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ABSTRACT 
 
Ozone formation is a complex, non-linear process that depends on the atmospheric 
concentrations of its precursors, nitrogen oxide (NOx) and Volatile Organic 
Compounds (VOC), as well as on temperature and the available amount of sunlight. 
The dependence of ozone formation on meteorology makes the timing of emissions 
important, suggesting the need for a temporally differentiated regulation for NOx 
emissions. Such a flexible NOx regulation policy, so-called “smart trading”, which is 
designed to target ozone episodes by reducing NOx emissions prior to and during 
forecasted episodes, has the potential for reducing the compliance cost and helping to 
solve the persistent ozone non-attainment problem in the Eastern United States. 
However, the total compliance cost of this new policy depends critically on the 
accuracy of ozone forecasting. 
 
This thesis aims to address the question of whether a NOx trading program that 
differentiates across emissions by time could reduce ozone concentrations more 
cost-effectively than the conventional command-and-control method in the Eastern 
U.S. given the uncertainty in ozone forecasting. A cost-effectiveness analysis is 
conducted to compare the average cost for achieving a certain amount of ozone 
reduction under the proposed smart trading plan and the command-and-control policy. 
The probability distribution of the compliance cost under a smart trading policy is 
simulated using a stochastic decision model based on the simulated electricity 
generation and air quality data. This study demonstrates the scientific and economic 
feasibility of a time-differentiated trading scheme. I explore whether such a regulatory 
design is justifiable with respect to ozone forecast accuracy by conducting sensitivity 
analysis of ozone prediction errors and discover that uncertainty in ozone forecasting 
may not be a major limiting factor for the feasibility of a time-differentiated NOx 
cap-and-trade program. 
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Chapter 1. Introduction 

 

Epidemiological and toxicological studies, including controlled human exposure 

studies, have linked short-term, or acute, ozone exposure (i.e. exposure that lasts less 

than 8 hours) to health problems for concentrations of ozone at or above 0.08 parts per 

million (ppm) or 80 parts per billion (ppb). The associated health problems include 

coughing or wheezing, headaches, nausea, and throat and lung irritation. In particular, 

these problems impact children, people with lung disease, and active adults. Besides, 

ozone also damages agriculture, materials, and ecosystems [U.S. EPA 2006a, Feltzer 

et al, 2005]. 

 

Tropospheric ozone (O3) is an oxidant formed from photochemical oxidation of 

Volatile Organic Compounds (VOC), Nitrogen Oxides (NOx) and Carbon Monoxide 

(CO) in the presence of sunlight [Seinfeld and Pandis, 2006]. NOx compounds are 

primarily emitted by electric power plants and on-road vehicles; while VOC 

emissions come from biogenic sources such as trees, on-road vehicles, and 

petrochemical plants. Sometimes, NOx and VOCs are co-emitted from the same 

sources [Martin, 2008; Ryerson et al., 2003]. In addition to ozone formation, NOx 

itself is associated with respiratory problems and also serves as a precursor for fine 

particulate matter (PM); and many VOCs are human toxins [Martin, 2008]. Thus 

ozone regulation also has ancillary benefits through the reduction of other harmful 

pollutants.  

 

In 1997, U.S. EPA announced the National Ambient Air Quality Standards (NAAQS) 

for eight-hour averaged ground level ozone to be 80 ppb1. EPA uses the average of the 

annual 4th highest 8-hour daily maximum concentrations from each of the last three 

years of air quality monitoring data to determine a violation of the ozone standard. In 

2008, EPA further lowered the 1997 standard to 75 ppb. 

                                                        
1 Within the context of this thesis, 8-h ozone concentration (or level) will be used to represent the average 
concentration of ground level ozone over the previous eight hours. 
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Emission cap-and-trade programs have drawn great research attention over the past 

two decades by promising an economically efficient mechanism for reducing air 

pollution [Tietenberg, 1998]. Such a program is designed so that facilities that emit 

below their assigned emission allowances can sell allowances in a market, while 

facilities that wish to emit above their allowances must buy additional allowances. 

Lowering the number of allowances (the cap) over time thus leads to the total 

reduction of emissions. Such cap-and-trade programs for NOx emissions have been 

planned or implemented in several ozone non-attainment areas. Examples are 

California’s Regional Clean Air Incentives Market (RECLAIM) since 19942; the East 

Coast’s NOx Budget Program since 19993; and Texas’s Emissions Banking and 

Trading of Allowances (EBTA) program4. Similar programs for Highly Reactive VOC 

(HRVOC) also exist in areas that have identified the need for significant VOC 

reductions, such as Houston and surrounding areas in Texas [Wang et al., 2007]5.  

 

Many areas of the U.S. have found it particularly difficult to achieve the ozone 

standard. As shown in Figure 1, almost all major urban and industrial areas in the U.S. 

fall into the non-attainment category. The Eastern U.S., especially the counties 

surrounding Philadelphia and Baltimore are typical examples of areas that suffer from 

persistent ozone non-attainment problems (see Figure 2). In 2005 EPA adopted Clean 

Air Interstate Rule (CAIR) to provide a federal framework to limit the emission of 

SO2 and NOx from the 28 eastern states and the District of Columbia with declining 

caps in an initial Phase 1 (2009 for NOx and 2010 for SO2), and a subsequent Phase 2 

(2015 for both SO2 and NOx) in order to reduce the concentrations of ozone and 

Particulate Matters (PM) in the affected (downwind) states. However, the EPA’s air 

quality modeling shows that further decreases in the seasonal cap on NOx emissions 

from stationary sources in 2009 and 2015 will not guarantee that all areas of the 

                                                        
2 Detail information see http://www.aqmd.gov/reclaim/reclaim.html 
3 Detail information see http://www.epa.gov/airmarkt/progsregs/nox/sip.html 
4 Detail information see http://www.tceq.state.tx.us/implementation/air/banking/ebta_sb7_program.html 
5 Detail information see http://www.tceq.state.tx.us/implementation/air/banking/hrvoc_ept_prog.html 
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Eastern U.S. attain the ozone air quality standards by 2015 (Martin 2008, cite U.S. 

EPA 2006b). One potential reason for the persistency is that ozone formation depends 

not only on the quantities of precursor emissions but on their timing and location, 

indicating an urgent need for a carefully designed policy that considers the 

complicated ozone formation mechanism. 

 

The federal court in 2008 issued an opinion that vacated the CAIR and the associated 

NOx cap-and-trade program (State of North Carolina v. Environmental Protection 

Agency, No. 05-1244, slip op. (2008)), finding that the regional framework of the 

CAIR “does not prohibit polluting sources within an upwind state from preventing 

attainment of NAAQS in downwind states”. The federal court’s decision will 

significantly affect NOx and SO2 allowance trading markets in the future. Whether a 

replacement regulation of CAIR that preserves some vestiges of the old regime will 

be developed in the near future is still unknown. However, this certainly opens up the 

discussions of designing a NOx regulation to help the downwind states of Eastern U.S. 

achieve ozone attainment goals. 
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Figure 1: Map of non-attainment areas in the United States for the 8-hour ozone 

standard in 2008.  

 

 

 

Figure 2: Map of the Classic PJM area (District of Columbia, Delaware, Maryland, 

New Jersey, or Pennsylvania) with the locations of ozone monitors and ozone 

non-attainment sites up to December 2008. 

Pink shaded area: 8-hour ozone non-attainment counties (52 counties in total) 

Green triangles: locations of ozone monitoring sites 

Red triangles: 37 ozone monitoring sites used in this study 

Source: US EPA Office of Air and Radiation, AQS Database 
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1.1 Background Information on Ozone Exceedence in the Eastern U.S. 

 

Tropospheric ozone, as an urban pollutant, is not directly emitted from industrial 

sources; instead, its formation and transport is a complicated, highly nonlinear process. 

The most important factors affecting photochemical ozone formation are sunlight 

intensity, absolute and relative concentrations of VOC and NOx, “reactivity” of VOC, 

temperature, and humidity [Seinfeld and Pandis, 2006]. All of these factors vary in 

time and by location. Past research has revealed that ozone formed by the same 

amount of NOx could vary by a factor of five under different meteorological 

conditions [Mauzeral, 2005]. Additionally, winds transport NOx and VOC emissions 

and cause ozone formation to be displaced in time and space from the original source. 

In the meanwhile, precipitation and soil moisture exert a strong control on ozone 

deposition rates. As a result, ozone concentrations downwind of NOx, CO and VOC 

emission sources also depend on wind speed, wind direction, precipitation, humidity 

and soil moisture, which further complicate the problem [Mauzeral, 2005].  

 

Ground-level ozone is a pervasive regional problem in the eastern United States, with 

frequent exceedences of the 8-hour ozone NAAQS occurring during hot summer days. 

Scientific studies have uncovered a rich complexity in the interaction of meteorology 

and topography with ozone formation and transport. In the eastern United States, the 

worst ozone pollution episodes usually occur when slow-moving, high-pressure 

systems develop in the summer. This is the time with the greatest amount of daylight, 

when solar radiation is most direct and air temperatures become quite high. These two 

prerequisites for abundant ozone formation are further compounded by a circulation 

pattern favorable for pollution transport over large distances. In the worst cases, the 

high-pressure systems stall over the eastern U. S. for days, creating ozone episodes of 

strong intensity and long duration. High ozone episodes are often terminated by the 

passage of a front that brings cooler, cleaner air to the region [NRC, 1991]. 

 

Many areas in the Eastern U.S. have been shown to be sensitive to NOx emissions 
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and insensitive to VOC emissions, making NOx control the major option for reducing 

ozone concentrations [Martin, 2008]. Anthropogenic NOx emissions are caused by 

incomplete fossil fuel combustion and are mainly from two sources: on-road and 

off-road vehicles, and electricity generating units (power plants). Also, all 

northeastern states are covered under a single airshed, the so-called ozone transport 

corridor (OTC), and the long-range transport of NOx and ozone from states in the 

Eastern U.S. such as Pennsylvania and New Jersey greatly contribute to the ozone 

exceedences in northeastern states such as Massachusetts. Thus, reducing NOx 

emissions from mobile vehicles and from power plants in the upwind states of the 

northeastern U.S. are two major options for helping the whole area to achieve ozone 

standards. 

 

1.2 NOx “Smart trading” Policy  

 

The dependence of ozone formation and transport on meteorology makes the timing 

and location of precursor emissions important, suggesting the need for a temporally 

and spatially differentiated regulation for NOx and VOC emissions. It is politically 

difficult to implement spatially differentiated NOx regulation, i.e. to target specific 

facilities for application of control technologies/emissions reductions, because it is 

generally difficult to establish broadly acceptable criteria to do so. In order to address 

the dependency of ozone formation on meteorology, some NOx emission trading 

programs are limited within a geographic region that is relatively homogenous in 

meteorology patterns; and trading between regions is prohibited [Martin, 2008]. For 

example, the former version of the East Coast’s NOx budget program-- the OTR 

budget program initially allocated different allowances to three different zones; and 

RECLAIM limits trading between coastal and inland areas [Nobel 2001, cite Farrell, 

1999 and Zerlauth, 1999]. On the other hand, temporally differentiated NOx 

regulations do not suffer from this problem. Therefore, this study focuses on 

time-differentiated NOx regulations, in particular, time-differentiated NOx 

cap-and-trade programs, but will pay special attention to the environmental impact 
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and the problem of “hot-spot” formation or “wrong-way trades” as a result of this 

program.  

 

The proposed time-differentiated NOx cap-and-trade program, so called “smart 

trading”, which is designed to target ozone episodes by reducing NOx emissions prior 

to and during forecasted high ozone episodes, has the potential for reducing the 

compliance cost and for solving the persistent ozone non-attainment problem in the 

Eastern United States. Hypothetically, if the proposed “smart trading” scheme is to be 

implemented, the price of NOx allowance could be determined by the local 

administrative agency one day in advance, so that NOx polluters, mainly electricity 

generating facilities, could adjust their production for the next day.  

 

One way for power plants to achieve short-term NOx reduction is through 

redispatching, or changing which particular generating units fill electricity demand at 

a given time. The “dispatch” normally causes the lowest cost generating units to be 

used first to fill demand, provided that network constraints and other system 

requirements are met. In the case of NOx cap-and-trade, NOx allowance price 

changes the relative costs of generating units due to differences in their NOx emission 

rates. Therefore, a higher NOx price6 would shift the NOx emissions from those units 

with higher NOx emission rates to those with lower rates. In this way, the total NOx 

emissions are reduced while the system’s electricity demand is still satisfied. 

 

There are other ways to achieve short-term NOx reductions other than electricity 

redispatch. For example, instead of producing less electricity, a power plant operator 

might choose to adjust the air-to-fuel ratio or change the combustion environment in 

the furnaces to lower NOx emission rates, given an economic incentive. However, 

unlike the costs for electricity redispatch, the incremental costs associated with these 

operational changes are difficult to estimate and only limited data is available. For this 

                                                        
6 If a differentiated cap-and-trade program is to be implemented, number of NOx allowances will vary from day to 

day, instead of “NOx price”. Here, we are using “NOx price” as a convenient way to measure the cost of such a 
differentiated trading program. 
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study, operational responses are not modeled; i.e., we assume that the NOx emission 

rate of each EGU cannot change, and that the only decision a power plant operator 

could make is whether to dispatch electricity generation or not given the NOx 

allowance price. The NOx emission changes under electricity redispatch therefore 

provides a conservative estimate of the cost-effectiveness of a time-differentiated 

regulation for NOx emissions from point sources.  

 

The main reason why smart trading could help lower ozone concentration at a lower 

cost than a policy requiring additional control technology is that it targets lowering 

NOx emissions only on ozone episode days. Different ozone concentrations can result 

from the same NOx emissions depending on the meteorology. As a result, greater 

ozone reductions can be achieved by NOx emission reductions during high ozone 

days. Therefore, compared with reducing NOx emissions during high ozone days, 

reducing NOx emissions during low ozone days is not only less important in terms of 

public health, but also less cost-effective in lowering ozone concentrations. However, 

in order for such a flexible regulation to be implemented, weather and atmospheric 

chemistry forecasting must be able to predict the conditions conducive to ozone 

formation with sufficient accuracy and lead-time (24-48 hours) to influence 

decision-making.  

 

However, whether this goal can be achieved as expected is uncertain and in fact 

depends on the accuracy of the day-ahead ozone forecasting. Specifically, false 

positive events (a forecasted high ozone day turns out to be a low ozone day) increase 

the unnecessary cost on non-ozone days; while false negative events (a forecasted low 

ozone day turns out to be a high ozone day) decrease the amount of ozone that could 

otherwise be reduced. The costs of unnecessary reductions and the costs of failing to 

comply with the NAAQS must be included into the decision analysis when evaluating 

this new policy. 

 

Although more than 60% of NOx emissions in U.S. are from mobile sources (EPA 
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AIRDATA7, see Figure 4 and 5), this work focuses on a differentiated NOx regulation 

for stationary sources rather than for mobile sources, because fewer data are available 

that describe the variation of mobile source emissions in time and by location. 

Stationary anthropogenic sources of NOx, including power plants, industrial boilers, 

and other industrial facilities, contributed 22% of the total 2005 NOx emissions in 

Eastern States [Martin, 2008, cite U.S. EPA 2006b], with about 97% of this 

contribution from power plants. Past research has shown that it is technically feasible, 

in terms of the ability to redispatch even at high electricity demand times, for power 

plants to respond to a differentiated regulation with short-term NOx reductions 

according [Martin 2008]. My research advances the discussion of to what extent 

ozone regulations could make use of scientific information about the importance of 

the timing to improve the cost-effectiveness of the regulation of NOx emissions from 

power plants and how this policy is limited by the advances of modeling techniques; 

i.e., prediction errors. 

 

1.3 Motivation 

 

It is important to conduct cost-effectiveness analysis for the proposed smart trading 

policy. Smart trading does not require additional NOx control technology; rather, it 

provides flexibility to power plant operators to decide whether it is economically 

preferable to reduce electricity generation to reduce NOx emissions or to generate 

electricity, and, if necessary, buy NOx permits from other plants. Thus the electricity 

generation is re-dispatched on ozone conducive days among the electricity generating 

units within an electrical network so that the electricity generation is shifted to those 

“cleaner” plants that emit less NOx than others. In this way, the NOx emissions and 

ozone concentrations in the whole area are reduced with lower cost than installing 

NOx control technologies such as Selective Catalytic Reduction (SCR) and Selective 

Non-Catalytic Reduction (SNCR), while still satisfying the total electricity demand in 

the area. Over time, if the cost of reducing NOx emissions through dispatching 
                                                        
7 http://www.epa.gov/oar/data/ 
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electricity generation within an electrical network becomes too expensive, NOx 

control technologies could become a cost-effective strategy for some generators. In 

other words, smart trading can also provide an incentive for power producers to adopt 

NOx control technologies. I do not model here this second multi-year decision by 

power producers. As a first step, it is essential to compare the cost of reducing NOx 

emissions and ozone concentrations under both smart trading policy designs and 

under a pollution control technology policy design in order to determine the 

circumstances under which each policy design would out-perform the other. 

 

Compelling scientific and economic arguments support the use of a differentiated 

regulation rather than further reductions in the undifferentiated annual or seasonal cap, 

but there are challenges to implementation. One major challenge is that the 

time-differentiated regulation requires a reliable, highly accurate ozone forecasting 

system. The forecasting system must be able to provide prediction of the daily 

maximum ozone level at least 24-48 hours ahead with enough accuracy in order to 

influence generator dispatch decisions. The uncertainty in ozone forecasting will add 

to the compliance cost for achieving a certain ozone mitigation goal under this 

approach. In particular, a false positive event, or false-alarm of high ozone forecast, 

would lead to resource misuse and additional cost; while a false negative event would 

allow high ozone concentrations and continued ozone non-attainment (which imposes 

other costs on states and localities). Under extreme conditions where ozone forecast is 

especially inaccurate, a time-differentiated NOx control policy can cost more and 

reduce less ozone than either a conventional command-and-control policy or an 

undifferentiated cap-and-trade program. This suggests that there exists a threshold for 

both the Type I (false positive) and Type II (false negative) errors above which the 

smart trading policy would not be an effective policy design.  

 

Three-dimensional atmospheric chemistry and transport models (CTM) are widely 

used by the U.S. EPA and state administrative agencies for ozone attainment 

demonstrations. These models simulate the photochemical reactions, atmospheric 
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transport, diffusion, advection, and deposition of ozone and its precursors on a 

three-dimensional grid covering the air-shed of interest, and provides a reliable 

method for modeling ozone concentration as responses of emissions of ozone 

precursors and meteorology. Typical examples of such models are Comprehensive Air 

quality Model with extensions (CAMx) [Environ, 2009] and Community Multi-scale 

Air Quality model (CMAQ) [Byun, 2006]. However, there is significant uncertainty 

in ozone modeling using these models, mainly due to uncertainties in model structure, 

parameters, and inputs. The uncertainty in model structure can be reduced by adding 

more grid cells, explicitly resolving more physical and chemical processes rather than 

relying on parameterizations, and/or improving model algorithms. Uncertainties in the 

input data and parameters mainly include uncertainties in emission inventories of 

NOx and VOC, estimates of reaction rates and meteorology forecasts. For example, 

some studies report the uncertainty in the biogenic emission estimates of VOC 

inventory for the United States to be of the order of 300% [Roselle, 1994]. 

Improvements in emission inventories of NOx and VOC, and in meteorology 

forecasts would lower uncertainties in this category.  

 

It is important to determine the threshold type I and type II errors, or the tolerance 

range for the forecast errors, because it is critical to the evaluation of a flexible 

regulation plan that relies on accurate ozone forecasting, such as the “smart trading” 

policy modeled here. If the required forecast accuracy is currently available using 

current modeling methodologies, further investigation of this regulatory approach is 

warranted. If the required forecast accuracy is currently not achievable, this analysis 

could also provide guidelines for the EPA to estimate the potential value of improving 

their models, improving emission inventories, and increasing computational capacity.  

 

This study will evaluate the validity and technical and economic feasibility of a smart 

trading policy plan by conducting cost effectiveness analysis. This study will also try 

to answer the question of whether a temporally more “targeted” reduction plan would 

help solve the persistent non-attainment at a lower cost than a policy requiring 
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additional pollution control equipment. 

 

1.4 Research Goals and General Approaches 

 

This work aims to provide economic justifications for a time-differentiated NOx 

cap-and-trade program. The central question I aim to address is whether it is 

economically more cost-effective to lower ozone concentration through NOx smart 

trading compared with the traditional command-and-control policies, and whether the 

implementation of this program is likely to be limited by the uncertainty in ozone 

modeling and the advances of modeling techniques in the near future. 

 

In the Eastern U.S., most power plants that participate in the seasonal NOx 

cap-and-trade programs also participate in one of three wholesale electricity markets: 

the New England Power Pool, the New York Power Pool, or the PJM Interconnect 

[Martin, 2008]. Considering that these systems have similar basic structures and 

characteristics, PJM is used here to analyze the potential behavior of a typical 

electrical power system under the proposed time-differentiated NOx cap-and-trade 

program in the Eastern U.S.. All of these systems have “system operators” who 

coordinate the balancing of supply and demand; and they could also coordinate the 

pricing of NOx allowances upon the forecast of a high ozone day under smart trading.  

 

The “Classic” PJM power system is the original Pennsylvania, New Jersey, Maryland 

power system that included these three states as well as the District of Columbia and 

Delaware. PJM has since expanded, but in this analysis we restrict attention to the 

Classic PJM region. 

 

The East Coast’s seasonal NOx cap-and-trade programs cap the total emissions from 

affected stationary sources between May and September each year (the “ozone 

season”). This analysis uses historical emission inventories of ozone precursors and 

meteorological data to simulate the hourly ground level ozone concentrations in the 
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PJM area during June, July and August 2002. The summer 2002 is selected as a case 

study because it represents a typical summer ozone season with higher ozone 

occurring in the mid-Atlantic and northeastern urban corridor and the greater Ohio 

River Valley region. The simulated ozone concentrations will serve as a “test sample” 

to compare the cost-effectiveness of smart trading and the SNCR case. May and 

September are not included into this analysis since the meteorological data of the 

spatial resolution we need are not available for these two months of 2002. 

 

In reality of NOx regulation, states are most likely to impose secondary control 

technology on the dirtiest plants that run most of the time, such as coal-fired plants. 

Also, most NOx emissions in the Eastern U.S. are from coal-fired plants; and most of 

these coal-fired plants have already installed primary control technologies 

[NESCAUM, 1998]. Thus secondary NOx control technologies are expected to play 

an important role in controlling point source NOx emissions in the Eastern U.S.. 

SNCR is one of the most discussed secondary NOx control technologies. Therefore, 

this study compares the cost-effectiveness of smart trading under different NOx prices 

with that of installing SNCRs to all coal-fired power plants in PJM. 

 

In this study, I will develop an analysis tool to integrate electrical power system and 

photochemical modeling into a stochastic decision analysis model (as shown in Figure 

3), which will facilitate informed decision-making on NOx control policies under 

uncertainty in ozone prediction. I will simulate the electricity generation dispatch 

given different prices of NOx allowances under smart trading, and the resulting NOx 

emission re-distribution. I will then apply a three-dimensional Atmospheric Chemical 

and Transport Model--CAMx, which is widely used for ozone attainment 

demonstrations, to evaluate the impact of NOx emission changes under smart trading 

on ozone concentrations [Morris 2001, 2003]. I use the summer of 2002 (June, July 

and August) as a case study for smart trading and develop a two-state Markov Chain 

model to simulate the occurrence of high ozone days based on the simulation of 

summer 2002 data. When analyzing the cost and ozone reduction, I incorporate errors 
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in ozone forecasts into the stochastic decision analysis by assuming the modeled 

world is the real world and that the errors in ozone forecasts occur randomly at a 

prescribed rate in this modeled world. I then conduct a sensitivity analysis of the 

mean total cost and mean total reduction of peak ozone of the NOx smart trading 

policy for different error rates in ozone forecast, and thus determine threshold values 

for false positive and false negative ozone forecast errors above which the “smart 

trading” policy is less cost-effective than a command-and-control strategy. In this way, 

I demonstrate the level of ozone forecast accuracy required for a time-differentiated 

regulatory design to be effective. 

 

1.5 Overview of Chapters 

 

This thesis is organized as follows:  

 

Chapter 2 examines the anthropogenic sources of ozone precursor emissions, and 

explains the justifications for policies that limit anthropogenic NOx emissions rather 

than VOC emissions as the main ozone control strategy in the Eastern U.S..  

 

Chapter 3 reviews the methods and technologies power plants use to control NOx 

emissions. One of these technologies, Selective Noncatalytic Reduction (SNCR) is 

used as one example of traditional approach requiring additional emissions reductions 

through technology to compare with smart trading in terms of the cost-effectiveness in 

reducing ozone concentrations. The NOx abatement cost of SNCR and smart trading 

will also be discussed in this chapter.  

 

Chapter 4 turns to the results of potential short-term NOx reductions from power 

plants under smart trading when assuming that the NOx emission rate is fixed and 

electricity re-dispatch under higher NOx price is the only response from power plant 

operators. This chapter will discuss the changes of NOx emissions, as well as the 

changes of electricity prices as a result of re-dispatch under different NOx prices and 
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compare the results to the case of installing SNCRs to all the coal-fired plants. This 

chapter will also discuss the daily cost of electricity generation under re-dispatch. 

 

Chapter 5 introduce the 3-dimensional photochemical and transport model used to 

simulate the ozone concentrations in the PJM area during summer 2002, and the 

reduction of the 8-hour daily maximum ozone concentrations as a result of electricity 

redispatch under different NOx prices, and installing SNCRs.  

 

Chapter 6 introduces the framework of decision making about smart trading and 

SNCR.  

 

Chapter 7 conducts the stochastic decision analysis in conjunction with the 2-state 

Markov model given prescribed errors in ozone forecasts. This chapter will also 

conduct sensitivity study of the cost-effectiveness of smart trading on the Type I and 

Type II errors; as well as the “threshold” Type I and Type II errors on the cost of 

SNCR. Chapter 7 also discusses the circumstances for rejecting and accepting smart 

trading, the implications of the results on SNCR, and the estimation of costs of 

upgrading current atmospheric model.  

 

Chapter 8 discusses the potential political and legal barriers for the implementation of 

this policy plan. Chapter 9 includes conclusion and future work. 
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Figure 3: Illustration that shows the components of the system and the flow chart of 

analysis.  

Blue box: the electrical system and photochemical models used to simulate the NOx 

emissions and resulting ozone concentrations under dispatch. Red box: inputs of the 

stochastic decision model that varies on the day-to-day basis. Green box: inputs of the 

stochastic decision model that is constant through each decision analysis. Black box: 

model outputs. 
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Chapter 2. Anthropogenic Sources of Ozone Precursors 

 

Daily peak ozone concentrations are nonlinear and non-monotonic functions of VOC, 

NOx, and the ratio of VOC/NOx. At sufficiently low ratios of VOC/NOx, the 

conversion of NO to NO2 and subsequent formation of ozone is limited by the 

availability of organic compounds (so-called VOC limited or NOx saturated cases), 

whereas at sufficiently high ratios of VOC/NOx, ozone production is limited by the 

available amount of NOx. As shown in the ozone isopleths that can be easily found in 

any atmospheric chemistry textbook [Seinfeld, 2006], reductions of VOC emissions 

do not change peak ozone levels if ozone formation is NOx-limited. In contrast, 

reductions of NOx emissions typically increase peak ozone levels if ozone formation 

is VOC-limited, until a transition to a NOx-limited condition has been achieved, after 

which further reductions of NOx begin to lower peak ozone levels. Close to the 

turning points of the ozone isopleths, reducing both NOx and VOC can lead to ozone 

reduction.  

 

Generally speaking, most ozone pollution problems in the Eastern U.S. can be 

attributed to either one or the combination of the two main anthropogenic sources of 

ozone precursors: power plants and urban transportation. These two sources have 

distinct NOx and VOC compositions and thus lead to different ozone plume 

characteristics in the downwind area in terms of both ozone production rate and 

magnitude.  

 

In a typical urban setting, strong sunlight, high temperatures, significant VOC and 

NOx emissions from mobile sources, and biogenic emissions of reactive VOC from 

trees, forests and vegetation combine to generate optimal conditions for rapid 

photochemical ozone production. As shown in Figure 4, mobile vehicles are the 

biggest contributor to both NOx and VOC emissions in the US---60% and 38%, 

respectively, in 2002. Co-emissions of NOx and VOC from spatially dispersed 
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sources lead to fast ozone formation and thus elevated ozone concentration in the 

urban areas diluted somewhat due to the dispersal.  

 

In contrast, electric power plants are the second largest NOx source in the US—22% 

in 2002, but they have negligible VOC emission compared to their NOx emissions 

(NOx/VOC~100, from Figure 4). Consequently, VOC/NOx ratios are usually so low 

that ozone formations in the plumes of air transported away from power plants are 

initially suppressed. During plume transport, ozone is formed over time as a result of 

mixing the plume NOx with primarily biogenic reactive VOCs in the environment.  

 

Different ozone control strategies should be applied to different regions in the U.S., 

depending on the main source types of NOx and VOC, and VOC/NOx; i.e., whether 

the ozone formation in the region is NOx-limited or VOC-limited. Generally speaking, 

rural regions have relatively high background biogenic VOC concentrations and 

limited sources of NOx, while urban regions are the opposite. Thus ozone formation 

tends to be VOC-limited in urban-core areas of large cities, NOx-limited in rural areas, 

and less VOC-limited and more NOx-limited in downwind suburban areas. In 

addition, NOx-limited conditions can also be created within urban plumes where the 

faster consumption of NOx creates a condition of VOC excess, and by unusually large 

(and highly reactive) VOC emissions from industrial sources such as found in the 

Houston, Texas metropolitan area. 

 

NOx reduction may lead to different ozone changes depending on the location of the 

NOx sources. In the case of the Eastern U.S., most areas are NOx-limited, due to the 

large amount of trees that produce high levels of VOCs. The main NOx sources in the 

Eastern U.S. are mobile transportation and fossil fuel combustion in power plants 

(Figure 5). Thus reducing NOx emissions from power plants is expected to reduce the 

maximum ozone concentrations. In contrast, most areas in California are VOC-limited. 

It has been shown that reductions in NOx emissions from diesel trucks not only did 

not decrease ozone, but actually increased it [Blanchard, et al., 2008]. Thus, more 
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stringent controls on VOCs rather than NOx would be more effective for cutting 

ozone air pollution there.  

 

 

 

 

 

Figure 4: (upper) NOx and (lower) VOC emissions by source category in U.S. in 2002. 

Source: US EPA Office of Air and Radiation, AQS Database 
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Figure 5: Fraction of anthropogenic NOx emissions by category in the PJM area. 

Source: US EPA Office of Air and Radiation, AQS Database  
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Chapter 3. NOx Control Technologies 

 

The previous chapters discussed three reasons to consider a time-differentiated NOx 

cap-and-trade program such as smart trading. First, the impact of NOx emissions on 

ozone formation varies in time and by location. Second, policies that have motivated 

large reductions in NOx emissions without attention to the timing and location have 

been shown to be incapable of helping all areas of the Eastern U.S. attain the ozone 

NAAQS and have been invalidated. Third, a time-differentiated NOx cap-and-trade 

program can provide an incentive for power producers to adopt NOx control 

technologies such as Selective Catalytic Reduction (SCR) and Selective 

Non-Catalytic Reduction (SNCR). 

 

As stated earlier, smart trading does not require additional NOx control technology; 

rather, it provides flexibility to power plant operators to decide whether it is 

economically preferable to reduce electricity generation to reduce NOx emissions or 

to generate electricity. In this way, the NOx emissions and ozone concentrations in the 

whole area are reduced with lower cost than installing NOx control technologies such 

as SCR and SNCR. Over time, if the cost of reducing NOx emissions through 

dispatching electricity generation within an electrical network becomes too expensive, 

NOx control technologies could become a cost-effective strategy for some generators. 

Thus it is essential to compare the cost of reducing NOx emissions and ozone 

concentrations under both smart trading policy designs and under a pollution control 

technology policy design in order to determine the circumstances under which each 

policy design would out-perform the other. 

 

This chapter will give an overview of the methods and technologies that are expected 

to play a significant role in future NOx reductions in Eastern U.S.. One of these 

technologies, SNCR, is used as one example of traditional approach requiring 

additional emissions reductions through technology to compare with smart trading in 
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terms of the NOx abatement costs. 

 

3.1 Overview of NOx Control Technologies for Power Plants 

 

The technologies for controlling NOx emissions from power plants can be categorized 

into primary controls and secondary controls in general. Primary control methods are 

those that reduce the amount of NOx originally formed in the primary combustion 

zone of the furnace. Typical examples of primary controls are Ultra Low NOx 

Burners and combustion modifications, such as adjusting the air-to-fuel ratio, 

maintaining adequate furnace pressure and biasing the combustion environment in the 

furnaces. The secondary control methods are those that reduce the NOx concentration 

of the exhaust gas from the primary combustion zone, including Selective 

Non-Catalytic Reduction (SNCR), Selective Catalytic Reduction (SCR), 

Conventional Reburning Technology (Gas and Coal Reburning), Fuel-Lean Gas 

Reburn™ (FLGR™), hybrid SNCR/SCR, Amine Enhanced Gas Injection (AEGI), 

Advanced Gas Reburn (AGR) and combinations such as Reburning SNCR. According 

to a 1998 NESCAUM report [NESCAUM, 1998], in 1996 about 91% of utility boiler 

NOx is produced by coal-fired power plants and more than 70% of NOx from 

coal-fired boilers in the OTR was from units that were equipped with Low NOx 

Burners or Combustion Controls. Thus NOx reduction in the OTR has largely been 

achieved through the application of primary controls. Thus secondary controls are 

expected to play an important role in the reduction of NOx from coal-fired facilities in 

the Eastern U.S.. 

 

SCR and SNCR are two popular secondary control methods for reducing NOx 

emissions from coal-fired power plants [NESCAUM, 1998]. In SCR systems, 

ammonia vapor is used as the reducing agent and is injected into the flue gas stream, 

passing over a catalyst. NOx emission reductions of up to 70% can be achieved. The 

optimal temperature is usually between 300°C and 400°C. In SNCR systems, a 

reagent is injected into the flue gas in the furnace within an appropriate temperature 
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window. Emissions of NOx can be reduced by 30%~60%, with a typical value of 40%. 

The NOx and reagent (ammonia or urea) react to form nitrogen and water.  

 

SNCR is generally capable of moderate levels of NOx reduction. It is expected to play 

a major role in future reductions of NOx from coal-fired plants in the Northeastern 

U.S., either alone or in combination with other primary or secondary control 

technologies. A principal advantage of SNCR is its low capital cost relative to most 

other secondary control approaches, which also makes it very attractive as a seasonal 

control strategy. In this study, the cost of SNCR and associated reductions of NOx 

emissions and ozone concentrations will be used to compare with those of smart 

trading under different NOx allowance prices.  

 

3.2 Cost Analysis of SNCR 

 

Selective Non-Catalytic Reduction (SNCR) is a NOx reduction technology that is 

highly process dependent. Thus a 40% NOx reduction rate is typically assumed for 

this technology, because it is in the range of reduction that is typically possible with 

this technology. The actual level of reduction by SNCR would be determined on a 

case-by-case basis. Some facilities will not be able to achieve 40% NOx reduction. 

Others may be capable of greater reductions by SNCR. For simplicity, a 40% 

reduction of NOx emission rate (from coal-fired power plants) is assumed for this 

study. 

 

The 1998 NESCAUM report estimated the typical cost, including the O&M costs, for 

a SNCR system is $0.78-1.05/MWhr for a boiler that has NOx emission rate at 0.45 

lb/MMBTU, and is $1.24-1.84/MWhr for a boiler that has NOx rate at 1.00 

lb/MMBTU. Considering that the NOx emission rates of all the coal plants in PJM are 

within the range of 0.04-0.8 lb/MMBTU, $1.23/MWh, which is the average of 

$0.78/MWh, $1.05/MWhr, $1.24 and $1.84/MWhr, is used to represent the average 

cost associated with the two types of boilers, and a 20% uncertainty associated with 
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this cost is assumed. The capital cost for both categories of boiler is $15/KW.8  

 

In this analysis, the SNCRs are installed at all coal-fired plants in PJM (98 units in 

total). The total nameplate capacity for the 98 coal power plants in the PJM region is 

25070 MW/h. The average output generation for the 98 plants is estimated to be 

17300 MW/h, yielding an average capacity factor of approximately 70%. 

 

Up front capital cost=25070MW*$15/kW*1000kW/MW=$376M 

Annual net payment=$40.4 M, assuming a project lifetime of 15 years and a real cost 

of capital rate of 6.67% (nominal rate of 12% with inflation at 5%).9 

Monthly average O&M cost= 

 (Cost/MWhr*25070MW*0.7*24hours/day*365days/year-capital cost)/12 

Assuming a 3-month ozone season and no operation outside of the ozone season, the 

total seasonal cost is the sum of annual capital cost and monthly O&M cost. 

 

If cost/MWhr=$1.23, monthly average O&M cost=$12.4 M, total seasonal cost for 3 

month=$40.4 M+$12.4 M*3=$77 M, daily average cost=$0.84 M as shown table 1. 

These values are estimated in 1998 dollars. Since the daily costs for the “smart 

trading” are calculated in 2005 dollars, the SNCR cost is converted into 2005 real 

dollars using a 5% inflation rate in order to compare the cost of SNCR and “smart 

trading”. This yields an average daily cost of 1.2 Million $/day during the June- 

July-August ozone season in 2005 dollars. 

 

The results shown in table 1 should be regarded as typical values, and actually cost 

may be highly uncertain. Since the cost/MWh provided by the 1998 NESCAUM 

report is $0.78-1.05/MWhr and $1.24-1.84/MWhr for two typical types of boilers. A 

20% uncertainty is assumed for the estimated daily cost of the SNCR case.  

                                                        
8 Capital costs are assumed for a ~200 MW or smaller boiler. $/KW for capital is expected to be lower for larger 
boilers. 
9 The average age of boilers in the Eastern U.S. is about 30 years. The unusually high age of boilers in this region 
makes a shorter lifetime more appropriate for this study.    
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Table 1 Summary of Approximate Costs of SNCR 

 

Capacity Average 

Capacity 

Factor 

Capital Cost Annual Control 3 month Seasonal Control 

(June-July-August) 

MW % 

 

$/KWh M$/year $/MWhr M$ M$ M$/day 

(1998 $) 

M$/day 

(2005 $)

 

25070 

 

 

70 

 

 

15 

 

 

40 

 

 

1.23 

 

 

189

 

77 0.84 1.2 

 

 

3.3 Cost of Smart Trading 

 

Assume that the only response a power plant operator has upon the forecast of high 

ozone days is whether to dispatch electricity generation or not given the NOx 

allowance price. Then the cost of smart trading is estimated using the cost of 

electricity redispatch, which is the increased variable cost of electricity generation 

under higher NOx price relative to the base price. The increased cost of electricity 

generation for an individual EGU is takes into account of the generator’s output level, 

heat rate, the cost of fuel, NOx emission rate and the price of NOx allownce.  

 

In the Classic PJM simulations, the variable costs of the power plants are represented 

by linear cost curves, in which NOx emissions are incorporated as an additional fuel 

cost: 

ci ($/MWh) = Hi(pfi + pniNi) + O&Mi 

where, for each generating unit i, Hi is its heat rate (mmBTU/MWh), pfi is the price of 

fuel ($/mmBTU), pni is the price of NOx permits ($/ton), Ni is the unit’s NOx 



     34

emission rate (tons/mmBTU), and O&Mi is the unit’s variable Operation and 

Maintenance costs ($/MWh).  

 

The increased cost of electricity generation under higher NOx price relative to the 

base price for each generating unit i at a given hour is then Ci
’: 

Ci
’=ci ui(higher NOx price)- ci ui(base NOx price) 

where ui is the unit’s output in MWh. 

 

The increased daily cost of smart trading is then the summation of Ci
’ across over 

each hour of the day and over all EGUs in PJM. The cost analysis of smart trading 

will be discussed in detail in the later chapters. 
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Chapter 4. Flexible NOx Reductions through Power Plant Redispatch in Classic 

PJM 

 

Past research has shown an urgent need for a flexible and targeted regulation of NOx 

emissions, which could provide incentives to reduce the environmentally most 

damaging emissions. Electricity generators contribute to about 20% of total 

anthropogenic NOx emissions in the U.S. and about 22% in the PJM area in 2002 

(EPA only released this information up to 2002, from the EPA AIR website; see 

Figures 4 and 5). One example of a flexible regulation is to reduce NOx emissions 

from power plants through electricity re-dispatch upon the forecast of upcoming 

ozone episodes 24-48 hours in advance, shifting some of the electricity generation 

from units with high NOx emission rates to those with low rates10.  

 

Previous analysis [Martin, 2008] has shown that flexibility exists in the PJM system 

to reduce NOx emissions through redispatch because  (1) even during the hours of 

the highest demand, there is reserve generating capacity that is not actually generating 

electricity; (2) there is heterogeneity in the NOx emission rates across generators and 

the low NOx generation is underutilized, and (3) transmission constraints do not 

prevent redispatching and, in some cases, actually relieves congestion. Redispatching 

could occur between natural gas burning units and coal burning units, or between 

units of the same fuel type with different NOx rates. This means that achieving NOx 

reductions through re-dispatch is technically feasible. However, questions remain in 

order to test the feasibility of this regulatory concept, including: 

 

1) Do changes in NOx emissions from redispatching actually lower ozone 

concentrations, especially during high ozone episodes? 

                                                        
10 There are other ways of achieving short-term NOx reduction other than electricity redispatch. The system being 
modeled in this study is a simplified model that assume the NOx emission rate of each EGU can not change, so 
that the only decision a power plant operator could make is whether to dispatch electricity generation or not given 
the NOx allowance price.  
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2) How would the electricity prices change with increasing NOx price, considering 

the inelasticity of electricity demand?  

3) Is the electricity generation redispatch likely to move large amounts of NOx 

emissions into one area (and thus lead to the formation of “hot spots”)? 

 

These questions will be addressed in this and the next chapter. Considering that other 

Eastern U.S. power systems share key characteristics with Classic PJM, the results 

presented in this chapter is likely to hold generally for other power systems in the 

Eastern U.S.. 

 

4.1 Description of Methods 

 

The “Classic” PJM power system is the original Pennsylvania, New Jersey, Maryland 

power system that included these three states as well as the District of Columbia and 

Delaware. PJM has since expanded, but in this analysis we restrict attention to the 

Classic PJM region (PJM for short). 

  

The electricity generation re-dispatch under different NOx prices, which determine 

the NOx emission changes from individual power plants, is modeled using the 

PowerWorld Simulator11. Optimal Power Flow (OPF) mode is used to simulate the 

potential magnitude of reductions in NOx emissions that can be achieved as a 

consequence of redispatch while meeting electricity demand in PJM. In OPF mode 

the network constraints (e.g., line limits) were enforced. Only network contingencies 

are considered in this study, but not security contingencies. 

 

The PJM Financial Transmission Rights (FTR) base-case power flows is used to 

simulate Classic PJM [Martin, 2008]. It contains nodal loads and power injections for 

representative levels of demand at different times. Two scaled cases of FTR are used 

in this study to simulate the hourly electricity redispatch: the “high utilization” case 

and the “July average” case. The “high utilization” case scaled the FTR base case 
                                                        
11 Available from http://www.powerworld.com/downloads/general.asp 
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according to the July peak demand; while the “July Average” case is based on the 

PJM FTR July (average demand) load flow. The hourly electricity generation is scaled 

from either one of the two base cases depending on whether the hourly demand is 

closer to the average or peak demand.  

 

In the Classic PJM simulations, NOx emissions and NOx allowance prices are 

incorporated into the variable costs of the power plants as an additional fuel cost. For 

each level of demand and NOx price, the units are “dispatched” in order of least cost 

according to these cost curves. By explicitly including the emissions cost in the 

generator’s supply cost curve, we are able to endogenize the generator’s response to 

changing NOx stringency. The NOx price is applied uniformly to all units in PJM 

with $2k/ton reproduces the policy as of 2002 (which I define as the base case). Smart 

trading policy scenarios within the context of this study consist of increasing the base 

case NOx price to $30k, 50k, 100k and 125k/ton. 

 

Data on the average delivered cost of fuel for natural gas, coal, petroleum products, 

and petroleum coke delivered to the electricity sector from the EIA’s Electric Power 

Monthly for August 2005, as well as fuel types and heat rates from the EPA’s 

EGRID12 database, are used to generate the cost curves. The cost curves are 

calibrated to reproduce several solved load-flow cases for representative hours. We 

constrained the generation from all initially operating units to be at least 20% of their 

capacity and units could generate up to 100% of their summertime rated capacities. 

We also held the generation from all units outside Classic PJM and imports and 

exports constant.  

 

4.2 NOx Emission Changes 

 

Figure 6 shows the level of NOx reduction for the aggregate PJM region that result 

from different NOx prices. Prices of $30k, 50k, 100k and 125k/ton NOx result in 

                                                        
12 EGRID: http://www.epa.gov/cleanenergy/energy-resources/egrid/index.html 
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approximately 23%, 30%, 41% and 42.5% NOx emission reduction, respectively, 

through electricity re-dispatch. In comparison, installing SNCRs at the 98 coal 

electricity generation units in the Classic PJM leads to ~34% NOx emission reduction 

in aggregate. Estimated from Figure 6, the maximum NOx emission reduction that 

can be achieved through electricity re-dispatch is around 43%. The incremental NOx 

reduction from $125k relative to $100k /ton NOx is less than 2%. Therefore, this 

analysis only considers electricity re-dispatch with NOx prices up to $100k/ton. 
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Figure 6: The fraction of total NOx reduction over the whole PJM network during 

June 1st ~August 31st, 2002. Vertical line: fraction of total NOx reduction if install 

SNCR to all coal plants. 

 

Figure 7 shows the time series of total NOx emissions from the Classic PJM through 

electricity re-dispatch under NOx prices of $2k and 100k/ton. It is shown that hourly 

NOx emissions have the diurnal cycle with peak in the afternoon and minimum value 

in the night. The maximum hourly NOx emission rate in aggregate is around 42 tons, 

the minimum rate is around 7 tons, and the mean rate is around 22 tons; and the rate 

does not have strong episodic feature. 
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Figure 7: Time series of total NOx emissions across the Classic PJM system during 

June 1st~ August 31st 2002 with the NOx price to be $2k and 100k/ton. 

 

Figure 7 shows that electricity redispatch would likely lead to more NOx reductions 

during an average or low demand hour than during a peak demand hour. To illustrate 

this feature more clearly, the diurnal cycle of NOx emissions as modeled for June 2nd 

and August 12th are shown in shown in Figure 8 (a) and (b). Considering that the peak 

electricity demand for PJM is roughly 48000 MW, June 2nd 16:00 (16:00 in Central 

Time; 15:00 in Eastern Time) with a demand of ~26500 MW represents an average 

demand hour, and August 12th 16:00 with a demand of ~46700 MW, represents a peak 

demand hour. 

 

From Figure 8, it can be seen that even during peak demand hours, re-dispatch is still 

able to reduce NOx emissions, although the amount reduced is smaller during the 

higher demand hour in terms of percentage (but not tons). In peak demand hours (e.g., 

afternoon of August 12th, as shown in Figure 8b), installing SNCRs at all coal power 

plants is likely to reduce more NOx than through re-dispatch, even at a NOx price of 

$100k/ton; while during an average (e.g., afternoon of June 2nd) or low demand hour 

(e.g., night or early morning of June 2nd) the SNCR case is likely to reduce a similar 
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amount of NOx as achieved by re-dispatch with a NOx price of $50k/ton.  
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Figure 8: Time series of total NOx emissions on (a) June 2 and (b) August 12, 2002 if 

different NOx price are applied ($2k, 30k, 50k and 100k/ton) and installing SNCR on 

all coal units. 
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The fact that less NOx reduction can be achieved during the peak demand hours than 

during average demand hours does not diminish the value of smart trading at all. Peak 

electricity demand usually happens in the early afternoon. However, scientific 

research shows that morning emissions are more potent ozone precursors than 

emissions later in the day [Thompson, 2009]. Power plants release large amounts of 

NOx, but no VOC, so that ozone formed gradually, rather than instantaneously, when 

NOx from power plants reacts with the VOCs in the environment during its transport 

to the downwind areas. Hence reducing NOx emissions in the morning is crucial in 

reducing the ozone concentration of the downwind areas in the early afternoon. 

Considering that ozone formation is significantly driven by temperature and the 

amount of sunlight, reducing NOx emissions in the morning is then crucial in 

reducing the daily maximum ozone concentrations in the downwind areas of power 

plants. Due to the same reason, some policies have attempted to control the morning 

release of ozone precursor emissions. For example, regulations have been proposed in 

Texas to limit the morning construction and commercial lawn and garden activity 

during the ozone season [Thompson 2009]. Therefore, the NOx emission reductions 

during average demand hours, instead of peak demand hours, are most important in 

evaluating the alternative ozone control technologies.  

 

Figure 913 shows the aggregate percentage NOx reductions as a result of electricity 

re-dispatch given NOx prices of $30k, 50k and 100k/ton and as a result of installing 

SNCRs in all coal-fired power plants (assuming a 40% of reduction of NOx emissions 

from these units) versus hourly electricity demand. This figure shows that during the 

lowest and highest demand hours NOx emission reduction that is achievable through 

redispatch are similar for the three NOx prices, and that the SNCR case could reduce 

more NOx than the three cases of redispatch. The former phenomena is caused by the 

fact that during the lowest demand hours electricity generation is so low that the costs 

of NOx emissions do not drive re-dispatch as much as during high demand hours. 

                                                        
13 The hourly electricity generation is scaled from either the average or peak demand base case. The percentage 
NOx reductions in the middle region of the average and peak demand hours are linearly interpolated. 
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Considering that the aggregate hourly NOx emissions during the low demand hours 

are below 10 tons, controlling NOx emissions during these hours have negligible 

effects in reducing the occurrence of high ozone episodes. The latter phenomena is 

caused by the fact that during the peak demand hours a majority of units are at their 

full capacities so that the flexibility of dispatching NOx emissions is significantly 

limited. From Figure 9, within the middle range of electricity demands (or average 

demand hours), the order of NOx reduction for the four cases are: $100k case > 

SNCR similar or slightly more than $50k case > $30k case. 
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Figure 9: Percentage decreases of total hourly NOx emissions across all the power 

plants in the Classic PJM network for (a) $30k (b) $50k (c) 100k and (d) SNCR 

relative to the $2k/ton NOx base case versus hourly electricity demand for PJM. 

 

 

The comparison of the magnitudes of NOx reductions between the three trading cases 

and the SNCR case are based on average demand hours (20,000~44,000 MWh) due to 

the following two reasons. First, 84% of the PJM hourly demands in 2002 are within 

this range, with 15% of demands are smaller than 20,000 MWh and only 2% of 
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demands are higher than 44,000 MWh14. Second, as stated earlier, NOx reductions 

that occur in the morning are more important in reducing the daily peak ozone level 

than in the afternoon or nighttime. And the electricity demands during the morning 

hours, even on a peak demand day, fall within the range of average demands.  

 

Figure 10 shows the changes in NOx emissions under the $50k/ton NOx scenario 

(relative to the $2k baseline) plotted against the NOx emission rates for all the 

dispatchable units in PJM that have non-zero NOx emissions during an average 

demand hour (6/2 16:00). Each point in the scatterplots represents the change in 

emissions and emissions rate for one EGU during that hour. Positive Y-values 

represent the NOx emission reductions for those EGUs, while negative values 

represent increases in NOx increases in tons. Different units for the positive and 

negative Y-values are used here, which makes it easier to tell whether large amounts 

of NOx emissions are shifted to individual units. We want to compare the percentage 

NOx reduction that can be achieved through redispatch and by installing the SNCRs. 

However, if the percentage NOx reduction are used as the uniform unit for all the 

Y-values, quite often we will encounter a NOx increase of 50 or 100 times more than 

in the base case, but we could not find out the magnitude of the increase from such a 

plot. Figure 10 shows that the EGUs in PJM can be classified into three groups in 

general: the first group of units (black box) are those that have high NOx emission 

rates (higher than 0.25 ton/MWh in this case) and reduces more than 40% of NOx 

emissions as a result of redispatch under the NOx price of $50k/ton. It would be more 

cost-effective for these units to reduce NOx emissions through re-dispatch than 

installing SNCR. The second group of units (purple box) are those that reduce zero or 

small percentage of NOx emissions (0 or <40%) as a result of redispatch. The third 

group of units (green box) are those that have low NOx emission rates (lower than 

0.15 ton/MWh in this case) and increases NOx emissions as a result of redispatch. 

Figure 10 clearly shows the shifts of NOx emissions from the units with higher NOx 

                                                        
14 During summer 2002 (June 1st~August 31st, the fraction of low, average and peak demand hours are 
approximately 8%, 84% and 8%, respectively.  
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emission rates to those with lower NOx rates, or, from the first group to the third 

group. The shifting of NOx emissions happens both between coal burning units and 

non-coal units, and between units of the same fuel type with different NOx rates. The 

changes of electricity prices as a result of redispatch will be used to help explain the 

difference of the three groups in the next section. 

 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.2

0

0.2

0.4

0.6

0.8

1

NOx emission rate (ton/MWh)

%
 N

O
x 

re
du

ct
io

n 
(+

) 
or

 N
O

x 
in

cr
ea

se
 in

 t
on

s 
(-

)

Average Demand Hour, $50k/ton NOx

 

 

coal

non-coal

Small or z ero changes
of emiss ions

High NOx rat e,
more t han 40% of
emiss ion reduct ions

Low NOx rat e,
emiss ions  increases

  

Figure 10: Changes of NOx emissions between $50k and base case versus NOx 

emission rates during one average demand hour (June 2nd, 4pm) Positive part of the 

y-axis represents the percentage reduction of NOx emissions; and the negative part of 

the y-axis represents the amount of NOx increases in tons. 

Black box: Group 1 of units that have high NOx emission rates and reduces more than 

40% of NOx emissions. Purple box: Group 2 of units that could not reduce much of 

NOx emissions (0 or <40%). Green box: Group 3 of units that have low NOx 

emission rates and increases NOx emissions. 
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As shown in Figure 10, the maximum increase of the NOx emissions with a NOx 

price of $50k/ton during an average hour is smaller than 0.2 ton, indicating that 

electricity generation redispatch is unlikely to move large amounts of NOx emissions 

into one or several units and form “hot spots”. In the next chapter, the changes of 

ozone concentrations as a result of redispatch will be examined using an atmospheric 

chemistry and transport model to further test this hypothesis. 

 

4.3 NOx Abatement Costs Associated with Redispatch 

 

The real-time and day-ahead wholesale electricity markets in the Eastern U.S. use the 

dispatch auction mechanisms that yield locational prices for electricity. Locational 

Marginal Price (LMP) is used here to study the changes of electricity prices resulting 

from the redispatch. According to the definition of LMP, it represents the marginal 

cost to the system of electricity generation at each generating unit, accounting for 

transmission constraints. 

 

As shown in Figure 11, the average electricity price across all generating units 

increases dramatically during high demand hours. Also, the base electricity price 

shifts from $40/MWh (or 4 cents/KWh), which is generally consistent with the LMPs 

available from the PJM website, to $100/MWh (or 10 cents/KWh) when NOx 

allowance price increases from $2k/ton to $100k/ton. 
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Figure 11: Time series of mean electricity price across all dispatchable (fossil) 

generation units (464 EGUs in total) for the $2k, 30k, 50k and 100k/ton of NOx case 

scenarios.  

 

 

Figure 12 shows the changes in LMP under the $50k/ton NOx scenario (relative to the 

$2k baseline) plotted against the NOx emission rates for all the dispatchable units in 

PJM that have non-zero NOx emissions during an average demand hour (6/2 16:00). 

Each point in the scatterplots represents the change in LMP and emissions rate for one 

EGU during that hour. The three groups of units defined in the last section are shown 

in different colors. Combined with results shown in Figure 10, the first group contains 

units that reduce NOx emissions through redispatch with approximately $100/MWh 

increase in LMP. The second group contains units that hardly reduce NOx emissions 

while the inelasticity of electricity demand forces the LMP to increase. From Figure 9, 

the increases of LMP for these units approximately follow a linear relationship with 

the units’ NOx rates, so that the costs of NOx allowances almost completely 

determine the increases of electricity prices. The third type of units contains those that 

have low NOx emission rates and that increase NOx emissions with higher NOx price. 

NOx emissions are usually shifted to these units from the first group, with smallest 
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magnitude of increase in LMP compared with the other two groups. From Figure 12, 

the first group of units tend to fall below the diagonal while the third group of units 

tend to fall above the diagonal. The existence of the second group of units is likely to 

be due to location and congestion, which will be tested more thoroughly in the future 

work. 
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Figure 12: Increases of Locational Marginal Price (LMP) for all the dispatchable 

EGUs that have non-zero NOx emissions versus NOx emission rate with NOx prices 

increase from $2k/ton to $50k/ton during a typical average demand hour.  

 

 

As defined in section 3.3, NOx abatement costs through re-dispatch are modeled as 

the increased variable costs of electricity generation as NOx price increases from 

$2k/ton to a higher value (e.g., $30k, $50k and $100k/ton). Time series of daily NOx 

abatement costs through electricity re-dispatch for the three NOx prices are plotted in 

Figure 13. For comparison between the NOx cap-and-trade cases and the SNCR 

control case, the estimated average daily cost of installing SNCR in all coal power 

plants in PJM is also shown (the horizontal blue line).  
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Figure 13 shows the high abatement costs of NOx re-dispatch on peak demand days. 

The daily abatement cost for the $100k/ton NOx case rises to $6M on the highest 

peak demand day. This is due to the high cost in dispatching electricity generation 

during the high demand hours and the inelasticity in electricity demand. However, 

once time-differentiation is introduced, the average daily abatement cost of 

re-dispatch will be significantly lowered. This analysis will be presented in chapters 7 

and 8. 
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Figure 13: Time series of increased daily electricity generation cost associated with 

the NOx prices of $30k, 50k and 100k/ton relative to the base case under electricity 

redispatch, as well as the estimated daily cost of SNCR relative to the base case.  
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Chapter 5. Impact of NOx Emission Changes on Ozone Concentrations  

 

The previous chapter discussed the shifting of NOx emissions from units with NOx 

emission rates to those with lower NOx rates as a result of redispatch under higher 

NOx prices. This chapter will examine the occurrence of ozone exceedences in a 

typical ozone season, and whether the changes in NOx emissions from redispatching 

actually lower ozone concentrations, especially during high ozone episodes. The 

formation of a “hot-spot” as a result of the re-distribution of ozone concentrations will 

also be studied in this chapter.  

 

5.1 Ozone Concentrations Modeling 

 

Photochemical 3D grid modeling provides a quantitative and objective way to 

forecast ozone levels, given NOx and VOC emissions, meteorological forecasts, and 

other relevant physical, chemical and geological parameters. The Comprehensive Air 

Quality Model with Extensions (CAMx) [Environ, 2009] is one such 3D grid model 

that determines concentrations of air pollutants by simulating processes associated 

with emissions, transport, chemistry, and dry or wet deposition. It is currently being 

used by the U.S. EPA and state administrative agencies for attainment demonstrations 

[Morris, 2001 and 2003] in areas that have violated the NAAQS for ozone.  CAMx 

simulates the emission, dispersion, chemical reaction, and removal of pollutants in the 

troposphere by solving the pollutant continuity equation for each chemical species on 

a system of nested three-dimensional grids. 

 

CAMx modeling is very demanding in time and computational resources and was 

performed for this study in collaboration with researchers at the University of Texas, 

Austin. The two nested modeling domains are shown below. The coarse domain 

includes the eastern United States and has a 36 km resolution; the fine (nested) 

domain covers the PJM area, and has a 12 km resolution. A sub-grid scale 
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Plume-in-Grid (PiG) module is used to treat the chemistry of large point source 

plumes. 

 

 

Figure 14: Modeling domains with colored rectangles shows nested grids: blue for 36 

km domain and light green for 12 km domain. 

 

5.2 Simulated Ozone Concentrations in the Base Case 

 

This study focuses on the period June 1st through August 31st of the year 2002 (92 

days). CAMx is used to simulate the ozone concentration changes associated with 

each NOx prices under NOx smart trading, as well as the SNCR case during this 

period. The comparison of ozone level changes between different policy scenarios is 

based on the simulated 8-hour daily maximum ozone concentrations at the 37 ozone 

monitoring sites in the Philadelphia/Baltimore region (as shown in Figure 1). The 37 

simulated 8-hour daily peak ozone levels are averaged and plotted in Figure 15, which 

shows that there are 5-6 major high ozone episodes during the 92-day period.  This 

figure also shows that the 8-hour ozone standard is violated episodically and that the 

daily 8-h ozone concentration exhibits strong autocorrelation. In other words, a 
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randomly selected day is more likely to be a high ozone day if the previous day is a 

high ozone day, and vice versa. This is because the occurrence of ozone exceedence is 

driven by specific meteorological patterns, which occur episodically and disappear 

gradually. 
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Figure 15: Daily 8-hour maximum ozone concentration average over all the 37 ozone 

monitoring sites in the Philadelphia/Baltimore area from June 1st to August 31st, 2002. 

 

5.3 Changes of Ozone Concentrations associated with Smart Trading and SNCR 
 

Based on the simulated eight-hour averaged ozone concentrations, the difference in 

the daily maximum ozone concentrations between the base case and each of the 

policy scenarios is calculated for each grid cell for each day. Ozone difference maps 

are generated that show, for each grid cell, the differences in the daily maximum 

ozone concentrations. These maps display the spatial scale and magnitude of air 

quality impacts associated with changes in NOx emissions between the scenarios. 

 

The impact of NOx emission changes on ozone level changes is complicated and 

greatly depends on meteorology. Figure 16 shows the base case daily eight-hour 

maximum ozone concentrations along with the differences in daily eight-hour 
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maximum ozone concentrations between the $100k/ton trading case and the base case 

over the PJM area on 7 representative days: June 4, June 25, June 29, July 1, Aug 2, 

Aug 12, and August 29. It can be seen that the redispatching of NOx emissions across 

the PJM area leads to reductions in daily maximum 8-hour ozone concentrations of 

approximately 3 ppb to 12.4 ppb, and the ozone reduction varies greatly from day to 

day. Results in Figure 16 illustrate the strong influence of transport during different 

synoptic flow patterns on the downwind area and how they moderate decreases in 

maximum 8-h ozone due to the NOx point source emissions reductions. Typical flow 

patterns are: southerly (June 4), northerly (June 29), westerly/southwesterly (July 1) 

flow regimes, and stagnant regimes (June 25, August 2 and August 12). The stagnant 

regime cases experienced the slowest wind flows, so the most notable decreases in 

maximum 8-h ozone are primarily confined close to the point sources rather than 

extending downwind and therefore result in larger ozone reductions. Nevertheless, the 

westerly/ southwesterly flow case (July 1) show a more pronounced area of ozone 

reduction extending downwind of the point sources to the northeastern corridor and 

enhanced the benefits of the NOx reductions.  

 

The impact of NOx emissions (e.g., the $100k case results in approximately a 41% 

NOx reduction across all EGUs in the PJM system) is shown to be greater on high 

ozone days, such as June 25, August 2 and August 12, than days during which the 

ozone levels are relatively lower, such as June 4th, June 29th and July 1st. On low 

ozone days NOx reductions could even increase ozone levels in the area, such as on 

August 29. This suggests that a carefully designed control strategy that considers the 

temporal variability and the role of meteorology into ozone mitigation could more 

effective at reducing peak ozone concentrations. 

 

June 25th, August 2nd and August 12th represent typical high ozone episode days 

during summer 2002, during which the eight hour ozone standard is violated for 

almost all the areas within the modeling domain, with areas around Baltimore and 

Philadelphia having maximum ozone concentrations over 120 ppb. Although ozone 
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reductions are pervasive during these days, we do see small areas where daily 

eight-hour maximum ozone level increases by up to 3 ppb. These small areas are 

often located outside or downwind of regions where ozone concentrations are the 

highest within the whole PJM area. This could be due to the redispatch of NOx 

emissions from units with higher NOx emission rates to those with lower rates; or 

associated with NOx reduction dis-benefit, as in the case of August 29th. 
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Figure 16: Tile plots of the daily maximum eight-hour ozone concentrations for the 

base case and the difference of the daily maximum eight-hour ozone concentrations 

between the 100k trading case scenario and the base case on selected dates (June 4, 

June 25, June 29, July 1, Aug 2, Aug 12, and August 29)15.  

 

 

                                                        
15 Time label of 6:00 and 0:00 are all system defaults and does not mean the actual time when the maximum ozone 
concentration happens. 



     56

6/1 6/10 6/20 6/30 7/10 7/20 7/31 8/10 8/20 8/31
-0.5

0

0.5

1

1.5

2

2.5

pp
b

 

 

$30k/ton NOx

$50k/ton
$100k/ton 

SNCR

 

 

Figure 17: Time series of ozone reduction amount (ppb) averaged across the 37 ozone 

monitoring sites under $30k, 50k and 100k/ton of NOx smart trading and SNCR.  
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Figure 18: Average ozone reduction amount (ppb) across the 37 ozone monitoring 

sites versus the average daily 8-h maximum ozone concentrations across the 37 sites. 
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Figure 17 shows the total differences in the 8-hour daily maximum ozone 

concentrations between the base case and each of the policy scenarios (3 trading cases 

and the SNCR case) for the 37 ozone monitoring sites for each day during summer 

2002. The average reduction of daily 8-h maximum ozone across over the 37 sites 

during the 92 days are calculated to be 0.27, 0.41, 0.59 and 0.35 ppb, respectively, for 

the $30k, 50k, 100k and the SNCR case scenarios. Recall from Chapter 4, the 

aggregate NOx reductions in PJM for the four case scenarios are ordered as: 100k 

case> SNCR case> 50k case > 30k case. The aggregate NOx reductions during the 

peak demand hours (i.e. peak hours of NOx emissions) for the four case scenarios are 

ordered as: SNCR case> 100k case> 50k >30k.  The relative magnitudes of the NOx 

emissions reductions and ozone reductions for the 50k and 100k case and the SNCR 

case are not the same. This is because during the early morning hours the achievable 

NOx reductions under the 50k case are greater than or close to the SNCR case, and 

the NOx reductions made during these earlier hours are the most important in 

reducing the daily maximum ozone concentrations. 

 

Another notable result is that greater decreases in daily maximum 8-h ozone occur at 

higher concentrations. Figure 18 shows the scatter plot of average reduction of the 

daily 8-hour maximum ozone concentrations (in ppb) across the 37 sites versus the 

average daily 8-hour maximum ozone concentrations across the 37 sites for the three 

trading cases and the SNCR case. Each group of points in Figure 18 represent one day. 

The correlation between ozone concentration and ozone reduction suggests that the 

ozone reduction is more likely to be achieved on high ozone days. And reducing NOx 

emissions during low ozone days is less likely to be effective in reducing ozone 

concentrations. This further supports the cost-effectiveness of smart trading, which 

aims to focus on NOx emissions during high ozone days. 

 

The results presented in this and the previous chapter strongly support the 

effectiveness of smart trading in reducing NOx and ozone concentrations compared 

with the technology based control strategies such as SNCR. A common assumption 
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prior to this study was that the high electricity demand during the peak demand hours 

would limit the dispatching of NOx emissions and thus limit the capability of smart 

trading in lowering ozone concentrations. However, this is not necessarily true. First, 

the high flexibility of dispatching NOx emissions in the PJM during morning hours 

(average and low-average demand hours) yields significant NOx emission reductions, 

even greater than under the SNCR case, and NOx reductions during these hours are 

most effective in reducing the daily maximum ozone concentrations. Although the 

NOx reductions are not as much under smart trading as the SNCR case during the 

actual peak demand hours (e.g., 3 or 4pm), the ozone reductions are actually larger 

from redispatching. Second, ozone reductions are more likely to be achieved on high 

ozone days, so that reducing NOx emissions on low ozone days is not only less 

important in terms of public health, but also less effective in reducing the daily 

maximum ozone concentrations, and bringing regions into compliance with the 

NAAQS. 
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Chapter 6. A Stochastic Decision Model for Cost-Effectiveness Analysis of Ozone 

Regulatory Design 

 

Specific combinations of precursor emission levels, sunlight, and wind occasionally 

produce periods of high ozone concentrations, called ozone episodes, which typically 

last for a few days. Recall from Chapter 1, the occurrence of ozone is usually 

associated with the passage of specific weather patterns, such as a Bermuda High. 

Thus the occurrence of high ozone days exhibits episodic behavior. As the public 

health impacts and environmental damages from ozone exposure worsen with 

increasing concentration, it is these episodes that are of particular importance in air 

quality policy. Further, the legal/policy structure is framed around an ozone NAAQS 

that is based on whether the observed daily maximum 8-hour average ozone 

concentration exceeds 80ppb. Although the 8-hour standard became 75 ppb in 2008, 

this study aims to provide a proof of concept of ozone control strategy based on 2002 

data, so that 80 ppb, instead of 75 ppb is used as the 8-h ozone standard. The results in 

Chapter 4 showed that applying a higher NOx price (e.g., $50k/ton), and assuming 

reductions come only from redispatching of EGUs, throughout the entire ozone 

season would be more costly than simply installing pollution control equipment. A 

hypothesis is that if a higher NOx price can be applied only during the high ozone 

episodes, it might be more cost-effective than a technology-based approach. This 

chapter and the next will test this hypothesis. 

 

The exploration of the cost-effectiveness of a time-differentiated approach requires 

the prospective simulation of future (uncertain) ozone episodes and uncertain ability 

to forecast those episodes.  In this chapter, I describe the stochastic decision model I 

have developed that integrates the results from the electrical power system model and 

photochemical model, and use it to explore the potential for time-differentiated NOx 

control policies under uncertainty in ozone prediction. I use the summer of 2002 (June, 

July and August) in the Classic PJM region as a case study, and develop a two-state 

Markov Chain model to simulate the occurrence of high ozone days based on the 
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simulation of summer 2002 data.  

 

If ozone forecasts were 100% accurate, time-differentiated NOx regulations would 

have clear advantages over permanent control technology approaches.  However, 

there are significant errors in day-ahead ozone forecasts, which will partly determine 

whether a time-differentiated approach is in fact cost-effective.  When analyzing the 

cost and ozone reduction, I incorporate the errors in ozone forecasts into the stochastic 

decision analysis, and determine threshold values for false positive and false negative 

ozone forecast errors above which the “smart trading” policy is less cost-effective 

than a technology-based strategy. In this way, I demonstrate the level of ozone 

forecast accuracy that is required for a time-differentiated regulatory design to be 

cost-effective.  This chapter will describe the methods used for the stochastic 

analysis, and the results are given in Chapter 7. 

 

6.1 Prospective Ozone Simulations: A Two-State Markov Chain Model  

 

As shown in the previous chapter, strong autocorrelation is apparent in the time series 

of daily 8-h maximum ozone concentrations averaged across the 37 ozone monitoring 

sites. Considering that the average ozone lifetime in the eastern U.S. is roughly two 

days, this analysis simulates the occurrences of ozone exceedences as a two-state 

Markov process (Figure 19).  For this analysis, I use the 2002 observations of ozone 

concentrations in PJM to define the population distribution for sampling future ozone 

episodes. 

 

Figure 19: Illustration of using a two-state Markov Chain model to simulate the 

behavior of high ozone days. State H represents high ozone days, and state L 

represents low ozone days. 
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As defined earlier, a high (or low) ozone day is defined as a day in which the average 

eight-hour ozone concentration across the 37 ozone monitoring sites is higher (or 

lower) than 80 ppb (using the 2002 regulatory standard, consistent with the emissions 

and costs modeled in this case study). π represents the probability that a randomly 

chosen day is a low ozone day, given that the previous day was a high ozone day. 1-π 

represents the probability that a randomly chosen day is a high ozone day, given that 

the previous day is a high ozone day. Similarly, θ represents the probability that a 

randomly chosen day is a high ozone day given that the previous day is a low ozone 

day, and 1-θ represents the probability that a randomly chosen day is a low ozone day 

given that the previous day is a low ozone day. Among the simulated ozone 

concentrations under the base case during the 92 days (June 1st~August 31st, 2002), 

there are 32 high ozone days and 60 low ozone days. Within the 32 high ozone days, 

there are 18 days whose ozone level in the day before is also high. Among the 60 low 

ozone days, there are 45 days whose ozone level in the day before is also low. The 

transition probability matrix for the 2-state Markov Chain is estimated as16: 
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6.2 Risk-based Decision Analysis 

 

There is significant uncertainty associated with the forecasting of ozone levels. A 

forecasted high ozone day might end up being a low ozone day, making it a false 

positive event; and a forecasted low ozone day might end up being a high ozone day, 

making it a false negative event. Table 2 illustrates the conditions.  

 

 

                                                        
16 June 1st is a low ozone day, so that there are only 59 low ozone days in total when estimating θ. θ is estimated to 
be (59-45)/59~0.24. 
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Table 2: Type I and Type II Errors in the Forecast of Ozone Concentrations. 

 

Actual condition 
 

Low ozone day (L) High ozone day (H) 

Low ozone 
day (L) 

True Negative 
False Negative 

  
      Type II error 

Ozone 
level 

forecast High ozone 
day (H) 

False Positive 
  

Type I error 
True Positive 

 

The uncertainty in ozone forecasting is critical when comparing different ozone 

control policies. In the design of smart trading, or any similar flexible NOx regulation 

that aims to target the high ozone days, the system operator needs to make the 

decision about the next day’s NOx price based on the forecasted ozone level for the 

next day. If a high ozone level is forecasted for the next day, a high NOx price ($30k, 

50k or 100k/ton) will be announced for the next day. If the next day turns out to be a 

low ozone day (i.e., if the forecast was a false positive one), the decision to raise the 

NOx price will lead to unnecessary costs. Similarly, if a low ozone level is forecasted, 

the NOx price will not be raised for the next day. If the next day turns out to be a high 

ozone day (i.e., if the forecast was a false negative one), the decision to maintain the 

default NOx price will lead to continued ozone non-compliance, which could have 

been reduced if the forecast had been accurate. In this study, the false positive (Type I 

error) and false negative (Type II error) forecast rates are incorporated into the 

decision analysis.  

 

The utility function for the decision model is defined as the ratio of the incremental 

costs (Δcost) to the incremental reductions of daily maximum ozone concentrations at 

the 37 ozone monitoring sites in the Philadelphia/ Baltimore region (ΔO3), relative to 

the base case. In the context of this thesis, Δcost and ΔO3 indicate the increased cost 

and the reduction in the 8-h daily maximum ozone level for the policy case relative to 
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the base case ($2k/ton). When high ozone days are forecast, the high NOx price is 

triggered. Δcost is measured as the increased cost of electricity generation resulting 

from redispatching to lower emitting but more clostly generating units, relative to the 

base case. ΔO3 will be positive unless the forecast is a false alarm. In the case of 

forecast low ozone days, the base case NOx price is maintained, so that Δcost and ΔO3 

are, by definition, 0. If the forecast low is a false negative, ozone mitigation on this 

particular day is not achieved. The decision tree for this process is shown in Figure 

20. 

 

I define p and q to be the rates of false positive and false negative events, respectively. 

From the definition of Type I and Type II errors: 

 Type I error= False positive= Pr [Forecast H | Actual L]=p                (1) 

True negative=Pr [Forecast L | Actual L]=1-p                          (2) 

Type II error= False negative= Pr [Forecast L | Actual H]=q               (3) 

True positive=Pr [Forecast H | Actual H]=1-q                          (4) 

in which H (or L) represents a high (or low) ozone day. 

 

The probabilities that a randomly chosen day is a high and low ozone day are defined 

to be a and 1-a, respectively. From Table 2, on each day, there are four possible 

outcomes associated with smart trading: the day is forecasted to be a high ozone day 

and is actually a high ozone day; the day is forecasted to be a high ozone day and is 

actually a low ozone day; the day is forecasted to be a low ozone day and is actually a 

high ozone day; and the day is forecasted to be a low ozone day and is actually a low 

ozone day. I define the probability for the above four outcomes are p1, p2, p3 and p4, 

respectively. Applying Bayes’ theorem to equations (1)-(4) , p1, p2, p3 and p4 can be 

obtained by: 

p1=Pr[Actual H ∩ Forecast H]= Pr[Actual H]*Pr[Forecast H | Actual H]=a(1-q)      (5) 

p2=Pr[Actual L ∩ Forecast H]= Pr[Forecast H | Actual L] * Pr[Actual L]= (1-a)p     (6) 

p3=Pr[Actual H ∩ Forecast L]= Pr[Forecast L | Actual H] * Pr[Actual H]= aq        (7) 

 p4=Pr[Actual L ∩ Forecast L]= Pr[Forecast L | Actual L] * Pr[Actual L]= (1-a)(1-p)   (8) 
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In reality, there are 4N outcomes associated with smart trading during an N-day ozone 

season, as illustrated in Figure 20. Ideally, one would want to perform a Monte Carlo 

simulation on the meteorological model, sampling values for its parameters and 

boundary conditions, to generate many sample meteorological fields. Then, with the 

uncertainties in meteorology and in NOx emissions propagated through CAMx, the 

ozone concentrations would stochastically vary. Since the MM5 and CAMx models 

used in this study (like all 3-D meteorology and photochemical models) are 

computationally demanding prohibiting the above approach, I apply the 2-state 

Markov model as a simple and feasible way to illustrate the concepts.  The decision 

analysis is performed here by repeating the one-day decision analysis for N sample 

days, as shown in Figure 20.  

 

Figure 20: Framework for deciding whether to choose smart trading or SNCR as the 

ozone control policy in the presence of risks in ozone forecasts during an N-day 

period. H and L represent a high ozone day and a low ozone day, respectively.  

 

 

We assume that the occurrence of high or low ozone days approximately follow a 

2-state Markov process (as described in section 6.1) and that false positive and false 

negative events occur randomly with given rates of p and q. Assume Ui and Di are the 
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increased cost of electricity generation under a higher NOx price on the ith day of the 

N-stage decision-making process and the associated reduction in the daily maximum 

8-h ozone concentration, respectively. Then from (5)-(6), on the ith day, the expected 

daily cost and the associated ozone reduction are: 

(Δcost)i = (p1+p2)Ui = [a(1-q)+(1-a)p]Ui                              (10) 

(ΔO3)i = p2Di = a(1-q)Di                                          (11) 

where a is a function of the transition matrix of the 2-state Markov model, and of the 

initial state of the model. 

 

The mean and probability distribution of Δcost/ΔO3 associated with each smart 

trading case can be simulated by conducting the above decision analysis for a large 

number of sample days; In this analysis, I use a sample size of N=10,000 days. 

Denote the mean Δcost and ΔO3 generated by the Monte Carlo method are U1 and D1, 

respectively, and the Δcost and ΔO3 of the SNCR case as U2 and D2, respectively. 

Because U2 and D2 are not a function of p and q, the values for U1/D1 obtained by the 

stochastic decision model will be used to compare to the deterministic U2/D2. The rule 

for accepting smart trading is defined as:  

Δcost/ΔO3(smart trading)> Δcost/ΔO3(SNCR), or accept smart trading if: 

U1/D1>U2/D2,                                               (9) 

and reject smart trading otherwise. 

 

The results of this analysis are given in the next chapter. 
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Chapter 7. Cost-Effectiveness Analysis of Smart Trading vs. SNCR Under 

Uncertainty in Ozone Forecasting 

 

In the previous chapters, smart trading through electricity redispatching has been 

shown to have potential advantages in reducing ozone concentrations during high 

ozone episodes when compared to an SNCR-based command-and-control policy, and 

assuming there is no error in ozone forecasts. This chapter will explore the 

cost-effectiveness of smart trading in reducing ozone concentrations in the presence of 

ozone forecast uncertainty. Because the accuracy of ozone forecasting is not precisely 

known and will likely change in the future, I conduct sensitivity analysis of 

cost-effectiveness to the ozone forecast error rates. The stochastic decision model is 

described in Chapter 6. All results are obtained by simulating with a sample size of 

10,000 days. 

 

7.1 Comparison of NOx Abatement Costs and Ozone Abatement Costs between 

SNCR and Smart Trading Cases without Forecast Errors 

 

I begin by presenting the results of Monte Carlo simulation of ozone concentrations 

and abatement costs using the two-state Markov chain described in chapter 6, and 

assuming no ozone forecast errors. The number of high ozone days within a 92-day 

ozone season is approximately normally distributed with a mean of 32.38 days and a 

standard deviation of 6.39 days. Over a three month ozone season, the probability that 

a randomly chosen day is a high ozone day is 35.2%±6.9%. If the ozone forecast 

were 100% accurate, the chance of a random day triggering smart trading is therefore 

also 35.2%±6.9%. Similarly, the abatement costs of smart trading under different 

NOx prices can be simulated using the same stochastic decision model. The average 

daily abatement costs for $30k, 50k and 100k/ton NOx, assuming a perfectly accurate 

forecast, would be: $0.56M ±  0.11M, $0.92M±0.18M and $1.67M±0.33M, 

respectively. These uncertainty ranges would narrow if the population size (currently 

only 2002 season) of the Markov model were increased by including additional ozone 
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season observations.  

 

The average daily abatement costs for the three trading cases are plotted against the 

NOx price with error bars (±σ) representing the uncertainty in the occurrence of high 

ozone events, which equals the uncertainty in triggering high NOx price assuming a 

100% accurate forecast (see Figure 21). The solid horizontal line indicates the 

estimated daily cost of the SNCR case ($ 1.2M) and the dotted lines represents a 20% 

uncertainty in the estimation. Note that the uncertainty in the costs of the three trading 

cases are perfectly correlated, not independent, because these errors are a function of 

the uncertainty in the number of high ozone days in a season. In reality, the daily 

operational costs of SNCR would vary with actual daily levels of electricity 

generation and NOx emissions, but we omit this variability in this study and consider 

the daily cost of the SNCR case as a constant. 

 

As shown in chapter 4, applying a higher NOx price (e.g., $50k/ton) and inducing 

redispatching throughout the entire ozone season would be more costly than simply 

installing pollution control equipment. However, Figure 21 shows that the cost of 

lowering NOx emissions through redispatch only on high ozone days with a NOx 

price of $50k/ton is likely to be lower than the estimated daily cost of SNCR. Further, 

because the $50k/ton case leads to a greater ozone reduction, lowering daily 

maximum ozone concentrations through smart trading with a NOx price of $50k/ton 

is more cost-effective than the SNCR case. Although the $100k case has a higher cost 

than installing SNCRs, it leads to more NOx and ozone reduction. Comparing the 

$100k case to installing SCRs, which have higher (~70% NOx reductions) would be a 

more appropriate comparison, and is beyond the scope of this study. 
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Figure 21: Average daily cost of smart trading versus NOx price. Error bars (±σ) 

represent uncertainty in the occurrence of high ozone events. The solid horizontal line 

indicates the estimated daily cost of the SNCR case scenario, and the dotted line 

indicates 20% uncertainty associated with the estimated cost. 

 

 

Assuming that there is no forecast error, the average daily costs of smart trading and 

SNCR compared with the average reduction in the daily 8-h maximum ozone 

concentrations over the 37 monitoring sites are plotted in Figure 22. Error bars (±σ) 

except the one on the SNCR cost represent uncertainty in the occurrence of high 

ozone events. The error bars on the SNCR cost represent uncertainty of the cost 

provided by the 1998 NESCAUM report.  

 

As shown in Figure 22, assuming no error in ozone forecasting, the lines connecting 0, 

30k, 50k and 100k cases form a cost-effectiveness frontier for ozone reductions. An 

ideal regulatory design would have zero cost and maximum ozone reductions, and 
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would be located in the lower right corner. The frontier describes the trade-offs across 

the cost-effective options modeled; one can achieve greater ozone reductions, but only 

at an increased cost.  Most notably in this figure, the SNCR alternative is dominated, 

even within the uncertainty bounds. Without ozone forecast error, one would almost 

never prefer the SNCR approach to any of the smart trading approaches. 
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Figure 22: Average daily cost of smart trading and SNCR versus average reduction of 

daily 8-h maximum ozone concentrations across over the 37 monitoring sites. Error 

bars (±σ) except the one on the SNCR cost represent uncertainty in the occurrence of 

high ozone events. The error bars on the SNCR cost represent uncertainty in the 

estimation of the cost provided by the 1998 NESCAUM report. 

 

As discussed previously, the daily NOx abatement cost (Δcost) and the daily ozone 

reduction (ΔO3) have strong correlation and vary dependently with each other. I 

therefore will use the increased cost for reducing one ppb of daily 8-h maximum 

ozone (Δcost/ΔO3) as the criterion to compare the cost-effectiveness of smart trading 

with NOx prices of $30k, 50k and 100k/ton, with the SNCR case under uncertainty in 

ozone forecasting in the next section. 
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7.2 Sensitivity Analysis of Forecast Errors 

 

One important feature of smart trading is that its cost-effectiveness is dependent on 

the accuracy of ozone forecasts. Type I errors (false positive) lead to unnecessary 

costs, and Type II errors (false negative) lead to fewer ozone reductions and to extra 

penalty costs. This section will examine the dependence of cost-effectiveness of the 

three smart trading scenarios and the threshold false positive and false negative error 

rates above which the SNCR case becomes more cost effective than smart trading. 

 

As one estimate of the accuracy in ozone forecasting, the observed daily maximum 

8-h ozone concentrations at the 37 EPA ozone monitoring sites (from EPA AIRSNOW) 

during summer 2002 in the Philadelphia/Baltimore region are plotted against the 

simulated daily maximum 8-h ozone concentrations for the grid cells where the ozone 

monitoring sites locate (see Figure 23). Each point in the scatterplot represents the 

observed and simulated ozone concentration at one site on one day.  Most data points 

appear to scatter along the 45-degree line, indicating moderate accuracy in the 

modeled ozone levels. According to the definition in Table 2, the upper left, points in 

the upper left and lower right quadrants then represent “false negative” and “false 

positive” forecasts, respectively. According to equations (1) and (3), the rate of false 

positives (p) is estimated as the ratio of the number of points in the lower right 

quadrant to the total number of points below the horizontal line (all actual low ozone 

days), which equals 7.2%. Similarly, the rate of false negatives (q) is estimated to be 

the ratio of the number of points in the upper left quadrant to the total number of 

points above the horizontal line, which equals 31.8%. This is a conservative estimate 

of the currently achievable level of accuracy in ozone forecasting, because only two 

levels of nested grids are used in this modeling, the spatial resolution we used is at 12 

km, and the model simulates the entire ozone season rather than forecasting each day 

based on the previous days observations as initial conditions.  
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Figure 23 shows that the model tends to underestimate the daily maximum ozone 

concentrations, possibly because the spatial resolution is not high enough so that the 

extreme ozone concentrations are diluted when averaged over the grid cell. This could 

explain why the false negative forecasts occur more frequently than the false positive 

forecasts. The photochemical model used by the EPA and NOAA (National Oceanic 

and Atmospheric Administration) could have more nested grids, higher spatial 

resolution, and ozone observation data could be used to modify the ozone model on a 

day-to-day basis.  

 

We have good reasons to believe that the highest ozone forecasting accuracy that is 

currently available is better than reported here. From the literature, a false positive 

rate (p) of 2.06% was achieved in forecasting the daily-eight hour maximum ozone 

concentration in New England [Kang, 2005]. The Texas Commission on 

Environmental Quality (TCEQ) publishes their one-day ahead ozone forecasting 

accuracy on their website17. Based on ozone forecasting made by TCEQ from 1994 to 

2004 in the nine metropolitan areas in Texas, the false negative rate (q) of their model 

is estimated to be 29%. Another research group reported that the false negative rate (q) 

of 10%~30% was achieved by applying their ozone forecasting model in seven 

Kentucky metropolitan areas during the 2004 and 2005 ozone seasons [Cobourn, 

2007]. Although the accuracy of one-day ahead ozone forecasting by the NOAA and 

EPA is currently unknown, it is reasonable to believe that the accuracy is higher than 

reported in the literature. Therefore, a false positive rate of 2% and false negative rate 

of 10% is assumed to represent the highest ozone forecasting accuracy that is 

currently available in the following analysis. 

 

                                                        
17 http://www.tceq.state.tx.us/compliance/monitoring/air/monops/ozonestats.html 
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Figure 23: The observed daily maximum 8-h ozone concentrations at the 37 EPA 

ozone monitoring sites during summer 2002 in the Philadelphia/Baltimore region 

versus the simulated daily maximum 8-h ozone concentrations for the grid cells where 

the ozone monitoring sites locate. 

 

 

As stated earlier, Δcost/ΔO3 is used to measure the cost-effectiveness of smart trading 

scenarios and the SNCR scenario. However, both Δcost and ΔO3 decrease with the 

false negative rate (q) increases. Thus if we focus exclusively on the ratio Δcost/ΔO3, 

we might reach misleading conclusion that smart trading is more cost-effective than 

the SNCR case even though both Δcost and ΔO3 under smart trading are very small. 

Therefore, a modified decision rule is used to conduct the decision analysis here in 

which a smart trading scenario is considered more cost-effective than the SNCR 

scenario if it has lower Δcost/ΔO3 than the SNCR scenario, while reducing at least 

70% of ozone under the SNCR scenario.  

 

The mean values for the cost-effectiveness measure, Δcost/ΔO3, under the four 
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scenarios are plotted for different rates of false positive and false negative errors 

(Figure 24). Different colors represent different values of Δcost/ΔO3, in the unit of 

Million $/ppb. Darker colors indicate lower values of Δcost/ΔO3, which are more 

cost-effective. Points with higher Δcost/ΔO3 than the SNCR scenario are shown in 

white. The black line indicates the approximate frontier where Δcost/ΔO3 are equal 

for SNCR and smart trading. The dotted line indicates the approximate boundary 

where ΔO3 for the two case scenarios equals. 

 

Figure 24 shows the range of false positive and false negative errors within which 

each of the smart trading case scenarios is more cost effective than the SNCR case. 

The Δcost/ΔO3 for very low false positive (p) and false negative (q) errors (lower left 

corner of the plots) under the three trading scenarios are ordered as: 30k < 50k < 100k, 

although the variability across the three scenarios is not large. Area A indicates that 

the smart trading case scenario has higher Δcost/ΔO3 than the SNCR scenario. Area B 

indicates that the smart trading scenario has higher Δcost/ΔO3, but reduces less than 

70% of ozone than the SNCR scenario (thus is not considered environmentally 

effective). Area C indicates that the smart trading scenario has lower Δcost/ΔO3, and 

reduces at least 70% of ozone than the SNCR scenario, and thus is considered as more 

cost-effective than the SNCR scenario. Area B in Figure 24 (b) and (c) ($50k and 

$100k scenarios, respectively) are shown in black to distinguish from Area C. Area B 

in Figure 24 (a) is not shown in black since area C does not exist for the $30k 

scenario.  

 

Figure 24 shows not only the threshold values for the false positive and false 

negatives under which smart trading has lower Δcost/ΔO3 than the SNCR case 

scenario, but also the threshold values for the false negatives above which ΔO3 would 

be too small. From Figure 24 (a), for example, if the rate of false negative errors (q) 

was 0.3, the false positive error rates (p) within which smart trading has lower 

Δcost/ΔO3 than the SNCR scenario would range from 0 to 0.3 for the $30k trading 

case scenario. However, even under 100% forecasting accuracy, the ozone reduction 
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under the 30k trading case scenario is still too low, so that this scenario is not 

considered as more cost-effective than the SNCR case. From Figure 24 (b) and (c), 

the threshold q values for smart trading at 50k and 100k NOx prices to be more 

cost-effective than the SNCR case is approximately 0.36 and 0.57, respectively. If q is 

0.3, the values of p for which the 50k and 100k scenarios has are more cost effective 

than the SNCR scenario range from 0 to 0.25 and from 0 to 0.08, respectively. In 

general, the higher the NOx price is, the higher the threshold q value is to prefer smart 

trading in the decision analysis. Also, the higher the NOx price is, the more sensitive 

the cost-effectiveness of smart trading is to the false positive error rate, and the higher 

is the required level of ozone forecasting accuracy. Besides, for any NOx price level, 

the higher the false negative rate, the lower is the required rate of false positives for 

smart trading to still be preferred. 

 

The black dotted line in Figure 24 (b) and (c) represents the q values under which the 

ozone reduction for the smart trading case scenario and the SNCR scenario 

approximately equals, which are around 0.085 and 0.37 for the $50k and $100k case 

scenarios, respectively. If the currently achievable ozone forecasting accuracy is the 

same as the highest accuracy from literature (p=2%, q=10%), smart trading at 

$50k/ton is approximately 30% more cost-effective than the SNCR case while 

resulting in comparable amount of ozone reduction, and smart trading at $100k/ton is 

approximately 15% more cost-effective than the SNCR case while resulting in more 

ozone reduction. Even if the currently achievable ozone forecasting accuracy is what 

we estimated in this analysis (p =7%, q =32%), smart trading at $50k and $100k/ton 

NOx prices would still be more cost-effective than the SNCR case.  

 

These results suggest that uncertainty in ozone forecasting may not be a major 

limiting factor for the feasibility of a time-differentiated NOx cap-and-trade program. 
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(a) 

 
                                  (b) 
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                                   (c) 

Figure 24: Δcost/ΔO3 (Million $/ppb) of smart trading versus false positive rate and 

false negative rate for the (a) $30k, (b) $50k and (c) $100k relative to the $2k/ton 

NOx case.  

 

 

Again, although there are ranges of false positive and false negative errors within 

which the $100k case is more cost effective than installing SNCRs, it would be more 

appropriate to compare the $100k case to installing SCRs which achieve comparable 

ozone reductions, but is beyond the scope of this study. 

 

The analysis conducted here does not include a penalty cost for continued 

non-compliance, which makes the cost-effectiveness much less sensitive to the false 

negative error than it probably should be. In actual ozone modeling, the false negative 

rate tends to be higher than the false positive rate.  Analysis using an alternative 

utility function that includes the penalty cost of ozone non-attainment should be 

explored in the future study. 
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7.3 Sensitivity Study of the Distribution of Cost-effectiveness of Smart Trading  

 

The previous section examined the dependence of the mean Δcost/ΔO3 on the ozone 

forecasting errors for the three smart trading scenarios. This section will investigate 

the dependence of the full distribution of Δcost/ΔO3 on false positive and false 

negative errors. Since smart trading at $50k/ton NOx reduces a comparable amount of 

NOx and ozone as the SNCR case, frequency counts for Δcost/ΔO3 under the 

$50k/ton trading scenario, given four different pairs of false positive and false 

negative rates (p=1%, q=1%; p=2%, q=10%; p=4%, q=20%; and p=8%, q=30%) are 

obtained from the stochastic decision model and shown in box-plot in Figure 25. To 

avoid the problem of infinite Δcost/ΔO3 when ozone reduction is 0, the monthly sum 

of Δcost divided by the monthly sum of ΔO3 is used to construct the distribution of 

Δcost/ΔO3. In the first case shown assumes that the ozone forecasting is very accurate, 

where both p and q equal 1% (column a). The second case assumes that the ozone 

forecasting errors are the same as the lowest values in literature, where p equals 2% 

and q equals 10% (column b). The fourth case assumes that the ozone forecasting 

errors are similar to the values obtained from this analysis, where p equals 7.2% and q 

equals 31.8% (column d). The third case assumes that ozone forecasting errors are in 

between the second and the fourth cases (column c). The black horizontal line in the 

figure indicates the cost-effectiveness measure of the SNCR scenario. The summary 

statistics obtained from the boxplots are listed in Table 3. Figure 25 shows that 

Δcost/ΔO3 has an increasingly long tail as ozone forecasting errors increase. The 

mean, standard deviation, 25% and 75% quartiles of Δcost/ΔO3 all increase with error 

rates in ozone forecasting, and the standard deviation increases more rapidly than 

mean and quartiles. Under all four assumed pairs of p and q values, the 75% quartiles 

(Q3) of Δcost/ΔO3 are below that of the SNCR scenario. There is nearly a 95% 

probability that the monthly averaged Δcost/ΔO3 under the $50k/ton scenario is higher 

than the SNCR scenario if the currently achievable values of p and q are 2% and 10%, 

respectively. There is still an 80% probability that the monthly averaged Δcost/ΔO3 
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under the $50k/ton scenario is higher than the SNCR scenario if the currently 

achievable values of p and q are 8% and 30%. These results provide additional 

evidence that the uncertainty in ozone forecasting is not likely to be a limiting factor 

for the cost-effectiveness of a time-differentiated NOx cap-and-trade program. 

 

(a) p=1%,q=1% (b) p=2%,q=10% (c) p=4%,q=20% (d) p=8%,q=30%

5

10

15

20

25

30

M
 $

/p
pb

$50k/ton NOx vs. SNCR

 

 

 

Figure 25: Boxplots of Δcost/ΔO3 (Million $/ppb) given (a) false positive (p) = false 

negative (q) = 1%, (b) p = 2%, q = 10%, (c) p = 4%, q = 20%, (d) p = 8%, q = 30%. 

Δcost and ΔO3 are monthly summed. The horizontal black line indicates the 

Δcost/ΔO3 for the SNCR scenario.  

 

Table 3: Summary statistics of Δcost/ΔO3 under different values of false positive 

(p) and false negatives (q). 
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1% 1% 4.087 0.727 3.614 4.450 96.9% 

2% 10% 4.182 0.838 3.651 4.598 94.8% 

4% 20% 4.344 1.133 3.668 4.772 90.4% 

8% 30% 4.940 1.996 3.949 5.362 80.2% 
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7.4 Sensitivity Study of the SNCR Costs 

 

The previous sections focused on comparing the cost-effectiveness (Δcost/ΔO3) of the 

smart trading scenarios to the SNCR scenario. As discussed in chapter 3, the 1998 

NESCAUM report estimated the cost/MWh for installing SNCR into coal plants and 

provided a 20% uncertainty in the estimated cost/MW. Thus $ 1.2±0.24 M or $ 

0.96~1.44 M is assumed to be the uncertainty range for the SNCR cost.  

 

Here, I repeat the sensitivity analysis of false positive (p) and false negative (q) errors 

from section 7.2 assuming the SNCR cost is either $ 0.96 or 1.44 M. The results are 

plotted in Figure 26 in in the same format as Figure 24, but only for the $50k/ton NOx, 

because these two cases lead to comparable amounts of NOx and ozone reduction 

assuming a 100% forecasting accuracy. Similarly, the region for which the Δcost/ΔO3 

of the $50k/ton scenario is higher than the SNCR scenario is shown in white, and the 

region for which ΔO3 is lower than 70% of the SNCR scenario is shown in black. The 

black line indicates the approximate boundary where Δcost/ΔO3 for the two scenarios 

are equal. Area A indicates that the smart trading scenario has lower Δcost/ΔO3 than 

the SNCR scenario. Area B indicates that the smart trading scenario has higher 

Δcost/ΔO3, but less than 70% of ΔO3 than the SNCR scenario. Area C indicates that 

the smart trading scenario has higher Δcost/ΔO3, and leads to ozone reduction of at 

least 70% of the SNCR scenario. The dotted line indicates the approximate boundary 

where ΔO3 for the two case scenarios equals. From Figure 26, the threshold value of q, 

which approximately equals 0.36, does not change with the SNCR costs, and is the 

same as in Figure 24(b). The threshold value of p depends on the value of q. A smaller 

q will result in a wider tolerance region, yielding a higher threshold value for p. From 

Figure 26, the threshold values for p assuming daily costs for the SNCR case of $ 0.96 

M and 1.44 M are approximately 0.07 and 0.34, respectively, given a q value of 0.36.  

 

From Figure 26, assuming that the SNCR cost is at the lower end of the uncertainty 

range, even if the currently achievable ozone forecasting accuracy is the same as what 
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we obtained in this analysis (p=7.2%, q =31.8%), smart trading at $50k/ton NOx price 

would still be slightly more cost-effective than the SNCR case. If the currently 

achievable ozone forecasting accuracy is the same as the highest rates from literature 

(p=2%, q =10%), smart trading at $50k/ton would be approximately 15% more 

cost-effective than the SNCR case while resulting in comparable amount of ozone 

reduction. 

 

The sensitivity analysis above is based on cost data from a 1998 NESCAUM report. 

The cost of SNCRs in 2005 is converted from the cost in 1998 dollars based on an 

inflation rate of 5%, and the annual capital cost is discounted at a rate of 6.7%. Also, 

the cost of SNCR depends on the size, boiler type, fuel type, NOx emission rate and 

other characteristics of the EGUs, so that the actual cost of installing the SNCR on all 

power plants in PJM and running it during the summer season might be beyond the 

uncertainty range discussed here. However, as a proof-of-concept study, this 

sensitivity analysis shows that the cost-effectiveness of smart trading is fairly robust 

to uncertainty in the costs of SNCR, and the uncertainty in ozone forecasting does not 

appear to be a major limiting factor for smart trading. 
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                       (a) 

 

                       (b) 

Figure 26: Δcost/ΔO3 (Million $/ppb) of smart trading versus false positive rate and 

false negative rate for the $50k relative to the $2k/ton NOx case assuming (a) Δcost 

for the SNCR case is 20% lower than the estimated value and (b) Δcost for the SNCR 

case is 20% higher than the estimated value.  
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Chapter 8. Policy Discussion 

 

It has been nearly four decades since the passage of the Clean Air Act and the 

establishment of the NAAQS for ozone and other criteria pollutants. But due to 

complexities of implementation and high costs of emissions reductions many regions 

of the U.S. remain in non-attainment of the ozone standard. As easier, less expensive 

emissions reductions are made, and additional permanent or annual reductions have 

even higher marginal costs, it becomes worthwhile to consider time-differentiated 

approaches. The motivation for this is the concern that if options are restricted to 

costly technological mandates, further reductions may become politically infeasible, 

and ozone levels that harm human health could be allowed to persist as they have 

already for decades. 

 

One of the major technical barriers to a time-differentiated approach is the necessary 

reliance on weather and atmospheric chemistry forecasting, which is generally 

perceived to have large uncertainty.  The transaction costs of a time-differentiated 

program would be too high if ozone forecasting is not sufficiently accurate. This 

thesis demonstrates that current weather and air quality forecasting abilities may 

already be beyond the needed minimum threshold of accuracy. However, other 

challenges remain that could impede the implementation of a time-differentiated 

regulatory design. 

 

There are significant political and legal barriers to the implementation of a 

differentiated regulation. Programs that temporarily raise the NOx price during ozone 

episodes could use photochemical modeling to define the high ozone days, if 

regulators had sufficient information to correctly define these days. However, it could 

be difficult to establish a generally accepted standard for when to trigger a higher 

NOx price (or, equivalently, a higher redemption ratio under the cap) in practice. For 

example, what predicted maximum ozone concentrations for the next day, and with 
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what probability or confidence level, would be required to trigger the rule 

implementation?  Consequently, political and legal disputes are likely to arise over 

the definitions of high ozone days and rules for permit exchange in such a program, 

since small changes to this definition could have significant impacts on participants. 

These affected parties could use political influence or legal disputes over the 

modeling to shape the details of the regulation and this could limit the regulation’s 

effectiveness if they alter the definitions of when NOx reductions are needed. These 

disputes could well politicize the scientific uncertainties in ozone modeling.  

 

Additional political and legal disputes could arise if the differentiated program is only 

time-differentiated but not location-differentiated. The locational variation of ozone 

concentrations provides a challenge to the implementation of a time-differentiated 

NOx regulation. Even within a relatively homogeneous region, the ozone 

concentrations could still vary greatly at different locations, so that a forecasted ozone 

episode might only happen in Washington D.C. but not in Philadelphia, influenced by 

the meteorological field. Also, a regulated facility far from a monitor used to 

determine the high ozone condition could argue that it is unfair for it to be treated the 

same as a unit closer to that monitor (e.g., in a more urban location). This could result 

in disputes over claims of unfairness. The ensuing political and legal processes could 

constrain the effective implementation of a differentiated cap-and-trade program. 

 

The complexity of ozone chemistry also provides further challenges to NOx 

regulation and could also potentially lead to political and legal disputes, Reducing 

NOx emissions involves tradeoffs, because reductions in NOx emissions may 

sometimes increase ozone concentrations. Conversely, increasing NOx emissions, 

under some circumstances, may decrease ozone concentrations. These problems could 

amplify the effects of legal disputes toward a time-differentiated regulation.  

 

Another challenge is in defining an appropriate evaluation metric for the impact of a 

time-differentiated regulation. Using population-weighted compared with purely 
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concentration-based metrics would likely lead to different results. Considering the 

human population densities in designing the details of the differentiated policy plan 

provides an additional challenge for the statutory framework for air quality policy, 

which currently does not allow the EPA to consider the costs and benefits when 

framing ozone regulations. However, if the human population densities are not to be 

considered, it might also raise disputes based on fairness. 

 

Finally, the problem of “hot-spot” or “wrong-way trades” is an inevitable problem 

associated with a cap-and-trade program in the context of a pollutant that is not 

uniformly mixed. It is almost impossible to eliminate the possibility of NOx 

allowances being sold from where ozone productivity is low to where it is high. The 

best that atmospheric modeling could do to address this problem would be to 

demonstrate that under specific policy scenarios the formations of hot-spots are not a 

major concern. However, even a 3 ppb increase of ozone increase would lead to 

disputes of fairness. These political and legal disputes have the potential to 

significantly reduce or eliminate the benefits of the NOx emission trading. 

 

Possible ways to reduce these problems include, but not limited to, increasing the 

amount and spatial coverage of ozone monitoring sites, increasing the accuracy of 

ozone forecasting, and validating the accuracy of ozone forecasting by publicizing the 

forecasting errors on a day-to-day basis. One alternative avenue for implementation 

that might help mitigate the above problems is to define high ozone days using 

meteorological parameters and rely less on atmospheric modeling, since high 

accuracy of one-day ahead weather forecasting is widely acknowledged. Although 

forecasting ozone concentrations using this method is very likely to result in higher 

rates of errors than relying explicitly on photochemical models, it could potentially 

reduce political and legal disputes.  

 

Another possible way to increase the acceptability of a differentiated cap-and-trade 

program is to combine it with other policy changes to “widen the pie” and buy off 
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support from political parties and industries. For example, a time-differentiated 

cap-and-trade program could reduce the total amount of NOx abatement required 

from point sources, since it would not require emission reductions during forecasted 

low ozone days. Thus if the alternative of a time-differentiated cap-and-trade program 

is costly annual cap reductions, the time-differentiated program could increase 

support for the differentiated approach from industry.  
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Chapter 9. Conclusions and Future Work 

 

The dependence of ozone pollution on meteorology and atmospheris chemistry 

creates a challenge for environmental regulation. To design an effective NOx (or 

VOC) regulation to reduce ozone, timing and location have to be incorporated and the 

impacts of meteorological variability have to be considered. This thesis aims to 

demonstrate the scientific and technical feasibility of a time-differentiated NOx 

cap-and-trade program for power plants. I have examined the following technical 

challenges: Could power plants respond to incentives for short-term NOx reductions 

that vary over time, how would the reductions of NOx emissions impact the ozone 

concentrations, how would the cost and ozone reduction of this type of flexible 

abatement compare to a technology based command-and-control strategy, and what is 

the threshold level of ozone forecasting accuracy above which this flexible regulation 

is no longer preferable to a technology-based command-and-control strategy?  

 

9.1 Conclusions 

 

The results presented in this thesis have shown: 

 

It would be difficult to determine the most cost-effective NOx control options 

for each power plant, which makes abatement decisions under a market-based 

regulation preferable. Results in chapter 4 show that a large heterogeneity exists 

in the NOx emission characteristics of fossil fuel-fired electric power generators. 

Some coal generating units are shown to be able to reduce more NOx emissions 

through redispatching than by adopting NOx control technologies such as SNCR. 

And for other units, the feasibility of dispatching NOx emissions is limited by 

congestion and high costs of dispatching electricity generations. This suggests 

that it would be less costly for the operators of some units to abate NOx 

emissions through redispatching only on the high ozone days than by adopting 



     87

NOx control technologies, and less costly for the operators of other units to abate 

NOx emissions through control technologies. Smart trading could provide strong 

incentives to the latter units to adopt NOx control technologies. 

 

The capability of reducing NOx emissions by redispatching is not likely to be 

limited by network constraints, congestion, and inflexibility of dispatching 

electricity generation during peak demand hours. It was shown that during an 

average demand hour, which constitutes the majority of hours both in the summer 

and over the year, redispatch could lead to a typical NOx reduction rate of 35% in 

aggregate. Even during the peak demand hours, redispatching could still result in 

a typical NOx reduction rate of 15~20%. 

 

The potential for smart trading to reduce ozone concentrations is not likely to 

be limited by the inflexibility of dispatching electricity generation during peak 

demand hours. Even if the percentage NOx reduction during a peak demand hour 

through smart trading is lower than installing the SNCRs, smart trading can still 

result in the same or lower ozone concentrations as installing SNCRs. The results 

shown here indicate that NOx reductions during the average demand hours, 

earlier in the day during ozone episodes, are more important for reducing the 

daily maximum ozone concentrations than are NOx reductions during the peak 

demand hours.  

 

Smart trading would likely lead to noticeable environmental benefits in terms of 

lowering ozone concentrations, particularly during high ozone episodes.  

Results of ozone modeling shows that the NOx reductions as a result of electricity 

redispatch is capable of lowering the daily maximum 8-hour ozone 

concentrations by 2~16 ppb given a NOx price of $100k/ton, depending on the 

meteorology. It is also shown that ozone reduction is more likely to be achieved 

through NOx emission reductions during high ozone days, which makes smart 

trading a more cost-effective strategy in ozone mitigation. 
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Smart trading does not lead to the shifting of large amounts of NOx to one area, 

the maximum increase of hourly NOx emission at a single unit is below 0.2 ton.  

 

Although pervasive ozone reductions of 3~12 ppb can be achieved under smart 

trading at $100k/ton of NOx, we do see small areas where daily eight-hour 

maximum ozone level increases by up to 3 ppb. These small areas are often 

located outside or downwind of regions where ozone concentrations are the 

highest within the whole PJM area. 

 

The ozone forecasting accuracy that is required for smart trading at $50k/ton of 

NOx to have lower cost for reducing per unit of ozone than the SNCR case is 

within the range of published error rates of ozone forecasting and modeling, 

strongly suggesting that uncertainty in ozone forecasting may not be a major 

limiting factor for the feasibility of a time-differentiated NOx cap-and-trade 

program. 

 

9.2 Future work  

 

There are several areas where this work could be further extended and improved 

in order to yield additional insights.  These areas are: 

 

The choice of utility functions can greatly influence the decision making about 

ozone control policies. In future work, other utility functions, such as one that 

considers a penalty cost for ozone non-attainment should be explored.  

 

The stochastic decision model used in this study is a simplified model and 

provides a convenient way to illustrate the dependence of the cost-effectiveness 

of a time-differentiated NOx regulation on the uncertainty of ozone forecasting. 

In future analysis, a more advanced Markov model could be built by including a 
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observations from more years into the model, as well as by developing more 

Markov states. Ideally, a reduced form model of CAMx would be developed to 

allow the full simulation of the process of the sequential decision making, and to 

allow the selection of different NOx prices as an option on each day. 

 

This analysis assumes that the only decision that a plant operator has to react to 

an increased NOx price is whether to dispatch electricity generation or not.  In 

reality, there are operational adjustments at these facilities, although they come at 

an incremental cost.  In further work, operational modifications that temporarily 

lower NOx emission rates at a plant should be included. In addition, the decision 

to adopt NOx control technologies within a multi-year decision analysis could be 

developed. 

 

Comparing additional technology-based command-and-control policy scenarios, 

including scenarios with other control technologies and scenarios with different 

subsets of units installing controls, with smart trading would likely yield 

additional insights. For example, installing SCRs at all generating in PJM would 

likely result in comparable NOx and ozone reductions as smart trading with a 

NOx price of $100k/ton. 
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