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Abstract: This study provides statistical emulators of global gridded crop model included in the 
Inter-Sectoral Impact Model Intercomparison Project Fast Track project to estimate irrigated crop yields 
and associated irrigation water withdrawals simulated at the grid cell level. The ensemble of crop model 
simulations is used to build a panel of monthly summer weather variables and corresponding annual yields 
and irrigation water withdrawals from five gridded crop models. This dataset is then used to estimate 
crop-specific response functions for each crop model. In- and out-of-sample validation exercises confirm 
that the statistical emulators are able to replicate the crop models’ spatial patterns of irrigated yields crop 
and irrigation water withdrawals reasonably well, both in levels and in terms of changes over time, although 
accuracy varies by model and by region. This study therefore provides a reliable and computationally 
efficient alternative to global gridded crop yield models.

1  Joint Program on the Science and Policy of Global Change. Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 
02139, USA. Email: eblanc@mit.edu
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1. Introduction
The impact of climate change on crops can be assessed using 
process-based crop models (Boote et al., 2013; Deryng et al., 
2014; Parry et al., 1999; Rosenzweig and Parry, 1994a, 
1994b; White et al., 2011), statistical models (Auffhammer 
and Schlenker, 2014; Blanc and Strobl, 2013; Haim et al., 
2007; Hsiang, 2016; Lobell and Field, 2007; Schlenker and 
Roberts, 2009) or a combination of both (Roberts et al., 
2017) (i.e. a process model with parameters statistically 
estimated using historical observations). These models 
can then be included in Integrated assessment models 
(IAMs) which, by considering socio-economic and natural 
sciences mechanisms, provide a better representation of 
the agricultural sector. Calvin and Fisher-Vanden (2017) 
find that combining statistical or process-based models 
within IAMs helps predict climate change impacts on crop 
yields more accurately than on their own. Alternatively, the 
implementation of statistical emulators—statistical models 
trained on the outputs of a process-based model to capture 
the response functions from complex, computationally 
demanding and sometimes proprietary process-based crop 
models—in IAMs can help account for feedback loops from 
the agricultural sector (Ruane et al., 2017) and can help 
account for modeling uncertainty (Monier et al., 2018).
Statistical emulators have been used by Holzkämper, Calan-
ca, and Fuhrer (2012) and Lobell and Burke (2010) to assess 
the capacity of statistical models to predict out-of-sample 
crop yields. Other studies have used emulated response 
functions to compare statistical and process based mod-
els for ‘diagnostic purposes’ (Lobell and Asseng, 2017; 
Schauberger et al., 2017; Moore et al., 2017). Crop yield 
emulators have also been developed to provide climate 
change impact assessment tools. Oyebamiji et al. (2015) 
provides crop yield emulators at the global level for five 
different crops but only considers one process-based crop 
model. Blanc and Sultan (2015) consider only maize but 
for five climate models. The scope of these emulators has 
then been expanded to three other crops (Blanc, 2017) and 
to both climate and crop models (Ostberg et al., 2018). 
While Oyebamiji et al. (2015) and Ostberg et al. (2018)’s 
studies include emulators of irrigated crop yields, they don’t 
consider the irrigation water requirements. However, as 
water availability may pose serious constraints to irrigation 
(Blanc et al., 2017; Elliott et al., 2014), water necessary 
to irrigate those crop is also a concern when estimating 
climate change impact on agriculture. This study proposes 
to fill this gap by developing statistical emulators of global 
gridded crop models for irrigated crops yields as well as 
the associated irrigation water withdrawals.
Building on Blanc and Sultan (2015) and Blanc (2017), the 
statistical emulators developed in this study are estimated 
based upon an ensemble of global gridded crop models 
(GGCM) simulations from the Inter-Sectoral Impact Model 

Intercomparison Project (ISI-MIP) Fast Track experiment 
(Rosenzweig et al., 2013; Warszawski et al., 2014). This 
project was designed to compare GGCMs simulations, 
all driven by the same bias-corrected climate change 
projections obtained from the Coupled Model Intercom-
parison Project, phase 5 (CMIP5) simulations ensemble 
(Hempel et al., 2013; Taylor et al., 2012). In this study, 
the statistical emulators focus on irrigated crops and are 
estimated for maize, rice, soybean and wheat and five dif-
ferent GGCMs to provide an accessible tool for assessing 
the impact of climate change on irrigated crop yields and 
irrigation water withdrawals, while accounting for crop 
modeling uncertainty. In combination with the statistical 
emulators of rainfed crop yields developed in Blanc (2017),  
these emulators enhance integrated assessment modeling by 
facilitating the estimation of the impact of climate change 
on, separately, rainfed and irrigated crops.

The remainder of this paper presents the data and methods 
used to statistically estimate the emulators in Section 2 
and the results are presented and discussed in Section 3. 
Validation of the emulators, both in- and out-of-sample 
are presented in Section 4. Section 5 concludes.

2. Material and methods

2.1 Data

In this analysis, data are sourced from the ISI-MIP Fast 
Track experiment, an inter-model comparison exercise 
where different GGCMs were used to simulate annual crop 
yields and irrigation water withdrawals under the same 
set of weather and CO2 concentration inputs taken from 
the CMIP5 climate simulations.1 Using these data, a panel 
dataset of GGCMs output and atmospheric conditions is 
constructed for the period 1975–2099. 

2.1.1 Weather and CO2

Weather data at a 0.5×0.5-degree resolution (about 50km2) 
used as input into each GGCM are obtained from the 
CMIP5 climate data simulations. A subset of climate sim-
ulations is selected to be representative of the broadest 
plausible range of future climate change. Three General 
Circulation Models (GCMs), HadGEM2-ES, NorESM1-M, 
and GFDL-ESM2M, are selected to be representative of 
respectively, high, medium and low levels of global warming 
(Warszawski et al., 2014). Daily bias-corrected weather data 
generated by these GCMs are provided for the ‘historical’ 
period of 1975 to 2005 and the ‘future’ period of 2006 to 
2099. For the ‘future’ period, only one greenhouse gas 
Representative Concentration Pathway is considered, the 

1  The data are available for download at https://www.pik-potsdam.
de/research/climate-impacts-and-vulnerabilities/research/rd2-cross-cut-
ting-activities/isi-mip/data-archive/fast-track-data-archive 
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RCP 8.5, which is consistent with the highest level of global 
warming compared to historical conditions. 
Based on the daily precipitation, and daily minimum (Tmin) 
and maximum (Tmax) temperatures, monthly averages of 
precipitation (Pr) and mean temperature (Tmean = (Tmin 
+ Tmax)/2) are calculated for each summer month. For 
ease of reference, weather variables for each summer month 
are denoted by numbers suffixes so that _1, _2, and _3 re-
fer to, respectively, June, July and August in the Northern 
Hemisphere and December, January and February in the 
Southern Hemisphere. For each climate scenario considered, 
the corresponding CO2 concentrations data are extracted 
from Riahi, Grübler, and Nakicenovic (2007)2. 

2.1.2 Irrigated crop yields

Simulated annual irrigated crop yields (YIR) in metric tons 
per hectare (t/ha) at a 0.5×0.5-degree resolution are obtained 
from the ISI-MIP Fast Track experiment for five GGCMs: (1) 
the Geographic Information System (GIS)-based Environ-
mental Policy Integrated Climate (GEPIC) model (Liu et al., 
2007; Williams and Singh, 1995); (2) the Lund Potsdam-Jena 
managed Land (LPJmL) dynamic global vegetation and water 
balance model (Bondeau et al., 2007; Waha et al., 2012); 
(3) the Lund-Potsdam-Jena General Ecosystem Simulator 
(LPJ-GUESS) with managed land model (Bondeau et al., 
2007; Linzdeskog et al., 2013; Smith et al., 2001); (4) the 
parallel Decision Support System for Agro-technology 
Transfer (pDSSAT) model (Elliott et al., 2013; Jones et al., 
2003); and (5) the Predicting Ecosystem Goods And Services 
Using Scenarios (PEGASUS) model (Deryng et al., 2011). 
Although these GGCMs differ in their representation of crop 
phenology, leaf area development, root expansion, nutrient 
assimilation, and yield formation, they all account for the 
effect of water, heat stress and CO2 fertilization, and assume 
no technological change.3 However, the LPJ-GUESS model 
simulate potential yields (yield non-limited by nutrient or 
management constraints) whereas the other crop models 
simulate actual yields. Other divergences and GGCM-spe-
cific periodic patterns of yield projections are discussed in 
Blanc and Sultan (2015).

Irrigation water withdrawals
Associated with irrigated crop yields projections, GGCMs 
report irrigation water demand, or potential irrigation water 
withdrawal (PIRRWW), in mm per year at a 0.5×0.5-degree 
resolution. As the crop models make different assumptions 
about the efficiency of irrigation, the reported PIRRWW is 

2  The data are available at http://tntcat.iiasa.ac.at/RcpDb/dsd?Ac-
tion=htmlpage&page=welcome.
3  See Rosenzweig et al. (2014) for more details regarding each 
model’s processes. Caveats are discussed at https://www.pik-potsdam.
de/research/climate-impacts-and-vulnerabilities/research/rd2-cross-cut-
ting-activities/isi-mip/data-archive/fast-track-data-archive/data-caveats.

harmonized across all models to obtain estimates of water 
directly available to the crop, i.e. no losses during convey-
ance and application. More specifically, the PIRRWW data 
provided by pDSSAT is multiplied by 0.75 for maize, soy and 
wheat. PIRRWW data provided by LPJmL are multiplied by 
grid specific project efficiencies applicable to all crops. 4 All 
other models assume an irrigation use efficiency of 100%.

Soil orders
To account for soil conditions, soil orders are extracted from the 
FAO-UNESCO (2005) Soil Map of the World at the 0.5×0.5-de-
gree resolution. It uses the USDA soil taxonomy (Soil Survey 
Staff, 1999)5 classifying soils on the basis of physical and chem-
ical properties observed in situ (e.g. soil horizons, structure, 
texture, color) and inferred from environmental conditions (e.g., 
soil temperature and moisture regimes). Soils are grouped into 
12 main soil orders (Gelisols, Histosols, Spodosols, Andisols, 
Oxisols, Vertisols, Aridisols, Ultisols, Mollisols, Inceptisols, 
and Entisols) as described in Blanc (2017).

2.1.3 Summary statistics

Globally, the sample for each crop-GGCM combination is 
composed of, on average, 15 million observations covering 
about 44,000 grid cells (see Table 1).6 Simulations from the 

4  The spatial file containing project efficiencies is available for 
download at https://www.isimip.org/documents/213/irrigation_proj-
ect_efficiencies.nc.
5  Soil order data are available for download at https://www.nrcs.
usda.gov/wps/portal/nrcs/detail/soils/use/?cid=nrcs142p2_054013 
6  In the final sample, grid cells for which there are less than 10 
output observations after data cleaning are omitted.

Table 1. GGcMs summary information

Crop Model Observations Grid Cells

M
ai

ze

GEPIC  16,176,798  44,902 

LPJ-GUESS  15,958,849  43,824 

LPJmL  16,696,167  45,597 

PEGASUS  11,427,653  43,301 

pDSSAT  13,221,217  42,877 

R
ic

e

GEPIC  16,277,183  45,312 

LPJ-GUESS  15,252,499  43,789 

LPJmL  16,721,941  45,236 

So
yb

ea
n GEPIC  16,197,571  45,211 

LPJ-GUESS  15,538,632  43,422 

LPJmL  16,650,813  45,558 

PEGASUS  8,314,743  39,642 

W
he

at

GEPIC  16,468,355  45,326 

LPJ-GUESS  14,960,416  41,820 

LPJmL  16,859,028  45,724 

PEGASUS  11,839,747  43,387 

pDSSAT  13,484,362  43,073 
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PEGASUS and pDSSAT models for rice and pDSSAT model 
for soybean are not available. For wheat, simulations by the 
pDSSAT model are only available for the HadGEM2 GCM.

Summary statistics for irrigated crop yields and irrigation 
demand are detailed in Table 2 by GGCM and GCM. The 
global average of irrigated crop yields differs amongst crops 
with yields ranging from 1.8t/Ha for soybean to 3.5t/ha for 

maize. Across GGCMs, the largest variation is observed 
for wheat, which ranges from 1.73 t/ha for the PEGASUS 
model to 4.4t/ha for the LPJ-GUESS model. Regarding 
irrigation, soybean requires the least water on average 
(92.5mm/year) and rice the most (114mm/year). Across 
GCMs, average irrigation water withdrawals are the largest 
under the NorESM1_M scenario and the lowest under 
the GFDL_ESM2M scenario. Irrigation requirements vary 

Table 2. Summary statistics by GGcM and GcM

Crop GGCM

GFDL_ESM2M HadGEM2_ES NorESM1_M

Mean Min Max Mean Min Max Mean Min Max

Irrigated crop yields (t/Ha), YIR

M
ai

ze

GEPIC 3.22 0.00 14.74 3.07 0.00 13.01 3.27 0.00 13.24

LPJ-GUESS 3.71 0.00 15.27 3.95 0.00 12.30 3.91 0.00 12.91

LPJmL 3.17 0.00 26.81 3.38 0.00 30.40 3.30 0.00 26.66

PEGASUS 3.00 0.00 35.00 3.24 0.00 35.00 3.29 0.00 34.99

pDSSAT 3.81 0.00 24.09 4.39 0.00 24.10 4.17 0.00 24.11

R
ic

e

GEPIC 2.74 0.00 13.25 2.60 0.00 12.06 2.81 0.00 12.16

LPJ-GUESS 2.13 0.00 20.69 2.19 0.00 22.84 2.29 0.00 20.83

LPJmL 2.63 0.00 23.08 2.68 0.00 23.36 2.69 0.00 23.74

So
yb

ea
n GEPIC 1.38 0.00 5.89 1.33 0.00 6.06 1.41 0.00 6.30

LPJ-GUESS 1.75 0.00 12.14 1.82 0.00 11.66 1.89 0.00 12.25

LPJmL 1.99 0.00 19.47 2.06 0.00 19.66 2.08 0.00 20.73

PEGASUS 1.98 0.00 22.21 2.17 0.00 23.74 2.21 0.00 22.52

W
he

at

GEPIC 2.18 0.00 10.06 2.18 0.00 9.60 2.24 0.00 9.73

LPJ-GUESS 4.36 0.00 24.12 4.35 0.00 22.69 4.53 0.00 22.28

LPJmL 2.47 0.00 16.63 2.39 0.00 16.14 2.48 0.00 15.15

PEGASUS 1.72 0.00 34.76 1.67 0.00 34.79 1.80 0.00 34.98

pDSSAT 3.01 0.00 32.72 3.09 0.00 34.83 3.13 0.00 34.54

Irrigation water withdrawals (mm), PIRRWW

M
ai

ze

GEPIC 106.38 0.00 1068.00 109.37 0.00 935.10 90.65 0.00 914.30

LPJ-GUESS 129.90 0.00 762.05 136.42 0.00 766.58 125.11 0.00 752.18

LPJmL 156.16 0.00 1114.07 152.64 0.00 1119.02 150.24 0.00 1125.14

PEGASUS 26.31 0.00 800.67 29.53 0.00 829.34 23.07 0.00 792.11

pDSSAT 138.51 0.00 1000.50 150.69 0.00 1018.50 125.62 0.00 1055.25

R
ic

e

GEPIC 143.09 0.00 1734.60 144.94 0.00 1630.20 122.79 0.00 1582.60

LPJ-GUESS 85.43 0.00 1129.64 85.64 0.00 1059.34 81.13 0.00 1046.81

LPJmL 150.54 0.00 962.42 149.43 0.00 993.82 145.71 0.00 970.27

So
yb

ea
n GEPIC 84.63 0.00 996.90 83.99 0.00 889.00 71.35 0.00 910.40

LPJ-GUESS 121.51 0.00 968.59 126.60 0.00 1335.53 119.44 0.00 1306.70

LPJmL 112.38 0.00 779.93 111.59 0.00 763.87 108.79 0.00 786.50

PEGASUS 39.40 0.00 713.44 44.12 0.00 801.95 35.06 0.00 707.18

W
he

at

GEPIC 117.64 0.00 721.80 107.13 0.00 639.50 103.61 0.00 612.10

LPJ-GUESS 155.47 0.00 1059.80 159.79 0.00 1048.93 151.65 0.00 1052.28

LPJmL 105.25 0.00 1047.35 99.09 0.00 979.18 103.79 0.00 951.06

PEGASUS 20.87 0.00 712.25 23.93 0.00 722.45 18.89 0.00 718.73

pDSSAT 138.40 0.00 2693.25 149.91 0.00 2797.50 141.12 0.00 2823.00
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greatly across models, with the PEGASUS model simulating average irrigation water withdraw-
als below 40mm/year for all crops, whereas all other GGCMs (except GEPIC for soybean and 
LPJ-GUESS for rice) exceed 100mm/year.
Atmospheric CO2 concentrations, which are the same for all GCM-GGCM combinations, range 
from 331 to 927 parts per million (ppm) between 1975 and the end of the century. Summary 
statistics of Tmean and Pr, and CO2 averaged over all GGCMs are presented in Table 3. On 
average, temperatures are the highest in the second month of summer and precipitation is the 
lowest in the first month of summer. Across GCMs, temperatures are the greatest under the 
HadGEM2-ES model and the lowest under the GFDL-ESM2M GCM, but no clear pattern of 
precipitation emerges amongst GCMs. Weather statistics details at the soil order level indicate 
that mid-summer temperature range between 18˚C in the Spodosols regions (acidic soils devel-
oping under coniferous vegetation) to 30˚C in the Vertisols regions (clay-rich soils in climates 
with distinct dry seasons). Precipitation ranges from less than 1mm/day in the Aridisols regions 
(prone to salinization and typical to arid regions) to more than 7mm/day in the Oxisols regions 
(mineral soils found in tropical and subtropical latitudes). More details regarding the weather 
variables statistics are available in Blanc (2017).

2.2 Methods

2.2.1  Specifications

Our methodology extends the work of Blanc and Sultan (2015) and Blanc (2017). In these stud-
ies, rainfed yields were estimated using a parsimonious specification that only included average 
summer precipitation and temperature weather variables, CO2 concentrations, and interactions 
among these variables:

   (1)

where for each year, y, YRF corresponds to rainfed crop yields simulated by process-based crop 
models for each grid cell (defined by its longitude, lon, and latitude, lat) under each climate 
model, gcm; Pr and Tmean variables correspond mean precipitation and temperature variables 
for each summer month i. CO2 is the annual midyear CO2 concentration level in the atmosphere; 
δ is a grid cell fixed effect; and ρ  an error term. Following Blanc and Sultan (2015), adjustments 
to the specification are made to account for soil fertility erosion and CO2 concentration for the 
pDSSAT and GEPIC models respectively.
For irrigated crops, the five GGCMs considered in this study assume that irrigation is applied to 
compensate for the lack of precipitation. More specifically, for the GEPIC model, “full irrigation 

Table 3. Mean values of summer temperature and precipitation by GcM at the global level

Variable Unit GFDL_ESM2M HadGEM2_ES NorESM1_M

Tmean_1 ˚C 21.4 22.8 22.0
Tmean_2 ˚C 23.1 24.5 23.9
Tmean_3 ˚C 22.4 23.8 22.9
Pr_1 mm/day 3.2 3.0 3.0
Pr_2 mm/day 3.5 3.5 3.5
Pr_3 mm/day 3.5 3.5 3.5

Note: suffixes _1, _2, _3 denote, respectively, June, July and August in the Northern Hemisphere and 
December, January and February in the Southern Hemisphere. 
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was set as a complete elimination of water stress of crops” (Rosenzweig et al., 2014). In the four 
other models, however, irrigation is triggered when soil moisture is insufficient. More specifically, 
For the LPJ-GUESS and LPJmL models, “additional water is provided as soon as the water content 
of the upper soil layer is insufficient” (Bondeau et al., 2007). The PEGASUS model ensures “that 
soil is sufficiently moist to avoid water stress in irrigated land” (Deryng et al., 2011). The pDSSAT 
model, “Determines daily irrigation, based on read-in values or automatic applications based on 
soil water depletion” (Jones et al., 2003). For these models, water stress may not necessarily be 
completely eliminated by full irrigation (Rosenzweig et al., 2014).
Equation (1) is adopted to estimate yields for irrigated crops, YIR, using two specifications. The 
first specification, assumes that irrigation eliminates most water stress and therefore precipitation 
has no impact on crop growth and yields. The specification excluding precipitation can be specified 
as a function of temperature and CO2, and corresponding interaction terms:

   (2)

To assess the effect of precipitation that may not have been completely eliminated by irrigation, 
a second specification including precipitation is specified as:

   (3)

Associated with each crop yield, GGCMS also provide annual irrigation water requirements 
(PIRRWW). Consistent with the methodology used to estimate crop yields, water demand for 
irrigation is estimated as a function of monthly weather and CO2 concentrations. In a first 
specification, the weather vector is composed of mean monthly temperature and precipitation:

   (4)

A second specification considers evapotranspiration (ETo) instead of temperature to account for 
the effect of summer weather on irrigation requirements:

   (5)

As demonstrated by Blanc (2017), the weather effect on crops differs across soil types. The pre-
ferred estimation strategy therefore consists of estimating separate weather response functions 
for each soil order.7 

2.2.2 Non-linear transformations

Weather variables are expected to have a non-linear effect on crop yields. Blanc (2017) find that a 
fractional polynomial specification is preferable to a quadratic an multinomial  transformations 
frequently used in production functions as it relaxes the symmetry constraint imposed by qua-
dratic terms but allows non-parametric flexibility from multinomial transformations. A fractional 

7  In this analysis, response functions for the Gelisols soil order are not estimated, as this soil order represents soils 
permanently frozen.
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polynomial model of degree m defining the relationship 
variables Y and X is defined as:

  (6)

where the parentheses on the power term on X imply the 
following transformation: 

  (7)

where the term pj is multiplied by another lnX for each 
repeated power. A closed-test algorithm performing a 
backward elimination (starting from the most complex 
specification) is used to fit the multivariable fractional 
polynomial model. For irrigated crop yields, following 
Blanc (2017), the maximum permitted degree is m=2. 
Regarding irrigation demand, the effect of temperature 
and precipitation is expected to be non-linear but without 
a turning point (i.e. it is expected that precipitation will 
reduce demand for irrigation water at a declining rate and 
will never lead to an increase in irrigation demand). To 
ensure this relationship, the maximum permitted degree 
of fractional polynomial transformation is limited to m=1. 

Following Royston and Sauerbrei (2008), powers are cho-
sen from among the set {-2, -1, -0.5, 0, 0.5, 1, 2, 3}. The 
specifications used to estimate crop yields and irrigation 
water requirements are summarized in Table 4.

3. Results
Based on the methodology presented Section 2, multiple 
specifications are estimated for both irrigated yields and 
irrigation demand. Results for irrigated crop yields and 
irrigation water requirements are presented in Section 
3.1 and 3.2 respectively. The power terms used for the 
preferred specifications are reported in Appendix B and 
the regression results are presented in Appendix C. The 
corresponding estimated values for δ (the grid cell fixed 
effect) are provided in Appendix D.

3.1 Regression results for irrigated yields
For each crop and GGCM, regressions for irrigated yields 
are estimated for each specification S1 and S2 considering 
the fractional polynomial transformations at the soil order 
subsample level (S1fpintsoil and S2fpintsoil). As present-
ed in Figure 1, the normalized root mean square error 
(NRMSE), which is calculated by dividing the RMSE by the 
difference between maximum and minimum yields, indi-

Table 4. Specification description

Dependent variable Specification Variables and non-linear transformations

YIR
S1fpintsoil Tmean_p1, Tmean_p2, CO2_p1, CO2_p2
S2fpintsoil Pr_p1, Pr_p2, Tmean_p1, Tmean_p2, CO2_p1, CO2_p2

PIRRWW
S1fpintsoil Pr, Tmean_p1, Tmean_p2, CO2_p1, CO2_p2
S2fpintsoil Pr, ETo _p1, ETo _p2, CO2_p1, CO2_p2

Note: suffix _sq denotes square terms, _p1 and _p2 power terms; All specifications include interaction terms and are estimated at 
the soil order level.

Figure 1. Goodness of fit of the irrigated yield statistical emulators by crop and GGcM (S1fpintsoil and S2fpintsoil specifications)
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cates that the average error between predicted and ‘actual’ 
irrigated yields range from around 4% to 6% of maize and 
rice yields, 3% to 6% of soybean yields and 2% to 5% of 
wheat yields. Across GGCMs, the graph shows that lowest 
NRMSE are found for the LPJml and LPJ-GUESS models, 
while GEPIC has the highest NRMSE for all crops except 
maize. Examining differences across specifications, only 
slightly lower NRMSEs are found for the S2 specification 
across most crops and GGCMs. To favor simplicity, the 
most parsimonious S1 specification assuming that irri-
gation eliminates water stress (i.e. excluding the effect of 
precipitation) is thereafter preferred.
The S1fpintsoil regression results show that summer tem-
peratures have a significant impact on irrigated yields from 
all GGCMs and crops. Figure 2 provides an illustration of 
the average effect of temperature during the second month 
of summer while holding covariates at their mean values 
detailed for each soil sample. The figure shows that fractional 
polynomial transformation captures the non-linear effect of 
mid-summer temperature on irrigated crop yields, with in 
some cases, a negative skewness of the curve representing a 
sharp decrease in yields associated with high temperature. 
Similar to the results in Blanc (2017), the average effect of 

temperature on crop yields differ depending on the soil 
order sample considered. 

3.2 Regression results for irrigation water 
withdrawal

As for crop yields, regressions for irrigation water withdraw-
al are estimated for each crop and GGCM at the soil order 
subsample level considering both specifications S1 and S2 
with fractional polynomial transformations (S1fpintsoil 
and S2fpintsoil). The NRMSE presented in Figure 3, shows 
an average error between predicted and ‘actual’ irrigation 
water withdrawals ranging between around 4% to 6% for 
most cases. Errors for PIRRWW for wheat with GEPIC 
reaches almost 8% whiles with pDSSAT they are closer to 
2%. Across all crops and models, the NRMSE for the S1 
specification is found to be slightly lower or equal to the S2 
specification. The S1 specification is thereafter preferred.
As for irrigated crop yields, the regression results for the 
S1fpintsoil specification indicate that summer weather have 
a significant impact on irrigation water withdrawals from 
all GGCMs and crops. Illustrations of the average effect of 
temperature and precipitation during the second month 
of summer while holding covariates at their mean values 

Figure 2. effect of Tmean_2 on YIR by crop and GGcM for the S1fpintsoil specification

Note: covariates are held at their mean values.
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detailed for each soil sample are provided in Figure 4 and 
Figure 5. The figures indicate that the average effect of 
weather on irrigation water withdrawals varies by soil type. 
For instance, the effect of temperature and precipitation 
on irrigation water withdrawals is generally the largest in 
Aridisols regions, which are characteristic of arid regions. 
Figure 4 shows that temperature generally has a positive 

effect on irrigation water withdrawals, which is consistent 
with an increase in evaporation associated with higher tem-
perature. Figure 5 indicates that in most cases, at low level 
of precipitation, an increase in rainfall is associated with 
a sharp decline in irrigation water withdrawals. The effect 
levels off when precipitation rates exceed around 2mm/day. 

Figure 3. Goodness of fit of the irrigation water withdrawal statistical emulators by crop and GGcM (S1fpintsoil and S2fpintsoil 
specifications)

Figure 4. effect of Tmean_2 on PIRRWW by crop and GGcM for the S1fpintsoil specification

Note: covariates are held at their mean values.
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4. Validation 
To evaluate the accuracy of the statistical models at re-
producing irrigated crop yields and associated irrigation 
water withdrawals simulated by GGCMs, the emulators’ 
within- and out-of-sample projections are compared with 
those from GCCMs. Both validation exercises are lead 
using the preferred specification, S1fpintsoil. 

4.1 In-sample validation 

4.1.1  Irrigated crop yields

The within-sample validation exercise is performed on 
the full sample of irrigated yields estimates for each crop, 
grid cell, year, and climate model. To evaluate the emu-
lators’ prediction accuracy overtime, time series of av-
erage irrigated crop yields from GGCMs and statistical 
emulators are presented in Figure 6. The left hand side 
panels present annual irrigated yields for each crop aver-
aged over the three climate models and all grid cells for 
the whole globe. Similar global averages but weighted by 
crop-specific irrigated harvested area (sourced from the 
MIRCA2000 dataset; Portmann et al., 2010) are present-
ed on the right hand side panels. The light colored lines 
represent the GGCMs’ projections and the dark colored 
lines characterize simulations from the emulator (using 
the S1fpintsoil specification). The graphs show that, while 
average yields projections levels driven by the same cli-

mate data differ between GGCMs, predictions from the 
statistical emulators follow on average the same trend as 
projections from GGCMs, although inter-annual variability 
is captured with less accuracy. When focusing on irrigated 
areas, similar remarks can be made, except for irrigated 
yields of maize simulated with the pDSSAT model, rice with 
the LPJ-GUESS model, and soybean with the PEGASUS 
model where greater inter-annual divergences between the 
emulators and the GGCMs are observed at the beginning 
and at the end of the sample. 
To assess the degree of spatial agreement between the em-
ulator and the GGCMs, maps presenting climate change 
impact projections estimated by those models over the 
2090s period are provided in Appendix E. The maps show 
that the emulators reproduce the spatial patterns of irri-
gated crop yields with reasonable accuracy. Similar spatial 
assessment maps considering the change in irrigated crop 
yields from 2000s to 2090s are provided in Figure 7 to 
Figure 10. The first two columns of each figure represent 
at the grid cell level the percentage changes in irrigated 
crop yields for each GGCM and emulator (S1fpintsoil 
specification) respectively. The last columns of each fig-
ure show the logarithmic ratios of percentage changes to 
better distinguish the regions of divergence between the 
two models. Overall, the maps show that GGCMs project 
increases in irrigated crop yields poleward for most crops 

Figure 5. effect of Pr_2 on PIRWW by crop and GGcM for the S1fpintsoil specification

Note: covariates are held at their mean values.
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Figure 6. Average irrigated crop yields from GGcMs and statistical emulators (S1fpintsoil specification)

Note: Shaded areas represents the ‘historical’ period.
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Figure 7. changes in irrigated maize yields from 2000s to 2090s estimated by the statistical emulators (S1fpintsoil specification) 
and GGcMs and comparison (log ratio)

Figure 8. changes in irrigated rice yields from 2000s to 2090s estimated by the statistical emulators (S1fpintsoil specification) and 
GGcMs and comparison (log ratio)

Note: Grid cells where yields projections from crop models are on average less than 1t/ha over the whole study period are masked 
in white. Grid cells for which the sign of the impact projected with the emulator is contrary to the sign of the impact projected by 
the GGCM are masked in black.
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Figure 9. changes in irrigated soybean yields from 2000s to 2090s estimated by the statistical emulators (S1fpintsoil specification) 
and GGcMs and comparison (log ratio)

Figure 10. changes in irrigated wheat yields from 2000s to 2090s estimated by the statistical emulators (S1fpintsoil specification) 
and GGcMs and comparison (log ratio)
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by the end of the century. For other regions, the effects 
depend on the crop and model considered. However, the 
maps show that, overall, the emulators reproduce reason-
ably well the spatial patterns of climate change impacts on 
irrigated crop yields simulated by the GGCMs.

By the end of the century, substantial increases in irrigated 
maize yields are projected in the North and large decreases 
in the tropical regions by most GGCMs. Those patterns are 
reproduced by the emulators except for Northern America 
where yield increases are underestimated by the emulator for 
the LPJml, PEGASUS and pDSSAT models. Alternatively, 
the emulator overestimates irrigated maize yield increases 
in South America and Central Africa for the GEPIC and 
LPJ-GUESS models. Areas of disagreement regarding the 
sign of the impacts are observed in those regions for the 
LPJ-GUESS model. 

For rice, generally good spatial agreement of yield changes 
is observed between the emulator and GGCMs projec-
tions for the LPJ-GUESS model. However, in accordance 
with the time series presented above, the emulator tends 
to overestimate irrigated yields in Southern Asia, where 
the largest part of irrigated rice is harvested. For the two 
other models, the pattern of agreement in this region is 
more mixed. 

Irrigated soybean yield changes projected by the emulators 
are in high agreement with those from the LPJ-GUESS 
model in most regions. For the GEPIC model, however, the 
emulators tend to underestimate soybean yield changes in 
the southern part of the United States. For the PEGASUS 
model, disagreement regarding the sign of the impacts is 
observed in China, where a large share of soybean is har-
vested. However, Central US, which also support a large 
share of irrigated soybean is very well represented by the 
emulator for all models except GEPIC. 

As for the other crops, the spatial patterns of changes in 
crop yields, projected by the GGCMs for wheat are also 
replicated by the emulators, especially the LPJ-GUESS 
model. However, the emulator of the GEPIC model tends 
to overestimate irrigated yields in eastern China where a 
large share of irrigated wheat is cultivated. 

4.1.2  Irrigation water withdrawals

The same within-sample validation exercise as for irrigated 
crop yields is performed on irrigation water withdrawal 
estimates for each crop, grid cell, year, and climate model. 
Figure 11 reports time series of irrigation water withdraw-
als averaged at the global level on the left and weighted 
by crop-specific irrigated harvested area on the right. The 
graphs show that projections from the emulator (in dark 
colors) follow the same trend as projections from GGCMs 
(in light colors). As for yields, inter-annual variability is 
emulated with less precision. However, divergences are 

only observed for rice simulated by the LPJ-GUESS model 
when considering averages weighted by irrigated areas.
To assess the spatial agreement in irrigation water withdraw-
als estimated by the GGCMs and the statistical emulators 
(S1fpintsoil specification) for each crop, maps presenting 
climate change impact projections over the 2090s period are 
presented in Appendix H. These maps show that the emu-
lators are able to reproduce the spatial patterns of irrigation 
demand over the globe for all crops. Maps representing 
spatial agreement in terms of changes from 2000s to 2090s 
are presented in Figure 12 to Figure 15. The maps show that 
large decreases in irrigation demand are expected by most 
GGCMs. The patterns are reproduced reasonably well by 
the emulators, except for Northern Eurasia, where a large 
area of disagreement regarding the sign of the impact is 
observed for the GEPIC and PEGASUS models. 
Regarding rice, changes in water withdrawals for the LP-
JmL model are expect to be largely positive, by contrast 
to the two other models. Those changes are emulated by 
the statistical model, with some overestimation by the 
emulator for the Northern Eurasia with the LPJ-GUESS 
model and in Asia for the GEPIC model. Contradictory 
impacts projections are observed in Central Africa and 
India for the LPJ-GUESS model.
For soybean, projected changes in irrigation water with-
drawals are also largely positive for the LPJ-GUESS model 
with similar area of disagreement as those observed for 
rice. For PEGASUS, the decreases in water withdrawal 
for irrigation are projected to be very large by the end of 
century and the emulator represent those change very well.
Change in irrigation water withdrawals for wheat project 
by the GEPIC and LPJmL model are reproduced relatively 
well by the emulator. For the other models, larger regions 
or over- and underestimation are observed.

4.2 Out-of-sample validation
The out-of-sample validation exercise consists of compar-
ing outputs from emulators which are re-estimated using 
a partial sample excluding simulations from one climate 
model, to outputs from GGCMs under the excluded climate 
model sub-sample. This exercise is performed for both 
irrigated yields and irrigation water withdrawal.

4.2.1  Irrigated crop yields

For irrigated crop yields, the NRMSE statistics calculated for 
each excluded sample are reported in Table 5 and compared 
to the NRMSEs from the full sample estimation presented 
in Section 3. Unsurprisingly, the prediction errors from 
the out-of-sample exercise are larger than those from the 
in-sample estimations. The differences between the overall 
out-of-sample NRMSEs and the in-sample NRMSEs are 
however relatively small, with differences ranging between 
0.002 and 0.009. The errors are generally the smallest for 
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Figure 11. Average irrigation water withdrawals from GGcMs and statistical emulators (S1fpintsoil specification)

Note: Shaded areas represents the ‘historical’ period.
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Figure 12. changes in irrigation water withdrawals for maize from 2000s to 2090s estimated by the statistical emulators 
(S1fpintsoil specification) and GGcMs and comparison (log ratio) 

Figure 13. changes in irrigation water withdrawals for rice from 2000s to 2090s estimated by the statistical emulators (S1fpintsoil 
specification) and GGcMs and comparison (log ratio) 

Note: Grid cells where yields projections from crop models are on average less than 1t/ha over the whole study period are masked 
in white. Grid cells for which the sign of the impact projected with the emulator is contrary to the sign of the impact projected by 
the GGCM are masked in black.
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Figure 14. changes in irrigation water withdrawals for soybean from 2000s to 2090s estimated by the statistical emulators 
(S1fpintsoil specification) and GGcMs and comparison (log ratio) 

Figure 15. changes in irrigation water withdrawals for wheat from 2000s to 2090s estimated by the statistical emulators 
(S1fpintsoil specification) and GGcMs and comparison (log ratio) 
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the estimates with the NorESM1-M climate model excluded 
from the estimation sample.

Time series of irrigated yield weighted by irrigated area 
harvested for each crop, GGCM and leave-one-GCM-out 
combination are presented in Figure 16. The graphs show 
that, as for the in-sample validation, the emulators are able 
to reproduce out-of-sample the trend in crop yields of most 
GGCMs. However, in some cases, the emulator and GGCM 
outputs differ depending on the climate sample excluded. 
For instance, for maize yields with the GEPIC model, the 
graphs indicate that, in the case where the HadGEM2-ES 
model is excluded from the training dataset, the emulated 
irrigated maize crop yields are overestimated while they are 
overestimated in the case where the NorESM1-M model 
is excluded. In such cases, the use of the largest sample 
of plausible climate change is essential to estimate the re-
sponse functions.

4.2.2 Irrigation water withdrawals

As for irrigated crop yields, the NRMSE statistics calcu-
lated for irrigation water withdrawal for each excluded 
sample (see Table 6) show that the prediction errors from 
the out-of-sample exercise are slightly larger than those 
from the in-sample estimations, but the differences are 
larger than those observed for yields (differences ranging 
between 0.003 and 0.02) especially for the GEPIC model 
for maize and wheat. As for irrigated yields, the errors are 
generally the smallest under the excluded NorESM1-M 
climate model.

Time series of average irrigation water withdrawals weighted 
by irrigated area harvested are presented in Figure 17 for 
each crop, GGCM and leave-one-GCM-out combination. 
The graphs show that out-of-sample PIRRWW are generally 
overestimated by the emulators in cases where projections 
from GGCMs are the smallest and underestimated where 
projections are the largest. 

5. Conclusion
Based on the methodology developed in Blanc and Sultan 
(2015) and Blanc (2017), this analysis develops statistical 
emulators of global gridded crop models for irrigated crops 
yields and associated water withdrawals. The emulators for 
maize, rice, soybean and wheat are estimated using data 
from an ensemble of simulations from five GGCMs as 
part of the ISI-MIP Fast Track intercomparison exercise. 
Crop-specific response functions for each GGCM are es-
timated at the grid-cell level for both irrigated crop yields 
and irrigation water withdrawals.

To evaluate the statistical emulators’ ability to reproduce 
irrigated crop yields and associated irrigation water with-
drawals, both in-and out-of-sample validation exercises 
are conducted. These exercises show that, in most cases, 
outputs from the statistical emulators follow the same trend 
as projections from GGCMs. Inter-annual yield variability is 
captured with less accuracy but spatial analyses reveal that, 
overall, the emulators tend to capture the spatial patterns 
of climate change impacts on irrigated crop yields and 
irrigation water withdrawals. Similar spatial agreements 

Table 5. NrMSe statistics for the leave-one-GcM-out validation (S1fpintsoil specification) compared to the full sample

Crop Model GFDL-ESM2M HadGEM2-ES NorESM1-M Overall Full sample
M

ai
ze

GEPIC 0.051 0.057 0.048 0.052 0.045
LPJ-GUESS 0.049 0.045 0.042 0.045 0.037
LPJmL 0.045 0.040 0.040 0.042 0.035
pDSSAT 0.076 0.071 0.074 0.074 0.065
PEGASUS 0.057 0.061 0.055 0.058 0.056

R
ic

e

GEPIC 0.065 0.068 0.059 0.064 0.056
LPJ-GUESS 0.044 0.038 0.038 0.040 0.033
LPJmL 0.043 0.042 0.037 0.041 0.037

S
oy

be
an

GEPIC 0.066 0.066 0.054 0.062 0.054
LPJ-GUESS 0.049 0.046 0.041 0.045 0.037
LPJmL 0.035 0.034 0.031 0.033 0.030
PEGASUS 0.048 0.052 0.043 0.048 0.042

W
he

at

GEPIC 0.054 0.057 0.052 0.055 0.049
LPJ-GUESS 0.039 0.037 0.036 0.038 0.029
LPJmL 0.033 0.032 0.029 0.032 0.026
pDSSAT 0.643 0.669 0.570 0.627 0.572
PEGASUS 0.033 0.037 0.031 0.034 0.030
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Figure 16. Average irrigated crop yield projections from GGcMs and statistical models (S1fpintsoil specification) weighted by irrigated 
area harvested in the leave-one-GcM-out validation exercise 

Table 6. NrMSe statistics for the leave-one-GcM-out validation (S1fpintsoil specification) compared to the full sample

Crop Model GFDL-ESM2M HadGEM2-ES NorESM1-M Overall Full sample

M
ai

ze

GEPIC 0.070 0.081 0.078 0.076 0.061
LPJ-GUESS 0.059 0.058 0.052 0.056 0.048
LPJmL 0.049 0.045 0.042 0.045 0.039
pDSSAT 0.084 0.074 0.074 0.077 0.067
PEGASUS 0.044 0.047 0.040 0.044 0.040

R
ic

e

GEPIC 0.061 0.071 0.063 0.065 0.054
LPJ-GUESS 0.048 0.049 0.043 0.047 0.038
LPJmL 0.054 0.048 0.045 0.049 0.041

S
oy

be
an

GEPIC 0.068 0.075 0.068 0.070 0.060
LPJ-GUESS 0.055 0.061 0.051 0.056 0.045
LPJmL 0.055 0.049 0.048 0.051 0.043
PEGASUS 0.056 0.057 0.049 0.054 0.049

W
he

at

GEPIC 0.096 0.103 0.094 0.098 0.078
LPJ-GUESS 0.060 0.059 0.052 0.057 0.048
LPJmL 0.053 0.053 0.050 0.052 0.042
pDSSAT 0.055 0.045 0.050 0.050 0.030
PEGASUS 0.043 0.043 0.036 0.041 0.035
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are observed when considering the changes in outputs 
between the beginning and end of the century, despite 
some disagreements regarding the strength of the impacts 
in different regions depending on the GGCM considered. 
When using the emulators for regional assessments of 
climate change impacts, caution should therefore be ex-
ercised when selecting an ensemble of emulators that best 
capture the impact projected by the underlying GGCMs.

Out-of-sample validation exercises also show a general 
agreement between the emulators and the GGCMs. How-
ever, as expected, prediction accuracy is lowered when 
excluding output responses to weather variables outside 
the range of values found in the estimation sample. Esti-
mating the statistical emulator using the largest sample 
available, which is designed to encompass the largest range 
of plausible changes in climate over the century, is essential.

The statistical emulators estimated in this study offer an 
accessible and reliable tool to estimate climate change im-
pacts on irrigated crop yields and associated irrigation 
water withdrawals under alternative plausible user-defined 

scenarios. However, as previously noted in Blanc (2017), 
the emulator is better suited to assess long-term climate 
change impacts rather than inter-annual. It is also important 
to note that as none of the GGCMSs is considered more 
accurate than another at projecting future crop yields, 
predictions from multiple models should be considered. In 
this regard, this study developed the emulators for several 
crop models to provide a computationally efficient way to 
consider modeling uncertainty in climate change impact 
assessments. 
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Figure 17. Average irrigation water withdrawal projections from GGcMs and statistical models (S1fpintsoil specification) weighted by 
irrigated area harvested in the leave-one-GcM-out validation exercise
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Appendices 

Appendix A. Data information

Figure A1. Global soil regions based on the FAO-UNeScO Soil Map of the World using the USDA soil taxonomy

Table A1. Modeling group information

Model Institution Modelers’ names

GEPIC EAWAG (Switzerland) Christian Folberth
LPJ-GUESS Institutionen för naturgeografi och ekosystemvetenskap (INES), 

Lunds Universitet (Sweden)
Thomas Pugh, Stephan Olin

LPJmL PIK (Germany) Christoph Muller
PEGASUS Tyndall Centre, University of East Anglia (UK) Delphine Deryng
pDSSAT University of Chicago (USA) Joshua Elliott
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Appendix B. Fractional polynomial transformation

See Excel file Appendix_B_Variable_transformations.xslx attached composed of the following table: 

Table B1. Variable formulas for fractional polynomial transformation used in specification S1fpintsoil for YIR

Table B2. Variable formulas for fractional polynomial transformation used in specification S1fpintsoil for PIRWW

Appendix C. Regression results for YIR (S1fpintsoil specification)

See Excel file Appendix_C_regression_results_YIR.xls attached composed of the following tables:

Table C1. regression results for maize YIR at the soil order level (specification S1fpintsoil)

Table C2. regression results for rice YIR at the soil order level (specification S1fpintsoil)

Table C3. regression results for soybean YIR at the soil order level (specification S1fpintsoil)

Table C4. regression results for wheat YIR at the soil order level (specification S1fpintsoil)

Appendix D. Regression results for PIRRWW (S1fpintsoil specification)

See Excel file Appendix_D_regression_results_PIRRWW.xls attached composed of the following tables:

Table D1. regression results for maize PIRRWW at the soil order level (specification S1fpintsoil)

Table D2. regression results for rice PIRRWW at the soil order level (specification S1fpintsoil)

Table D3. regression results for soybean PIRRWW at the soil order level (specification S1fpintsoil)

Table D4. regression results for wheat PIRRWW at the soil order level (specification S1fpintsoil)

Appendix E. Fixed effects (δ ) for YIR (S1fpintsoil specification) 

See Excel file Appendix_E_Grid_cells_FE_yir.xls attached composed of the following tables:

Table E1. Grid cell fixed effect (δ ) by GGcM for maize

Table E2. Grid cell fixed effect (δ ) by GGcM for rice

Table E3. Grid cell fixed effect (δ ) by GGcM for soybean

Table E4. Grid cell fixed effect (δ ) by GGcM for wheat

Appendix F. Fixed effects (δ ) for PIRRWW (S1fpintsoil specification) 

See Excel file Appendix_F_Grid_cells_FE_pirrww.xls attached composed of the following tables:

Table F1. Grid cell fixed effect (δ ) by GGcM for maize

Table F2. Grid cell fixed effect (δ ) by GGcM for rice

Table F3. Grid cell fixed effect (δ ) by GGcM for soybean

Table F4. Grid cell fixed effect (δ ) by GGcM for wheat
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Appendix G. In-sample validation for YIR (S1fpintsoil specification)

Figure G1. Irrigated maize yields averaged over 2090–2099 for the GePIc model and S1fpintsoil specification

Figure G2. Irrigated maize yields averaged over 2090–2099 for the LPJ-GUeSS model and S1fpintsoil specification

Figure G3. Irrigated maize yields averaged over 2090–2099 for the LPJmL model and S1fpintsoil specification
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Figure G4. Irrigated maize yields averaged over 2090–2099 for the pDSSAt model and S1fpintsoil specification

Figure G5. Irrigated maize yields averaged over 2090–2099 for the PeGASUS model and S1fpintsoil specification

Figure G6. Irrigated rice yields averaged over 2090–2099 for the GePIc model and S1fpintsoil specification
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Figure G7. Irrigated rice yields averaged over 2090–2099 for the LPJ-GUeSS model and S1fpintsoil specification

Figure G8. Irrigated rice yields averaged over 2090–2099 for the LPJmL model and S1fpintsoil specification

Figure G9. Irrigated soybean yields averaged over 2090–2099 for the GePIc model and S1fpintsoil specification
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Figure G10. Irrigated soybean yields averaged over 2090–2099 for the LPJ-GUeSS model and S1fpintsoil specification

Figure G11. Irrigated soybean yields averaged over 2090–2099 for the LPJmL model and S1fpintsoil specification

Figure G12. Irrigated soybean yields averaged over 2090–2099 for the PeGASUS model and S1fpintsoil specification
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Figure G13. Irrigated wheat yields averaged over 2090–2099 for the GePIc model and S1fpintsoil specification

Figure G14. Irrigated wheat yields averaged over 2090–2099 for the LPJ-GUeSS model and S1fpintsoil specification

Figure G15. Irrigated wheat yields averaged over 2090–2099 for the LPJmL model and S1fpintsoil specification
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Figure G16. Irrigated wheat yields averaged over 2090–2099 for the pDSSAt model and S1fpintsoil specification

Figure G17. Irrigated wheat yields averaged over 2090–2099 for the PeGASUS model and S1fpintsoil specification
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Appendix H. In-sample validation for PIRRWW (S1fpintsoil specification)

Figure H1. Irrigation water withdrawal for maize averaged over 2090–2099 for the GePIc model and S1fpintsoil specification

Figure H2. Irrigation water withdrawal for maize averaged over 2090–2099 for the LPJ-GUeSS model and S1fpintsoil specification 

Figure H3. Irrigation water withdrawal for maize averaged over 2090–2099 for the LPJmL model and S1fpintsoil specification 
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Figure H4. Irrigation water withdrawal for maize averaged over 2090–2099 for the pDSSAt model and S1fpintsoil specification 

Figure H5. Irrigation water withdrawal for maize averaged over 2090–2099 for the PeGASUS model and S1fpintsoil specification 

Figure H6. Irrigation water withdrawal for rice averaged over 2090–2099 for the GePIc model and S1fpintsoil specification 

MIt JOINt PrOGrAM ON tHe ScIeNce AND POLIcY OF GLObAL cHANGe  rePOrt 333

31



Figure H7. Irrigation water withdrawal for rice averaged over 2090–2099 for the LPJ-GUeSS model and S1fpintsoil specification 

Figure H8. Irrigation water withdrawal for rice averaged over 2090–2099 for the LPJmL model and S1fpintsoil specification 

Figure H9. Irrigation water withdrawal for soybean averaged over 2090–2099 for the GePIc model and S1fpintsoil specification 

rePOrt 333 MIt JOINt PrOGrAM ON tHe ScIeNce AND POLIcY OF GLObAL cHANGe

32



Figure H10. Irrigation water withdrawal for soybean averaged over 2090–2099 for the LPJ-GUeSS model and S1fpintsoil 
specification 

Figure H11. Irrigation water withdrawal for soybean averaged over 2090–2099 for the LPJmL model and S1fpintsoil specification 

Figure H12. Irrigation water withdrawal for soybean averaged over 2090–2099 for the PeGASUS model and S1fpintsoil specification
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Figure H13. Irrigation water withdrawal for wheat averaged over 2090–2099 for the GePIc model and S1fpintsoil specification 

Figure H14. Irrigation water withdrawal for wheat averaged over 2090–2099 for the LPJ-GUeSS model and S1fpintsoil specification 

Figure H15. Irrigation water withdrawal for wheat averaged over 2090–2099 for the LPJmL model and S1fpintsoil specification 
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Figure H16. Irrigation water withdrawal for wheat averaged over 2090–2099 for the pDSSAt model and S1fpintsoil specification 

Figure H17. Irrigation water withdrawal for wheat averaged over 2090–2099 for the PeGASUS model and S1fpintsoil specification 
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