
MIT Joint Program on the
Science and Policy of Global Change

Sensitivity of Climate Change Projections
to Uncertainties in the Estimates of Observed

Changes in Deep-Ocean Heat Content
A.P. Sokolov, C.E. Forest, and P.H. Stone

Report No. 166
November 2008



The MIT Joint Program on the Science and Policy of Global Change is an organization for research,

independent policy analysis, and public education in global environmental change. It seeks to provide leadership

in understanding scientific, economic, and ecological aspects of this difficult issue, and combining them into policy

assessments that serve the needs of ongoing national and international discussions. To this end, the Program brings

together an interdisciplinary group from two established research centers at MIT: the Center for Global Change

Science (CGCS) and the Center for Energy and Environmental Policy Research (CEEPR). These two centers

bridge many key areas of the needed intellectual work, and additional essential areas are covered by other MIT

departments, by collaboration with the Ecosystems Center of the Marine Biology Laboratory (MBL) at Woods Hole,

and by short- and long-term visitors to the Program. The Program involves sponsorship and active participation by

industry, government, and non-profit organizations.

To inform processes of policy development and implementation, climate change research needs to focus on

improving the prediction of those variables that are most relevant to economic, social, and environmental effects.

In turn, the greenhouse gas and atmospheric aerosol assumptions underlying climate analysis need to be related to

the economic, technological, and political forces that drive emissions, and to the results of international agreements

and mitigation. Further, assessments of possible societal and ecosystem impacts, and analysis of mitigation

strategies, need to be based on realistic evaluation of the uncertainties of climate science.

This report is one of a series intended to communicate research results and improve public understanding of climate

issues, thereby contributing to informed debate about the climate issue, the uncertainties, and the economic and

social implications of policy alternatives. Titles in the Report Series to date are listed on the inside back cover.

Henry D. Jacoby and Ronald G. Prinn,

Program Co-Directors

For more information, please contact the Joint Program Office
Postal Address: Joint Program on the Science and Policy of Global Change

77 Massachusetts Avenue

MIT E40-428

Cambridge MA 02139-4307 (USA)

Location: One Amherst Street, Cambridge

Building E40, Room 428

Massachusetts Institute of Technology

Access: Phone: (617) 253-7492

Fax: (617) 253-9845

E-mail: glo balcha nge @mi t .e du
Web site: ht t p://mi t .e du / glo bal change /

 Printed on recycled paper



Sensitivity of Climate Change Projections to Uncertainties in the Estimates of 
Observed Changes in Deep-Ocean Heat Content 

 

A.P. Sokolov*, C.E. Forest and P.H. Stone 

Abstract 

The MIT 2D climate model is used to make probabilistic projections for changes in global mean surface 
temperature and for thermosteric sea level rise under a variety of forcing scenarios. The uncertainties in 
climate sensitivity and rate of heat uptake by the deep ocean are quantified by using the probability 
distributions derived from observed 20th century temperature changes.  The impact on climate change 
projections of using the smallest and largest estimates of 20th century deep ocean warming is explored. The 
impact is large in the case of global mean thermosteric sea level rise. In the MIT reference (“business as 
usual”) scenario the median rise by 2100 is 27 and 43 cm in the respective cases. The impact on increases 
in global mean surface air temperature is more modest, 4.9 C and 3.9 C in the two respective cases, 
because of the correlation between climate sensitivity and ocean heat uptake required by 20th century 
surface and upper air temperature changes. The results are also compared with the projections made by 
the IPCC AR4's multi-model ensemble for several of the SRES scenarios. The multi-model projections are 
more consistent with the MIT projections based on the largest estimate of ocean warming. However the 
range for the rate of heat uptake by the ocean suggested by the lowest estimate of ocean warming is more 
consistent with the range suggested by the 20th century changes in surface and upper air temperatures, 
combined with expert prior for climate sensitivity. 
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1. INTRODUCTION 

There are significant uncertainties in the characteristics of the climate system which define 
its response to external forcing, such as climate sensitivity, strength of aerosol forcing and the 
rate of deep  ocean heat uptake (e.g. Andronova and Schlesinger 2001; Frame et al. 2005; Forest 
et al. 2006; Knutti et al. 2006). Consequently anthropogenic climate change can be described 
only in probabilistic terms, even when changes in the concentrations of greenhouse gases 
(GHGs) and aerosols are prescribed (e.g. Knutti et al. 2003). To account for such uncertainties, 
projections of future changes in global mean surface air temperature (SAT) presented in the 
IPCC AR4 (Meehl et al. 2007) are based in part on a multi-model ensemble of simulations with 
coupled atmosphere-ocean general circulation models (AOGCMs). 
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There are, however, well known problems with the use of so-called “ensembles of 
opportunity” (Tebaldi and Knutti 2007). Among them are difficulties with defining the relative 
weights of different models and the fact that existing AOGCMs do not cover the full range of 
uncertainty in climate sensitivity and the rate of oceanic heat uptake. By contrast, earth system 
models of intermediate complexity can be used effectively for producing probabilistic 
predictions of future climate changes, due to their computational efficiency and ability to vary 
the above mentioned characteristics over wide ranges. 

Here we use the climate component of the MIT Integrated Global System Model (Sokolov et 
al. 2005) to evaluate the climate response and its associated uncertainty when we prescribe the 
forcing from four different scenarios. The probability distributions for the uncertain input 
parameters were obtained by comparing 20th Century temperature changes as simulated by the 
MIT model with available observations (Forest et al. 2006). In particular we use the probability 
distributions obtained this way when they are combined with an expert prior on climate 
sensitivity (Forest et al. 2006).  

Distributions presented by Forest et al. (2006) are based on data for the trend in the ocean 
temperature averaged the 0-3km layer from Levitus et al. (2005).  There are, however, 
significant differences between estimates of changes in deep ocean temperature obtained in 
different studies (Gouretski and Koltermann 2007; Domingues et al. 2008). To evaluate the 
impact of these differences on climate projections, we constructed two additional sets of input 
parameters distributions and carried out additional ensembles of 21st century climate simulations 
for two forcing scenarios. We also compare these projections with projections produced by the 
ensemble of AR4 AOGCMs.   

2. MODEL DESCRIPTION 
 The climate model used in this study, as well as in Forest et al. (2006), is a modified version 

of the model described by Sokolov and Stone (1998). It consists of a 2-dimensional (zonally 
averaged) statistical-dynamical atmospheric model coupled to an ocean mixed layer model with 
temperature anomalies diffused below the mixed layer. The atmospheric model is derived from 
the Goddard Institute for Space Studies (GISS) Model II general circulation model (GCM) 
(Hansen et al. 1983) and uses parameterizations of the eddy transports of momentum, heat and 
moisture by baroclinic eddies (Stone and Yao 1987, 1990). The model uses the GISS radiative 
transfer code which contains all radiatively important trace gases as well as aerosols. The surface 
area of each latitude band is divided into fractions of land, ocean, land-ice and sea-ice, with the 
surface fluxes and surface temperature computed separately for each surface type. The version 
used here has 4 degree latitudinal resolution and 11 layers in the vertical. The Q-flux ocean 
mixed layer model and the thermodynamic sea-ice model have 4 degree by 5 degree latitude-
longitude resolution and are described by Hansen et al. (1984). 

The climate sensitivity of the atmospheric model (S) can be changed by varying the strength 
of the cloud feedback (Sokolov and Stone 1998), while the rate of deep oceanic heat uptake can 
be changed by varying the value of the global mean diffusion coefficient (Kv) used to mix ocean 
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temperature anomalies below the mixed layer. In spite of the simplicity of the MIT 2D model, it 
has been shown to be able, with the appropriate choice of the model’s parameters (S, Kv) and the 
same forcing scenario, to reproduce the behavior of different AOGCMs over a wide range of 
climate sensitivities and rates of oceanic heat uptakes (Sokolov and Stone 1998; Sokolov et al. 
2003).  Fits for different AOGCMs are obtained using results from their simulations with 
increasing atmospheric CO2 concentrations. Reproducing the AOGCM results for other forcing 
scenarios, such as the SRES scenarios, is more complicated. In some cases different sets of 
forcing agents were taken into account in the simulations of climate for 20th and 21st centuries 
with different AOGCMs. In addition, the strengths of aerosol forcing and the efficacies of 
different forcings vary among models.  

As a result differences in the “climate forcing”1 among AOGCMs (Figure 1), are 
significantly larger than differences in CO2 forcing (Forster and Taylor 2006). However, if for a 
particular forcing scenario the “climate forcing” for a given AOGCM is similar to the “climate 
forcing” simulated by the MIT 2D model, then the version of the MIT model, reproducing the 
behavior of this AOGCM for changes in CO2 only, also reproduces its behavior for that forcing 
scenarios (Figure 2). 

 
Figure 1. Climate forcing for SRES A1B in the last decade of the 21st century relative to 

present (1980-1999) for AR4 AOGCMs, MIT IGSM and from Myhre et al. (2001). 

 
 
 

                                                 
1  “Climate forcing” for a given scenario is calculated from the changes in SAT and heat flux at the top of the 

atmosphere using the feedback parameter estimated from the simulation with 1% per year CO2 increase (Forster 
and Taylor, 2006) 
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Figure 2. Change in global mean annual mean surface air temperature simulated by the 

GFDL 2.1 model (dashed lines) and the corresponding version of the IGSM (solid lines) in 
the simulations with 1% per year CO2 increase (top) and with SRES A2, A1B and B2 
scenarios (bottom).  

 

3. PROBABILITY DISTRIBUTIONS OF INPUT CLIMATE PARAMETERS 
Performing probabilistic climate forecast requires knowledge of probability distributions for 

climate system parameters determining model response to an external radiative forcing. Forest et 
al. (2002) proposed a method for obtaining such distributions based on comparison of the results 
of 20th century climate simulations with observational records of surface, upper air and deep 
ocean temperature changes. Distributions presented by Forest et al. (2002, 2006 and 2008) were 
obtained using estimates of changes in deep ocean heat content provided by Levitus et al. (2005). 
However, several other estimates have been published in the last few years (e.g. Gouretski and 
Koltermann 2007; Ishii et al. 2006; Carton and Santorelli (2008); Domingues et al. 2008).  The 
methods used in different studies vary in their treatment of sub-surface temperature 
measurements from different types of instruments (MBT, XBT and so on) as well as in the 
methods used to estimate changes in data-sparse regions. Only three papers, Levitus et al. 
(2005), Gouretski and Koltermann (2007) and Domingues et al. (2008)  (LAB05, GK07 and 
DOM08 hereafter) provide observationally based estimates of changes in the ocean heat content 
for the 0-3000 m layer (Figure 3). All the others give results for the upper 700m only. When we 
re-did our analyses using trends based on just the upper 700 m we found that they did not 
introduce any constraints on the climate parameters beyond those resulting from using just the 
upper air and surface temperature data. This lack of impact is due to the strong correlation 
between upper-ocean and sea surface temperatures and the large natural variability of the upper 
ocean layers. 
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Figure 3. Changes in ocean heat content from LAB05 (red) , GK07 (green) and DOM08 

(black) for the 0-3000m layer as estimated by each group.  Five year running means were 
applied to the GK07 data and the errors combined appropriately.  The error bars are 
nominally 1-sigma standard errors but represent different sources of uncertainty in each 
case.  

 
Figure 4. The marginal posterior probability density function for S-Sqrt(Kv) parameter 

space obtained using data for surface, upper-air and deep-ocean temperatures by LAB05 
(blue) andDOM08 (black) and using surface and upper-air temperatures only (No Ocean 
data) (red). Thick contours denote rejection regions for significance levels of 90%, 50% 
and 10% respectively. Red dots indicate the median values from respective 1D marginal 
distributions. Thin contours show values of TCR from a 250-member ensemble of 
simulations with the input probability distributions based on the LAB05 data.  
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Figure 4 shows the marginal posterior probability density functions for the S-Sqrt(Kv) 
parameter space (Sqrt(Kv) = Kv  ) obtained using the LAB05 and DOM08 estimates for changes 
in deep ocean temperature and their respective estimates of the uncertainty in the trends2. These 
estimates are respectively the smallest and largest estimates of the 0-3000m trend. We note that 
each of these trends lie outside the uncertainty range cited for the other trend, and thus the 
published uncertainty estimates are almost certainly underestimates. Therefore we also include in 
Figure 4 for comparison the distribution constructed without the use of any ocean data (i.e., No 
Ocean data, hereafter, NO). We note that the probability distributions for climate parameters 
obtained using upper-ocean (0-700m) data are almost identical to the NO distribution. The use of 
the LAB05 and DOM08 analyses strongly affects the range of acceptable values of the rate of 
oceanic heat uptake (Table 1). However, due to the correlation between climate sensitivity and 
the rate of oceanic heat uptake imposed by the data on surface air temperature, changes in SAT 
in response to  a 1% per year increase in CO2 concentration in simulations with the median 
values of S and Kv from the different parameter distributions are not very different (see Figure 
4). 
Table 1. Percentiles of marginal distributions of Sqrt(Kv) obtained under different 
assumptions on deep ocean temperature changes. 

 2.5% 5.0% 25.0% 50.0% 75.0% 95.0% 97.5% 
LAB05 0.12 0.20 0.46 0.73 1.12 1.87 2.16 

NO 0.14 0.24 0.75 1.47 2.45 5.39 6.44 
DOM08 0.44 0.65 1.87 3.16 4.74 7.00 7.46 

4. SIMULATIONS 

First we carried out three 250-member ensembles of simulations from year 1860 to year 
2000, using different values of the climate sensitivity, the rate of the oceanic heat uptake and the 
strength of the aerosol forcing for each of the distributions based on the LAB05, NO, and 
DOM08 results. Different combinations of model parameters controlling these characteristics 
were chosen using the Latin Hypercube Sampling algorithm (Iman and Helton, 1988) from the 
probability density functions described in the previous section. The distribution of each model 
parameter was divided into 250 segments of equal probability and sampling without replacement 
was performed, so that every segment was used once.  Details on the sampling procedure can be 
found in Webster et al. (2003). 

In each simulation, the MIT 2D climate model was forced by the observed changes in GHGs, 
stratospheric aerosols from volcanic eruptions, tropospheric and stratospheric ozone, solar 
irradiance and changes in vegetation due to land use change. Details of the forcings are given in 
Forest et al. (2006).  As can be seen from Figure 5, changes in SAT in simulations with median 
values of climate parameters from all three distributions agree well with observations. Then we 
carried out a number of 250-member ensembles of simulations for several forcing scenarios 
                                                 
2 The LAB05 analysis has recently been updated to take into account the systematic errors in the XBT data noted by 

GK07. The result, which is available on the NOAA website, is not appreciably different from the LAB05 result. 
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using different distributions of the climate parameters (Table 2). Each simulation was started 
from the end of the corresponding 20th Century simulation and simulated years 2001-2100.  Data 
for GHG concentrations for the SRES scenarios B1, A1B and A2 scenarios were taken from the 
web site of the Goddard Institute for Space Studies 
(http://data.giss.nasa.gov/modelforce/ghgases/GCM_2004.html). In addition to changes in CO2 

(ISAM reference), N2O, CH4, CFC-11 and CFC-12, these data include changes in additional 
trace gases (Hansen and Sato, 2004). Changes in the loading of sulfate aerosols were prescribed 
according to the IPCC TAR’s description (Houghton et al. 2001). Changes in black and organic 
carbon aerosols were not included.  

 
Figure 5. Changes in global-mean annual-mean surface air temperature in simulations with 

median values of climate parameter from different distributions. Observations are from 
Jones (2003). 

In the simulations with the MIT REF scenario we used GHG and sulfate aerosol 
concentrations obtained in a reference simulation with the full version of the MIT IGSM2.2 with 
“business as usual” emissions. Detailed information on this scenario can be found in Prinn et al. 
(2008). It is worth noting that the total radiative forcing and SAT changes in simulations with the 
MIT REF scenario are close to those in simulations with the SRES A1FI scenario. The chosen 
set of simulations allows us to explore the dependency of the projected climate changes on both 
the forcing scenarios and the choice of ocean data. 
Table 2. List of simulations with different input parameters and different forcing scenarios. 

Input 
parameters 
distributions 

Forcing scenarios 

 SRES B1 SRES A1B SRES A2 MIT REF 
LAB05 X X X X 

NO - X - X 
DOM08 - X - X 
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5. RESULTS AND DISCUSSION 
The use of different pdfs for input climate parameters has a smaller effect on the distributions 

of projected surface warming than on the distribution of projected sea level rise (Figure 6, 
Tables 3 and 4) because a correlation between the input parameters is imposed by the 20th 
century surface air temperature data. For example, the mean values of sea level rise in the 
ensembles with NO and DOM08 input distributions exceed the mean value for LAB05 
distribution by 40 and 51%, respectively, while changes in the mean values of the increase in 
SAT are only 6 and 13%.  The choice of input distributions also significantly changes the shape 
of the probability distribution for projected thermosteric sea level rise. It has been noted in 
several papers (e.g. Knutti et al. 2008: Meinshausen et al. 2008) that, for the given set of 
AOGCM models, the shapes of the distributions for SAT increase are similar under different 
SRES scenarios. Our simulations yielded similar results. Ratios of the different percentiles of the 
given distribution to the corresponding mean differ only slightly between ensembles with 
different forcing scenarios (see Table 5). At the same time, the ratios of the SAT changes in the 
simulations with different forcing scenarios for a given version of the MIT IGSM are not defined 
just by the ratios of forcings, but also depend on the values of climate sensitivity and the rate of 
heat uptake by the ocean.  

For each of the ensembles listed in Table 2, the SAT change in a simulation using the median 
values of the input climate parameters is close to the median value of SAT changes from the 
corresponding ensemble of simulations. This fact, in combination with the similarity of the 
statistical properties of the distributions of projected surface warming for different forcing 
scenarios, allows us to approximate the probability ranges for surface warming under the SRES 
B1 and A2 scenarios for the NO and DOM08 sets of input parameters without running the 
corresponding ensembles. Namely, we run simulations with the median values of climate 
parameters for the remaining scenarios and then used ratios from Table 5 to estimate probability 
ranges. Those ranges are shown in Figure 7 by dashed lines. 
Table 3. Distributions of temperature changes in the last decade of 21st century relative to 
the 1981-2000 mean. 

  5.0% 16.7% 50.0% Mean 83.3% 95.0% 
LAB05 B1 1.51 1.69 2.10 2.08 2.37 2.71 

 A1B 2.30 2.61 3.17 3.17 3.64 4.11 
 A2 3.00 3.43 4.06 4.03 4.55 4.98 
 REF 3.62 4.11 4.86 4.83 5.41 6.02 

NO A1B 2.20 2.45 2.94 3.01 3.55 3.86 
 REF 3.33 3.76 4.50 4.50 5.23 5.78 

DOM08 A1B 2.13 2.31 2.58 2.66 3.00 3.44 
 REF 3.16 3.43 3.91 3.99 4.50 5.06 
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Figure 6. Frequency distributions for SAT increase under SRES A1B (a) and MIT REF (b) 
scenarios and corresponding thermosteric sea level rise (c and d) in 2091 to 2100 relative 
to the 1981 to 2000 average in simulations with LAB05 (blue) DOM08 (green) and NO 
(red) input parameter distributions. Solid horizontal bars show 5-95% ranges from 250-
member ensembles of simulations with the MIT model, dashed horizontal bars show 5-
95% ranges from the multi-model IPCC AR4 AOGCM ensemble (from figure TS.27 of 
Solomon et al (2007)) 
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Table 4. Distributions of thermosteric sea level rise in the last decade of 21st century 
relative year to the 1981-2000 mean. 

  5.0% 16.7% 50.0% Mean 83.3% 95.0% 
LAB05 B1 5.23 8.85 13.02 12.40 17.85 21.26 

 A1B 7.67 12.16 17.45 16.77 23.35 27.60 
 A2 10.64 15.80 22.10 21.35 28.65 33.56 
 REF 11.80 18.91 26.95 26.11 35.73 42.11 

NO A1B 11.27 14.65 24.40 24.54 33.32 38.07 
 REF 17.65 23.10 37.83 37.80 51.45 58.66 

DOM08 A1B 15.26 25.73 36.00 34.34 42.76 45.26 
 REF 21.50 32.55 42.71 40.82 49.15 51.47 

The values of Sqrt(Kv) required for the MIT IGSM to reproduce the results of different AR4 
AOGCMs in simulations with 1% per year CO2 increase, range from 0.9 cms-1/2 to 2.0 cms-1/2. 
The Sqrt(Kv) values for practically all the AR4 models fall in the upper half of the Sqrt(Kv) 
range suggested by the pdf using the LAB05 ocean heat content data and in the low half of the 
range of the Sqrt(Kv) distribution based on the DOM08 results.  

As a result, the simulations using the LAB05 input parameter distribution suggest stronger 
warming than the ensemble of the AR4 AOGCMs (see Figures 6 and 7) -- namely by the end of 
the 21st century (2091-2100) surface air temperature will increase above the present level (1980-
1999) by 1.7C to 2.4C (16.7 to 83.3 percentiles) for B1, 2.6C to 3.6C for A1B and 3.4C to 4.6C 
for A2. The corresponding increases in the mean are 2.1C, 3.2C and 4.0C respectively. . From 
the AR4 AOGCM ensemble (also shown in Figures 6 and 7), the mean increases are 1.8C, 2.8C 
and 3.4C for the B1, A1B and A2 scenarios, respectively. The corresponding ranges for sea level 
rise due to thermal expansion of sea-water in LAB05 simulations are: 9 cm to 18 cm for B1, 12 
cm to 23 cm for A1B and 16 cm to 29 cm for A2 (Table 4).  
Table 5. Ratios of the percentiles values to the means for probability distributions shown in 
Table 3.  

  5.0% 16.7% 50.0% 83.3% 95.0% 
LAB05 B1 0.72 0.81 1.01 1.14 1.30 

 A1B 0.73 0.82 1.00 1.15 1.30 
 A2 0.74 0.85 1.01 1.13 1.23 
 REF 0.75 0.85 1.01 1.12 1.25 

NO  A1B 0.73 0.81 0.98 1.18 1.28 
 REF 0.74 0.84 1.00 1.16 1.28 

DOM08 A1B 0.80 0.87 0.97 1.13 1.29 
 REF 0.79 0.86 0.98 1.13 1.27 

The upper bounds of the distributions for SAT increases obtained in the LAB05 ensemble 
also significantly exceed the upper bounds simulated by the AR4 AOGCMs (Figure 5a). For 
example, the probability of surface warming exceeding 4.1 C by the end of 21st Century under 
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the A2 scenario is 5% according to the AR4 AOGCM ensemble (Figure TS.27 of Solomon et al. 
(2007)), but 46% according to our results. The SAT changes simulated by the AR4 AOGCMs 
almost completely lie below the median suggested by our LAB05 projections for the high 
emissions scenario (A2) (Figure 7b) and below 83.3 percentile for the other two scenarios 
(Figures 6a and 7a). The larger difference for A2, rather than for the other two scenarios is 
explained, in part, by the fact that the AR4 simulations for different SRES scenarios were carried 
out with different sets of AOGCMs. Thus the MIROC3.2 (hires) AOGCM, which produces the 
highest warming in the simulations for the A1B and B1 scenarios, was not used in the 
simulations with SRES A2.  
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Figure 7. Frequency distributions for SAT increase in 2091 to 2100 relative to the 1981 to 
2000 average for the B1 (a) and A2 (b) SRES scenarios in simulations with LAB05 input 
parameter distribution.  Solid horizontal bars show 5-95% ranges from 250-member 
ensembles of simulations with the MIT IGSM; green and red dashed horizontal bars show 
5-95% ranges for DOM08 and NO approximated by scaling (see text for details); blue 
dashed horizontal bars show 5-95% ranges from the multi-model IPCC AR4 AOGCM 
ensemble (from figure TS.27 of Solomon et al, 2007)  

On the other hand our projections using the DOM08 analysis are more consistent with the 
AR4 AOGCM projections.  However our NO projections are closer to our LAB05-based 
projections, which indicates that, for the assumed prior for climate sensitivity, the observed 
changes in surface and upper air temperature are more consistent with the weaker ocean warming 
trend in the LAB05 analysis than with the stronger trend in the DOM08 analysis. 

The differences in forcing between AOGCMs (illustrated in Figure 1) are unlikely to affect 
our comparison in a significant way for two reasons. First, the climate forcing in the MIT IGSM 
simulations with mean values of climate sensitivity, rate of oceanic heat uptake and strength of 
aerosol forcing turned out to be very similar to the forcing averaged over the set of AR4 
AOGCMs (see Figure 1). Second, the correlation between TCR, which provides a good measure 
of model response to an external forcing on time scales of 50-100 years, and the strength of 
climate forcing for the AR4 AOGCMs is very weak.  
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As noted above, the use of input distributions based on different estimates of changes in the 
ocean heat content has a strong effect on the projected sea level rise due to thermal expansion. 
The range of values produced by the AR4 AOGCMs for the SRES A1B scenario falls in between 
ranges obtained in the different MIT ensembles (Figure 6c).  

6. CONCLUSIONS 

Uncertainties in the estimates of the 20th century changes in the deep ocean heat content have 
a strong effect on projections of the thermosteric sea level rise. The median value of the 
thermosteric sea level rise under the MIT reference forcing scenario is 41 cm if the DOM08 data 
is used, but 27 cm if the LAB05 data is used. The effect on SAT increases is more modest 
because of the correlation between climate sensitivity and ocean heat uptake required by 
observed 20th century temperature changes. Nevertheless the effect is still significant. The 
median SAT increase at the end of the 21st century for the MIT reference scenario is 3.9 C if the 
DOM08 data are used for producing the probability distributions, but 4.9 C if the LAB05 data 
are used. 

For the forcing scenarios used in this study, the statistical properties of the distributions of 
changes in surface air temperature do not depend on the choice of distribution for input climate 
parameters (see Table 5). Such similarity in the distributions for projected surface warming is 
explained by the correlation between S and Sqrt(Kv) imposed by the transient changes in SAT 
observed during 20th century and by the fact that in all scenarios considered here forcing 
increases monotonically with time. Distributions for the equilibrium SAT changes under 
scenarios where the forcing is stabilized will be defined primarily by the input distributions for 
climate sensitivity. 

The estimates of SAT increase produced by the multi-model ensemble of the IPCC AR4 
AOGCMs slightly overestimate the results of the MIT ensemble for input distributions based on 
the DOM08 data, and strongly underestimate the surface warming suggested by the MIT results 
using the LAB05 data.  For the sea level rise due to thermal expansion the situation is the 
opposite. As noted above, the LAB05 analysis is more consistent with the observed 20th century 
surface and upper air temperature changes. These results emphasize the necessity for producing 
reliable estimates for changes of deep ocean heat content.  
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