perfluoroaldehyde hydrate from reaction of perfluoroaldehyde

and water vapor. The model error bars on figure 4-3 show the simulated deposition

flux including this reaction with the rate constant at the upper limit deduced by

experiment [75]. Using this extra reaction, model fluxes are increased to agree better

with the observations. Even in this sensitivity test, Devon Ice Cap measured PFNA

deposition is much higher than the model’s deposition in 2005, much like PFOA.

4.4.2 Deposition of PFCAs

Figure 4-4 shows the spatial distribution of PFOA deposition globally. While total

deposition is considered below, dry deposition is much smaller than wet deposition

globally and wet deposition drives the spatial patterns and deposition magnitudes

discussed. Deposition rates vary across orders of magnitude globally, due to both

variations in PFOA formation and rates of precipitation, as wet deposition is very

important for PFCAs. The highest deposition rates occur near the equator, especially

in the region of the Intertropical Convergence Zone (ITCZ). This is likely due to the

high rates of precipitation in this region. The other highest deposition rates occur over

the oceans downstream of strong emissions sources such as Eastern North America and

Eastern Asia. Desert areas show very little deposition, highlighting the importance of

rain and wet removal for PFCAs. Figure 4-5 shows the same information for PFNA

deposition. Across the globe, PFNA shows a very similar spatial pattern to PFOA

with lower magnitudes of deposition. Farther from the equator and emissions sources,

the ratio of PFOA to PFNA deposition gets closer to 1, highlighting the relationship

between PFNA yield and formation time discussed in previous work [Chapter 3].

Over North America, we see largely the same spatial pattern of PFOA as [72],

with the highest values over the Eastern U.S. and decreasing deposition westward

and northward. PFNA deposition follows a very similar pattern to PFOA with lower
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magnitude for both [72] and this study. In this study we see a faster downstream

decrease in deposition, possibly due to the fact that we do not include direct emissions

of PFCAs, which have a source in the Eastern United States.

Figure 4-7 shows global total PFOA and PFNA deposition as a function of time

for the period of available GEOS-5 meteorology. In each year, PFOA deposition is

substantially greater than PFNA deposition. Both PFOA and PFNA show a gener-

ally increasing trend across the time-period, driven by increasing precursor emissions

globally [64]. While the emissions are effectively linearly increasing, deposition of

PFOA and PFNA are not. The year-to-year variability from the average trend is

driven by variability in precipitation, particularly in the regions of high deposition

fluxes that drive the total, and by variability in atmospheric PFCA formation caused

by year-to-year variations in photochemical environment. Figure 4-6 shows much of

the same behavior in total Arctic deposition, with more inter-annual variability and

more similar magnitudes of PFOA and PFNA deposition.

Wallington et al. [61] estimated 0.4 tonnes per year PFOA deposition to the Arc-

tic using the upper limit of available emissions estimates. This falls within the range

of deposition that we calculate using maximum and minimum emissions scenarios.

Wania [66] estimated with a zonally averaged transport model 150 kg per year de-

posited to the Arctic because of atmospherically generated PFCAs. This corresponds

to our lower bound of PFOA deposition to the Arctic.

4.4.3 Yields of PFCAs

Figures 4-8 and 4-9 show the fraction of total fluorinated compound deposition ac-

counted for by each of PFOA and PFNA, respectively, for each GEOS-Chem grid

box. This value is on average 5% globally for PFOA and 2% globally for PFNA.

Close to NO𝑥sources, this value is on the order of 1% or lower for PFOA and much

less than 1% for PFNA. This demonstrates the reduced capacity for NO𝑥-polluted

atmospheres to form PFCAs from precursors [75],[Chapter 3]. Farther from sources,

PFOA makes up 10% or more of deposited fluorinated material, peaking at close to

60% near Antarctica. The PFNA fraction remains low except very far from sources,
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in the Canadian Arctic and Southern Ocean, where it rises above 10%.

Wallington et al.’s [61] model predicted that the highest PFOA fractions would

occur over the equatorial oceans and Southern Ocean. We find largely the same

patterns, with quantitative differences in both larger maximum and smaller minimum

fractions contributed by PFOA. Yarwood et al. [72] calculate annual yields of 0.84%

PFOA and 0.22% PFNA over the U.S. which are in agreement with our model results.

4.5 Discussion

Our model simulations compare well with measured values for both remote FTOH

concentrations and deposition of PFCAs. While the model appears to capture the

production and deposition of PFOA very well, the source of PFNA to the Arctic sites

is underestimated compared to observations. By including a gas-phase perfluorinated

aldehyde (PFAL) hydration reaction using the experimentally determined upper limit

of its reaction rate [75] we can account for this PFNA underestimation without affect-

ing the PFOA agreement. Since this represents the upper limit of PFNA formation

through the gas-phase hydration mechanism, the actual PFNA production by this

pathway is likely smaller. Another possible hydration pathway is the heterogeneous

hydration of PFAL, which is not resolved in the current version of the model. With

better experimental determinations of the gas-phase and heterogeneous hydration of

PFAL, and the inclusion of both in future iterations of this model, the atmospheric

source of PFNA could be better quantified.

We consider here the degradation of 8:2 FTOHs and FTIs, but PFOA and PFNA

can also be formed through the degradation of 10:2 and larger precursor molecules,

analogously to how PFHpA and PFHxA are formed in our model. While this would

have a quantitative impact on our predicted PFOA and PFNA deposition rates, 10:2

and higher homologues of FT-species are emitted in much smaller quantities than

their 8:2 and shorter counterparts [64]. Fluorotelomer species other than alcohols

and iodides are also emitted, but how small a fraction of the fluorotelomer total

they compose is uncertain. While we neglect them in the current study, the slightly
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different chemistry of fluorotelomer olefins, for instance, could yield more PFCA per

unit emission than FTOHs and FTIs due to their initial degradation reaction. Future

consideration of these species could be important if they are found to be emitted in

non-negligible quantities compared to FTOHs.

Previous modeling work [61] estimated the atmospheric indirect source of PFOA to

the Arctic using a chemical transport model for a representative year with hypothet-

ical emissions. While the chemistry simulated by that model was the most detailed

of its time, it did not include the complete set of reactions used by our model. The

hypothetical emissions scenario used in that study is above more recent emissions es-

timates [64], but their model predicts Arctic deposition which agrees with our upper

limit estimates for the years 2004-2007. For the comparison to measurements that we

make, it is important that we used time-resolved estimates of emissions correspond-

ing to specific meteorological years to properly assess the performance of our model,

which previous global scale atmospheric modeling has not had the opportunity to do.

A more detailed chemistry including most of our model’s reactions was included

in a regional scale modeling study [72] which focused on North American impacts of

atmospherically formed PFCAs, but the effect on the rest of the Northern Hemisphere

was estimated in an average sense. Given the diversity of PFCA formation across

the Northern Hemisphere [Chapter 3] and the spatial differences we see across the

European Arctic, as well as the deposition of atmospherically formed PFCAs to the

Southern Ocean, having global coverage in our model is an asset to quantifying both

Arctic and global sources of PFCAs.

Globally, approximately 5% of the deposited products of fluorotelomer releases are

PFOA. At lower latitudes, this number is commonly between less than 1% and 10%,

but over the Southern Ocean, this number climbs above 50% in places. Similarly,

PFNA makes up much less than 1% of the deposited products at low latitudes but

more than 10% over the Southern Ocean. While fluxes of PFCAs are lower at these

southern latitudes, the longer chain PFCAs of more consequence make up a much

higher fraction.

Our work demonstrates the importance of remote measurements of quantities that
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can be predicted by models, such as total deposition of long-chain PFCAs. Based

on our results, and given the declining importance of direct emissions of long-chain

PFCAs, the signal of atmospherically produced PFCAs in the future should be easily

detectable in the precipitation of the tropics. Sites that are both remote and tropical

such as Pacific islands see high annual deposition rates which could be observed

through measurements of PFCAs in precipitation. We also see in our model results

varying relative abundances of different PFCA homologues in deposition in different

regions, meaning that measurement of many members of the homologue series in a

single location is a valuable dimension for model validation.

We assume a spatial distribution of emissions which is correlated with NO𝑥emissions.

Given the relationship of reduced yields of longer chain PFCAs under higher NO𝑥conditions

[75, 61],[Chapter 3], this assumption will lead to lower modeled atmospheric produc-

tion of long-chain PFCAs than an emissions distribution which is less correlated with

NO𝑥emissions. With that said, we believe that this assumption, which leads to similar

distributions as previous estimates [55], is reasonable.

Using the most up-to-date chemistry available to our knowledge for the degra-

dation of PFCA precursors, we find that our model results compare well to remote

deposition measurements and reproduce Arctic deposition of PFCAs effectively. The

simulations of atmospheric PFCA formation and fate that we introduce in the GEOS-

Chem model framework can be used in future work to investigate further elements

of atmospheric PFCA formation, such as yet-unstudied gas-phase and heterogeneous

reactions, future emissions scenarios, and uncertainty in the spatial distribution of

emissions.
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Figure 4-1: Measurement-model comparison for 8:2 FTOH concentrations at two re-
mote and one urban location. The gray boxes represent the median and the lower and
upper quartiles of the measurement data, with whiskers extending to the full range
of the measurements. The blue boxes represent the model range between maximum
and minimum emissions scenarios.
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Figure 4-2: Measurement-model comparison for PFOA deposition for 2004 (first bars)
and 2005 (second bars) at four Canadian ice caps. The gray boxes represent the
measurement uncertainty, with error bars representing the error from comparing a
point measurement to model grid-box. The blue boxes represent the model range
between maximum and minimum emissions scenarios.
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Figure 4-3: Measurement-model comparison for PFNA deposition for 2004 (first bars)
and 2005 (second bars) at four Canadian ice caps. The gray boxes represent the mea-
surement uncertainty, with error bars representing the error from comparing a point
measurement to model grid-box. The blue boxes represent the model range between
maximum and minimum emissions scenarios, with the blue error bar representing the
perfluorinated aldehyde hydration sensitivity test.
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Figure 4-4: Spatial distribution of PFOA deposition (kg/yr) in each GEOS-Chem
grid-box.

91



Figure 4-5: Spatial distribution of PFNA deposition (kg/yr) in each GEOS-Chem
grid-box.
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Figure 4-6: Time series of annual total Arctic deposition of PFOA (gray) and PFNA
(blue). Orange mark corresponds to Wania [66] estimate and red mark corresponds
to Wallington [61].
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Figure 4-7: Time series of annual total Arctic deposition of PFOA (gray) and PFNA
(blue).

94



Figure 4-8: Spatial distribution of the PFOA fraction of total deposition of fluorinated
species.
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Figure 4-9: Spatial distribution of the PFNA fraction of total deposition of fluorinated
species.
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Chapter 5

Conclusion

In this thesis, I have studied two classes of POPs: PAHs and PFCAs. Using the

GEOS-Chem atmospheric chemical transport model and polynomial chaos expan-

sions, I have quantified and highlighted uncertainties in our simulations of POPs in

the atmosphere, as well as pinpointed where future experiments could reduce our un-

certainty the most. By developing new GEOS-Chem simulations of PFCA formation,

future research concerning the atmospheric formation and transport of PFCAs has

something to easily build on.

In Chapter 2, I quantified the uncertainty in GEOS-Chem PAH simulations that

stems from uncertain model inputs such as physicochemical properties and emissions

estimates. I found that the hydroxyl reaction rates were the leading contributors

to uncertainty, and used measurements along with uncertainty information to bet-

ter constrain the model inputs leading to uncertainty. In Chapter 3, I investigated

atmospheric PFCA formation from emitted precursors using a box model driven by

GEOS-Chem outputs. I quantified the variability in PFCA yields in different atmo-

spheric environments, and the uncertainty in these yields. In Chapter 4, I introduced

simulations of PFCA formation in GEOS-Chem itself. The simulations agreed well

with remote measurements of concentrations and deposition. I calculated global and

Arctic fluxes of PFCAs due to atmospheric formation and transport, and found that

they are 10-45 t/yr and 0.2-0.7 t/yr, respectively.

In Chapter 2, I used the combination of measurements and model results to re-
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duce uncertainty in hydroxyl reaction rate constants and emissions magnitudes. This

highlights the dual importance of both global scale models and consistent measure-

ments at remote locations. Measurements at remote sites can act qualitatively or

quantitatively to ground modeling work to measurable quantities, and global models

can fill in the gaps between point measurements. The combination of both can lead

to a global model whose predictions are optimized to reflect the measurements, and

thereby fill in the temporal and spatial measurement gaps optimally as well.

In Chapters 2 and 3, my uncertainty analysis singles out some important sources

of uncertainty, parameters whose experimental determination would have the greatest

power to reduce uncertainty in model results. In the case of PAHs, the rate constants

for gas phase reactions between PAHs and OH radicals contribute the majority of un-

certainty for phenanthrene and pyrene and contribute significantly for benzo[a]pyrene.

For pyrene and benzo[a]pyrene, these rate constants have only been estimated using

highly uncertain theoretical methods, and any experimental determination would

greatly reduce uncertainty in these important model inputs. Phenanthrene’s OH

rate constant has been measured, but improved precision of this measurement would

provide the largest gains for model output uncertainty for phenanthrene because it

is predominantly in the gas phase. For benzo[a]pyrene, gas-particle partition coeffi-

cients are also important contributors to uncertainty, as this PAH has a high affinity to

black carbon particulate matter. Reducing the error bars on this partitioning would

greatly reduce model benzo[a]pyrene uncertainty. In the case of PFCA formation,

many reactions’ rate constants have yet to be quantified experimentally, but accord-

ing to our analysis, the key rate constants for reducing uncertainty in quantities of

formed PFCAs are those corresponding to fluorinated peroxy radical reactions that

are branching points in the chemical mechanism. The relative rates of these reactions

determine, in general, what fraction of reactant gets its chain length shortened, lead-

ing to shorter chain products. Measurements of these rate constants, or even relative

rate measurements for the reactions at these branching points, would reduce model

uncertainty.

The combination of long-term measurements at remote sites with a global model
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can have important benefits for modelers, as shown in Chapter 2, but my modeling

uncertainty analysis can also inform future measurements. I found, through sensitiv-

ity tests with the PCEs of the GEOS-Chem PAH simulations, that the places where

future measurements could best constrain what we know about PAHs in the atmo-

sphere are far from sources in the remote Southern Hemisphere. These locations,

however, also tend to have the lowest concentrations of PAHs, making them locations

where long-term measurements of the types performed in the Northern Hemisphere

would be most difficult to conduct. Measurements at these remote Southern Hemi-

sphere sites could sacrifice temporal resolution for more accurate determinations of

longer-term average PAH concentrations that are very small. This would be the most

effective way of constraining the important physicochemical properties of PAHs in

a top-down manner, and combined with the above-mentioned experimental determi-

nations of these properties, the very large uncertainties associated with atmospheric

PAH modeling could be greatly reduced. For example, long-term monitoring of at-

mospheric constituents already happens at Cape Grimm in Australia. Adding PAH

monitoring to this existing station could be an achievable first step in Southern Hemi-

sphere PAH measurements.

My GEOS-Chem modeling of PFCA formation tells a similar story regarding

where measurements could best be performed. Long-term measurements at remote

sites are best for constraining the chemistry that leads to long-chain PFCAs, and

in particular measurements of multiple PFCA homologues can better validate our

knowledge of the mechanism of PFCA formation. I found, for instance, that the

ratio of 8 carbon PFOA to 9 carbon PFNA deposited annually in precipitation had

a latitudinal dependence, with much more PFOA at lower latitudes, and the ratio

getting closer to unity moving pole-ward. Long-term measurements at remote sites

at different latitudes could be used to validate these results, and would be important

to future model-measurement comparisons. The GEOS-Chem simulations shown in

Chapter 4 also are characterized by large deposition rates in precipitation in the

tropics. These areas experience large amounts of precipitation, but no measurement

studies have sampled these regions for PFCA deposition over long periods of time. As
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PFCA fluxes are orders of magnitude higher in the tropics than the Arctic according

the GEOS-Chem results, such measurements would be important for constraining the

global budget of atmospherically produced PFCAs.

In Chapter 2, I establish that due to the orders-of-magnitude differences in pho-

tochemical species concentrations in different atmospheric environments, the uncer-

tainty due to rate constant uncertainty at given conditions is secondary to the vari-

ability in conditions that an air parcel experiences as it is transported through the

atmosphere. Therefore, is it important to be able to capture this variability to effec-

tively model the atmospheric formation of PFCAs, meaning that CTM simulations

are necessary to properly resolve PFCA formation. Previous studies have either in-

cluded most of the necessary details but been constrained to regional scale, or have

used a global model with many simplifying assumptions. The benefits of using the

GEOS-Chem framework for modeling PFCA formation are many. For one, it is global

scale and after the work of Chapter 4, includes the detailed representation of PFCA

formation chemistry. This global scale is important due to the diversity of PFCA

formation environments and the differences in deposition rates that we see across re-

gions of the globe. Secondly, it is a community model which has many groups working

to improve many aspects of the model outside of the particulars of PFCA formation

chemistry. Any improvements to other elements of the model are easily transferred to

PFCA simulations so that future work could benefit from these improvements with-

out explicit effort. GEOS-Chem also benefits from having an adaptable emissions

inventory system which means that future estimates of emissions important to PFCA

formation can be seamlessly folded in to the simulations with very little effort. Since

GEOS-Chem is driven by reanalysis meteorology, it can be used to compare to spe-

cific measurements in time and space and capture episodic behavior in chemistry and

transport. This is important for capturing both inter-annual variability and seasonal-

or shorter-scale variability in both predicted fluxes of PFCAs from the atmosphere

and accurate comparisons to observations. Finally, work has already been done to

couple GEOS-Chem deposition outputs from the atmosphere to an ocean model for

POPs, meaning that work to model the entire atmosphere-ocean system for PFCAs
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is a possible next step.

Future emissions of long-chain PFCA precursors are hoped to be controlled by

programs such as the EPA Stewardship program. Compliance with this program by

emitters of fluorotelomer compounds would greatly limit the atmospheric production

of long-chain PFCAs. It is doubtful, however, that the growing Asian fluorotelomer in-

dustry will be in compliance with this Stewardship program, and global fluorotelomer

emissions will likely continue to increase in the near term even if Western sources see a

sharp decline. Given that we calculate that globally, 5% of emitted 8:2 fluorotelomer

precursors are deposited as PFOA, rising precursor emissions could eventually return

atmospheric PFOA to pre-reduction levels. Programs to curb long-chain precursor

emissions are therefore necessary on a global level to ensure the eventual decline of

PFOA in the environment.
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