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Consequences of Considering Carbon/Nitrogen Interactions on the Feedbacks between

Climate and the Terrestrial Carbon Cycle

Andrei P. Sokolov, David W. Kicklighter, Jerry M. Melillo, Benjamin Felzer,

C. Adam Schlosser and Timothy W. Cronin

Abstract

A number of observational studies indicate that carbon sequestration by terrestrial ecosystems in a world with

an atmosphere richer in carbon dioxide and a warmer climate depends on the interactions between the carbon and

nitrogen cycles. However, most terrestrial ecosystem models being used in climate-change assessments do not take

into account these interactions. Here we explore how carbon/nitrogen interactions in terrestrial ecosystems affect

feedbacks to the climate system using the MIT Integrated Global Systems Model (IGSM) and its terrestrial

ecosystems submodel, the Terrestrial Ecosystems Model (TEM). We use two versions of TEM, one with (standard

TEM) and one without (carbon-only TEM) carbon/nitrogen interactions. Feedbacks between climate and the

terrestrial carbon cycle are estimated by comparing model response to an increase in atmospheric CO2

concentration with and without climate change.

Overall, for small or moderate increases in surface temperatures, the terrestrial biosphere simulated by the

standard TEM takes up less atmospheric carbon than the carbon-only version, resulting in a larger increase in

atmospheric CO2 concentration for a given amount of carbon emitted. With strong surface warming, the terrestrial

biosphere simulated by the standard TEM may still become a carbon source early in the 23rd century.

Our simulations also show that consideration of carbon/nitrogen interactions not only limits the effect of CO2

fertilization in the absence of climate change, but also changes the sign of the carbon feedback with climate change.

In the simulations with the carbon-only version of TEM, surface warming significantly reduces carbon sequestration

in both vegetation and soil, leading to a positive carbon-cycle feedback to the climate system. However, in

simulations with standard TEM, the increased decomposition of soil organic matter with higher temperatures

releases soil nitrogen to stimulate plant growth and carbon storage in the vegetation that is greater than the carbon

lost from soil. As a result, sequestration of carbon in terrestrial ecosystems increases, in comparison to the fixed

climate case, and the carbon cycle feedback to the climate system becomes negative for much of the next three

centuries.
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1. INTRODUCTION

Carbon uptake by terrestrial ecosystems plays an important role in defining changes in the

atmospheric CO2 concentration and changes in climate. In turn, carbon uptake is influenced by

these changes. It has long been recognized that nitrogen limitations often constrain carbon

accumulations in mid- and high-latitude ecosystems, such as temperate and boreal forests (e.g.,

Mitchell and Chandler 1939, Tamm et al., 1982). Recent research on plant responses to elevated
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CO2 concentrations is also consistent with the idea that low nitrogen availability can constrain

carbon sequestration in terrestrial ecosystems (Oren et al., 2001; Luo et al. 2004, 2006; Reich et

al., 2006; Canadell et al., 2007).

The possible impacts of changes in climate on the terrestrial ecosystem have been the subject

of numerous studies carried out in recent years (e.g., Friedlingstein et al., 2006; Matthew, 2005;

Plattner et al., 2007). However, most of the terrestrial biosphere models currently used in climate

change assessments, including the IPCC’s Fourth Assessment, do not consider nitrogen

limitations on net carbon storage. Thus, they probably exaggerate the terrestrial biosphere’s

potential to accumulate carbon and thereby slow the atmospheric CO2 rise and the rate of climate

change (Hungate et al., 2003).

In addition, terrestrial biosphere models that ignore carbon-nitrogen interactions may also be

misrepresenting the nature of the feedback between the land carbon cycle and the climate. In

simulations with these models, warming reduces terrestrial carbon uptake resulting in a positive

feedback to the climate system. In some cases, terrestrial ecosystems even switch from being a

carbon sink to being a carbon source by the year 2100 (Cox et al., 2000). While warming will

increase both plant and soil respiration, it will also result in additional soil nitrogen being made

available to the vegetation as it increases soil organic matter decay (Peterjohn et al., 1994; Melillo,

1995, 2002). If this additional available nitrogen promotes more carbon storage in plants than is lost

from soil respiration, warming will cause some biomes, including temperate and boreal forests, to

exhibit an enhanced carbon sequestration (McGuire et al., 1992; Den Elzen et al., 1997).

In a recent model intercomparison (Plattner et al., 2007) of Earth system models of

intermediate complexity (EMICs), the responses of terrestrial carbon dynamics simulated by the

MIT Integrated Global System Model version 2 (IGSM 2, Sokolov et al., 2005) to future climate

change are notably different from those of the other models. The MIT IGSM2 simulates a much

weaker effect of CO2 fertilization on terrestrial carbon uptake and simulates a negative feedback

between the terrestrial carbon cycle and climate rather than a positive feedback as simulated by

most other models. Although many variations in features among the EMICs may account for the

differences in simulated responses, consideration of carbon/nitrogen interactions on terrestrial

carbon dynamics is thought to be primarily responsible for the responses exhibited by the MIT

IGSM2 in that study. In this study, we explore the consequences for the climate system of

simulating the terrestrial biosphere with and without carbon/nitrogen interactions more directly.

We use the MIT IGSM 2 and it’s biogeochemistry submodel, the Terrestrial Ecosystem Model

(TEM, Melillo et al., 1993; Felzer et al., 2004) with the carbon cycle either coupled to (standard

TEM) or uncoupled from (carbon-only TEM) the nitrogen cycle. First, we carry out a set of

simulations in which both the climate submodel of the IGSM and TEM are forced by prescribed

changes in atmospheric CO2 to evaluate the response of the different versions of TEM to changes

in CO2 and climate. Second, to analyze the consequences of carbon/nitrogen interactions on the

projections of future climate change, we run the full version of the IGSM with an interactive

carbon cycle that allows land and ocean carbon exchanges with the atmosphere in addition to

prescribed anthropogenic emissions to influence simulated atmospheric composition and climate.
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2. MODEL DESCRIPTION

The IGSM2 (Sokolov et al., 2005) is a fully coupled model of intermediate complexity of the

Earth climate system that allows the simulation of critical feedbacks between submodels. The

IGSM2.2 version used in this study includes the following components:

• An atmospheric dynamics, physics model,

• A mixed layer/anomaly-diffusive ocean model (ADOM) with carbon-cycle and sea ice

submodels,

• A set of coupled land models, the Terrestrial Ecosystem Model (TEM), the Natural

Emissions Model (NEM), and the Community Land Model (CLM), that encompass the

terrestrial water and energy budgets and terrestrial ecosystem processes.

The time steps used in the various submodels range from 10 minutes for atmospheric

dynamics to 1 month for TEM, reflecting differences in the characteristic timescales of the

various processes simulated by the IGSM.

2.1 Atmospheric Dynamics and Physics

The MIT two-dimensional (2D) atmospheric dynamics and physics model (Sokolov and Stone

1998) is a zonally averaged statistical-dynamical 2D model that explicitly solves the primitive

equations for the zonal mean state of the atmosphere and includes parameterizations of heat,

moisture, and momentum transports by large-scale eddies based on baroclinic wave theory

(Stone and Yao 1987 and 1990). The model’s numerics and parameterizations of physical

processes, including clouds, convection, precipitation, radiation, boundary layer processes, and

surface fluxes, are built upon those of the Goddard Institute for Space Studies (GISS) GCM

(Hansen et al., 1983). The version used in this study has a 4º resolution in latitude and 11 levels

in the vertical dimension.

The MIT 2D atmospheric dynamics and physics model allows up to 4 different types of

surfaces in each zonal band (ice free ocean, sea-ice, land, and land-ice). For each kind of surface,

characteristics such as temperature, soil moisture, albedo, as well as turbulent and radiative

fluxes, are calculated separately. The area-weighted fluxes from the different surface types are

used to calculate the change of temperature, humidity, and wind speed in the atmosphere. The

sensitivity of the atmospheric model to external forcing (S) can be changed by varying the cloud

feedback (Sokolov and Stone 1998; Sokolov, 2006).

2.2 Ocean Component

The ocean component of the IGSM2.2 consists of a Q-flux model of an upper-ocean layer

with horizontal resolution of 4º in latitude and 5º in longitude, and a 3000m deep anomaly

diffusing ocean model (ADOM) beneath (Sokolov et al., 2007). The upper-ocean layer is divided

into two sub-layers that vary in thickness over the year, a mixed layer and a seasonal thermocline

layer that exists between the bottom of the mixed layer and the top of the deep ocean layer. The

mixed-layer depth is prescribed based on observations as a function of time and location (Hansen



4

et al., 1983). In contrast with conventional upwelling-diffusion models, diffusion ADOM is not

applied to temperature itself, but to the temperature difference from its values in a present-day

climate simulation. The spatial distribution of the diffusion coefficients used in the diffusive

model is based on observations of tritium mixing into the deep ocean (Hansen et al., 1984).

A thermodynamic ice model is used for representing sea ice. This model has two ice layers

and computes ice concentration (the percentage of area covered by ice) and ice thickness.

The 2-dimensional ocean carbon model used in the current version of the IGSM2.2 is

described in Sokolov et al. (2007). It has sensitivity to changes in both CO2 and climate that are

similar to the sensitivities of other ocean carbon models (e.g., Plattner et al., 2007).

2.3 Land and Vegetation Processes

Within the IGSM2.2, land processes are represented with a Global Land System (GLS)

framework (Figure 1) in which water and energy dynamics are simulated by the Community

Land Model (CLM, Bonan et al., 2002; Zeng et al., 2002) and terrestrial carbon and nitrogen

dynamics are simulated by the Terrestrial Ecosystem Model (TEM, Melillo et al., 1993; Felzer et

al., 2004). The CLM provides TEM with estimates of evapotranspiration rates, soil moistures

and soil temperatures for a mosaic of land cover types found within a 4º latitudinal band

(Schlosser et al., 2007). In TEM, the uptake of atmospheric carbon dioxide by vegetation, also

known as gross primary production or GPP (Figure 2), is dependent upon photosynthetically

active radiation (PAR), leaf phenology, air temperature, evapotranspiration rates, atmospheric

concentrations of carbon dioxide and ozone, the availability of inorganic nitrogen in the soil, and

the ratio of carbon to nitrogen (C:N) of new plant biomass (Raich et al., 1991; McGuire et al.,

1997; Tian et al., 1999; Felzer et al., 2004). Carbon dioxide is released back to the atmosphere

from terrestrial ecosystems as a result of the autotrophic respiration (RA) of plants and the

Figure 1. Global Land System (GLS) framework.
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Figure 2. The Terrestrial Ecosystem Model (TEM). The state variables are: carbon in vegetation (CV);
structural nitrogen in vegetation (NVS); labile nitrogen in vegetation (NVL); organic carbon in soils and
detritus (CS); organic nitrogen in soils and detritus (NS); and available soil inorganic nitrogen (NAV).
Arrows show carbon and nitrogen fluxes: GPP, gross primary productivity; RA, autotrophic respiration;
RH, heterotrophic respiration; LC, litterfall carbon; LN, litterfall nitrogen; NUPTAKES, N uptake into the
structural N pool of the vegetation; NUPTAKEL, N uptake into the labile N pool of the vegetation;
NRESORB, N resorption from dying tissue into the labile N pool of the vegetation; NMOBIL, N mobilized
between the structural and labile N pools of the vegetation; NETNMIN, net N mineralization of soil
organic N; NINPUT, N inputs from the outside of the ecosystem; and NLOST, N loss from the ecosystem.

heterotrophic respiration (RH) associated with the decomposition of soil organic matter. Plant

respiration includes both maintenance respiration (RM), which is dependent upon the amount of

vegetation biomass and air temperature, and growth respiration, which is assumed to consume

20% of the available photosynthate (i.e. the difference between GPP and RM) to construct new

plant tissues. Net primary production (NPP), which is an important source of food and fiber for

humans and other organisms on earth, is the net uptake of atmospheric carbon dioxide by plants

and is calculated as the difference between GPP and RA. Heterotrophic respiration depends upon

the amount of soil organic matter, the C:N ratio of the soil organic matter, air temperature and

soil moisture (Raich et al., 1991; McGuire et al., 1997; Tian et al., 1999). Within an ecosystem,

carbon may be stored either in vegetation biomass or in detritus (i.e. litter, standing dead and soil

organic matter). In TEM, the carbon in vegetation biomass and detritus are each represented by a

single pool (Figure 2). The transfer of carbon between these two pools is represented by litterfall

carbon (LC), which is calculated as a proportion of vegetation carbon. Changes in vegetation

carbon ( VEGC, also known as biomass increment), detritus ( SOILC) and terrestrial carbon

( TOTALC) are then determined as a linear combination of these fluxes:
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VEGC = GPP – RA – LC                                                 (1a)

VEGC = NPP – LC                                                          (1b)

SOILC = LC – RH                                                             (2)

TOTALC = VEGC + SOILC                                     (3a)

TOTALC = NPP – RH                                                       (3b)

Carbon sequestration in terrestrial ecosystems can be estimated by the GLS either as the sum of

the estimated changes in carbon in vegetation and detritus (Equation 3a) or by the difference

between NPP and RH (Equation 3b), which is also known as net ecosystem production or NEP.

An important feature of TEM is that the model simulates the influence of terrestrial nitrogen

dynamics on terrestrial carbon dynamics. First, the uptake of carbon dioxide by plants is assumed

by TEM to be limited by nitrogen availability in most land ecosystems on earth. Tropical forests

are the only exceptions, where nitrogen availability is not assumed to limit GPP under

contemporary conditions. The nitrogen limitation is imposed by determining the ratio of an

initial estimate of NPP to an initial estimate of the amount of inorganic nitrogen acquired by

plants from the soil (NUPTAKE) plus the amount of vegetation labile nitrogen mobilized

(NMOBIL) during a particular month (Pan et al., 1998; Tian et al., 1999). This NPP:

(NUPTAKE+NMOBIL) ratio is then compared to a target C:N ratio for the production of new

plant tissues (PCN). If the NPP:(NUPTAKE+NMOBIL) ratio is greater than PCN, then NPP is

reduced to equal the multiplicative product of PCN and the sum of NUPTAKE and NMOBIL

because nitrogen is limiting. As experimental studies (McGuire et al., 1995, Cotrufo et al., 1998;

Curtis and Wang, 1998; Norby et al., 1999) have shown that plant tissue nitrogen concentrations

change with enhanced CO2 concentrations, we adjust PCN with increasing atmospheric CO2

concentrations to be consistent with the assumption of a linear 15% decrease in plant tissue

nitrogen concentrations associated with a 340 ppmv increase in atmospheric CO2 (McGuire et

al., 1997). Thus, vegetation biomass will contain more carbon per gram nitrogen under enhanced

atmospheric CO2 concentrations than under current conditions in our simulations. Second, TEM

assumes that nitrogen availability in ecosystems is dependent upon the release of inorganic

nitrogen from soil organic matter during decomposition (i.e. net nitrogen mineralization). This

nitrogen is then available for uptake by plants to support plant productivity. If decomposition

increases, perhaps as a result of higher temperatures, then more inorganic nitrogen is released

and plant productivity may increase. Conversely, if decomposition decreases, plant productivity

may decline due to increased nitrogen limitations. Thus, the recycling of nitrogen by

decomposition plays an important role in the ability of plants to respond to changing

environmental conditions in the TEM simulations (McGuire et al., 1997; Xiao et al., 1997, 1998;

Pan et al., 1998; Kicklighter et al., 1999). While other models may implicitly account for the

influence of nitrogen limitations on GPP with approaches such as the use of “biome-specific

growth factors” (e.g., Alexandrov et al., 2003), these models do not account for the influence of

potential changes in nitrogen availability associated with future climate change. Although the

structure of TEM allows consideration of nitrogen inputs and losses from terrestrial ecosystems,
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no nitrogen is assumed to be added or lost from terrestrial ecosystems to influence nitrogen

availability in the version of TEM used in the IGSM2. Thus, the total amount of nitrogen within

an ecosystem does not change over a simulation, but nitrogen can be redistributed between

vegetation and soils.

To examine the importance of this nitrogen recycling on carbon dynamics, TEM has been

constructed such that the model can be run under “carbon-only” assumptions, where the amount

of soil inorganic nitrogen is not allowed to change and plant productivity is not limited by

nitrogen availability. In a previous study (Kicklighter et al., 1999), nitrogen availability has been

shown to greatly constrain the response of terrestrial ecosystems to potential enhanced

atmospheric carbon dioxide concentrations in the future under a fixed climate. Indeed, in that

study, the elimination of nitrogen constraints in the “carbon-only” version of TEM allowed a rate

of carbon sequestration that was much greater than that normally obtained by other terrestrial

carbon models under similar conditions. The rather large response is a result of using the same

value (400 ppmv CO2) for the Michaelis-Menten half saturation constant, which describes the

effect of atmospheric carbon dioxide on GPP (McGuire et al., 1992; Pan et al., 1998), for the

“carbon-only” version of TEM as in our standard “nitrogen limited” TEM. If we reduce the

Michaelis-Menten half saturation constant to 150 ppmv CO2 in the “carbon-only” version of

TEM, we obtain simulated responses of ecosystems to enhanced atmospheric carbon dioxide

concentrations that are similar to other terrestrial carbon models used in the IPCC’s Fourth

Assessment Report (Plattner et al., 2007).

To estimate carbon fluxes from terrestrial ecosystems to the atmosphere, TEM is run for every

land cover type in a mosaic established for each 4º latitudinal band used by the atmospheric

dynamics and physics/chemistry model (Schlosser et al., 2007). While air temperature, PAR and

atmospheric concentrations of carbon dioxide and ozone are assumed to be the same for each

land cover type in a latitudinal band, a provision is made to account for the varying precipitation

amounts falling on ocean and land as well as across the various land cover types within each

latitudinal band (Schlosser et al., 2007). Thus, the GLS is able to represent some of the

longitudinal variability across a 4º latitudinal band that influences evapotranspiration, soil

moisture and terrestrial carbon dynamics, but is not able to represent any changes in longitudinal

variability that may occur with climate change. The TEM results are area-weighted to obtain

aggregate fluxes from each latitudinal band (Sokolov et al., 2005). In the IGSM2.2, the TEM

estimates carbon fluxes from only natural ecosystems. The influence of human disturbances on

terrestrial carbon dynamics is currently determined by another model within the IGSM and these

effects are not included in the analyses presented in this paper.

3. SIMULATIONS WITH PRESCRIBED CHANGES IN ATMOSPHERIC CO2

CONCENTRATION

In the simulations described in this section, the atmospheric submodel of the IGSM is forced

by prescribed changes in atmospheric CO2 between year 1861 and year 2300 according to the

IPCC scenario SP1000 (Figure 3a). Four simulations (Table 1) are carried out with the standard
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Figure 3. (a) SP1000 atmospheric CO2 concentration, and (b) changes in surface air temperature in
simulations with SP1000 scenario for different values of climate sensitivity.

Table 1. Simulations with SP1000 scenario with different versions of TEM.

Simulation TEM version Climate sensitivity Carbon/nitrogen interactions considered?
CO_FF Carbon-only Fixed forcing No
CO_2.0 Carbon-only 2.0 K No
CO_3.0 Carbon-only 3.0 K No
CO_4.5 Carbon-only 4.5 K No
NL_FF Standard Fixed forcing Yes
NL_2.0 Standard 2.0 K Yes
NL_3.0 Standard 3.0 K Yes
NL_4.5 Standard 4.5 K Yes

and carbon-only versions of TEM, with a value of the Michaelis-Menten half saturation constant

(kc) equal to 150 ppmv is used in both versions of TEM in these simulations. In the first

simulation, changes in CO2 concentration do not affect climate simulated by the atmospheric

submodel. Therefore, TEM is forced by increasing CO2 with climate corresponding to the initial

atmospheric CO2 concentrations. Following the terminology used in previous studies (e.g.,

Friedlingstein et al., 2006; Matthew, 2005; Plattner et al, 2007), we refer to this simulation as an

“uncoupled simulation”. In three “coupled” simulations, changes in climate are projected using

three different values of model sensitivity (S, see section 2.1) corresponding to equilibrium surface

warming of 2 K, 3 K and 4.5 K in response to the doubling of atmospheric CO2 concentration.

Changes in surface air temperature (SAT) produced in these latter simulations are shown in Figure

3b. The absence of feedbacks between terrestrial carbon uptake and atmospheric CO2

concentration in these simulations allows us to compare the responses of the different versions of

TEM to identical changes in atmospheric CO2 concentrations alone and with changes in climate
1
.

In this section, we first examine how carbon/nitrogen interactions influence the simulated

response of terrestrial ecosystems to CO2 fertilization and global warming. We then examine

how our results compare to similar results of models used in the IPCC Fourth Assessment

                                                  
1
 We have carried out a set of sensitivity simulations, which showed that changes in precipitation have much smaller

effect on terrestrial carbon cycle than changes in surface air temperature. Therefore we will only discuss impact

of temperature increase.
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Report. Finally, to examine how CO2 fertilization assumptions influence simulated terrestrial

source/sink behavior, we conduct additional simulations with the standard TEM, but use kc

values equal to 400 ppmv and 700 ppmv, respectively.

3.1 Influence of Carbon/Nitrogen Interactions on the Simulated Response of Terrestrial
Ecosystems to CO2 Fertilization and Global Warming

The rate of CO2 fertilization estimated for the carbon-only TEM with kc =150 is very close to

the rate estimated for the Bern model (Plattner et al., 2007). As a result, changes in terrestrial

carbon stocks in the uncoupled simulations with the carbon-only TEM and the Bern model are

also very close (Figure 4). Response of the carbon-only TEM to global warming is similar in

pattern but somewhat larger than the response produced by the Bern model or most other

terrestrial carbon models (Friedlingstein et al., 2006). The behavior of the carbon-only TEM,

resembles that of the Hadley Center model (Cox et al., 2000), in that the terrestrial biosphere

stops absorbing carbon when surface warming reaches a threshold. In simulations with the

carbon-only TEM, this threshold occurs with a 4.5º C increase in global mean SAT around year

2150 in the S=4.5 K simulation and around year 2240 in the S=3 K simulation. For a different

scenario of CO2 increase, the corresponding temperature threshold is likely to be different.
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 Years 

0.0
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600.0

800.0

1000.0

 
Tg 
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Figure 4. Changes in the terrestrial carbon simulated by (a) the Bern model, (b) carbon only TEM,
and (c) standard TEM.
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In contrast, changes in future total terrestrial carbon stocks in vegetation and soils projected

by our standard “nitrogen-limited” TEM are much lower than those simulated by either the Bern

model or the carbon-only TEM. In the uncoupled simulation, the standard TEM estimates a gain

in terrestrial carbon storage that is only about 40% of the gain projected by the Bern model or the

carbon-only TEM. In addition, consideration of carbon/nitrogen interactions changes the

simulated response of these ecosystems to warming. In the Bern and carbon-only TEM

simulations, which do not consider carbon/nitrogen interactions, warming causes less carbon to

be stored in terrestrial ecosystems, a positive feedback, whereas in the standard “nitrogen-

limited” TEM simulation, warming causes more carbon to be stored in terrestrial ecosystems, a

negative feedback. However, as the SAT continues to increase, a temperature threshold may be

reached when the negative feedback becomes positive. Thus, when SAT rises by about 6.5
o
 C

around year 2220 in the standard TEM simulation with S = 4.5 K, the terrestrial biosphere

becomes a carbon source.

It is worth noting that the carbon-only TEM estimates that the terrestrial biosphere

accumulates more carbon than the standard TEM with the exception of the simulation with the

largest temperature increases. While the standard TEM estimates that carbon storage in the

terrestrial biosphere increases by 25 to 29% from the year 1861 to 2300, the carbon-only TEM

estimates that this carbon storage increases by 25 to 74% depending on the degree of concurrent

warming that occurs (Table 2).

The differences in the responses of carbon storage estimated by the two versions of TEM to

changes in both atmospheric CO2 and climate are largely the result of the differences in the

carbon stored in vegetation. In the carbon-only TEM simulations, vegetation carbon increases by

53 to 77% from 1861 to 2300 (Table 2) with the accumulation of vegetation biomass becoming

slower with additional warming (Figure 5a) as a result of enhanced plant respiration. In contrast,

the standard TEM simulations estimate increases of vegetation carbon of only 12 to 41%

between 1861 and 2300 (Table 2) with biomass accumulation becoming more rapid with

additional warming (Figure 5b) as a result of enhanced nitrogen availability, which supports

higher rates of plant productivity. Changes in the soil carbon simulated by the carbon-only and

standard versions of TEM are qualitatively similar (Figures 5c and 5d), but differ in the strength

of the response to CO2 fertilization and warming. In the standard TEM simulations, carbon

Table 2. Changes in the amount of carbon stored in vegetation, soils and the terrestrial biosphere
between 1861 and 2300 (expressed as the ratio to corresponding initial value) in the carbon-only (CO)
and standard TEM (NL) simulations.

Simulation VEGC SOILC TOTALC
CO_FF 1.77 1.71 1.74
CO_2.0 1.63 1.32 1.50
CO_3.0 1.59 1.15 1.41
CO_4.5 1.53 0.87 1.25
NL_FF 1.12 1.40 1.25
NL_2.0 1.25 1.32 1.29
NL_3.0 1.33 1.25 1.29
NL_4.5 1.41 1.06 1.25
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Figure 5. Changes in the vegetation (top row) and soil (bottom row) carbon simulated by the
carbon only (left column) and standard TEM (right column).

storage in soils increases by 6 to 40% between 1861 and 2300 with less carbon being stored

under warmer climate conditions (Table 2) as a result of enhanced decomposition rates. In the

carbon-only TEM simulations, the response is larger and ranges from a 13% loss of soil carbon

under the warmest conditions to a 71% gain of soil carbon under fixed-forcing conditions.

Additional details of how carbon/nitrogen interactions influence terrestrial carbon storage and

fluxes between these two versions of TEM are given in the Appendix.

3.2 Comparisons to Other Studies

Different terrestrial biosphere models are often compared in terms of carbon uptake

sensitivities to increases in atmospheric CO2 and surface warming (Friedlingstein et al., 2006,

Plattner et al., 2007). In these comparisons, it is assumed that the change in terrestrial carbon

( C) can be approximated by a linear function of the changes in CO2 ( CO2) and surface

temperature ( Tsrf),

C= L CO2+ L Tsrf,

where the sensitivity to CO2 ( L) can be calculated from the change in terrestrial carbon in the

uncoupled simulations ( Cunc), as:

L= Cunc/ CO2,

and the sensitivity to surface temperature ( L) can be calculated from the change in terrestrial

carbon from both the uncoupled simulation ( Cunc), and a coupled simulation ( Ccou), as:



12

L=( Ccou- Cunc)/ Tsrf.

Both L and L derived from the carbon-only TEM simulations (Table 3) fall in the ranges of

values calculated with other terrestrial models (Friedlingstein et al., 2006, Plattner et al., 2007).

As expected, L for the standard TEM is about 2.5 times smaller than for the carbon-only TEM

as a result of nitrogen limitations on plant productivity. In addition, the standard TEM results

provide positive values of L, indicating enhanced carbon uptake with temperature, rather than

the negative values of the carbon-only TEM results or the other models. For both versions of the

TEM, sensitivity of carbon uptake to surface temperature (measured by absolute value of L)

decreases with the increase of the model climate sensitivity, suggesting a saturation of the

temperature effect on carbon uptake. Since changes in the terrestrial carbon can only be roughly

approximated by a linear function, both L and L depend on time period. Values shown in table

3 are calculated using data from 1861 to 2300.

3.3 Sensitivity of Terrestrial Source/Sink Behavior to CO2 Fertilization Assumptions

Simulated responses of the terrestrial biosphere to changes in CO2 and climate also depend on

the assumed rate of CO2 fertilization. A kc value of 150 is at the low end of the range of values

determined from laboratory and field studies (Raich et al., 1991; McGuire et al., 1992;

Gunderson and Wullschleger, 1994; Curtis and Wang, 1998; Norby et al., 1999, 2005). To

evaluate this dependence we carried out additional simulations with the standard TEM for kc

values of 400 ppmv and 700 ppmv. A change in the CO2 fertilization rate has little impact on the

model sensitivity to enhanced CO2 concentrations; the value of L for the standard nitrogen-

limited TEM does not depend on kc. It does, however, affect the strength of the carbon

cycle/climate feedback; L, which increases with the rate of CO2 fertilization. An increase in kc

also increases the magnitude of surface warming at which the terrestrial biosphere switches from

being a carbon sink to becoming a carbon source. In simulations with the standard TEM when kc

equals either 400 ppmv or 700 ppmv, the terrestrial biosphere starts to be a source of

atmospheric CO2 rather than a sink when SAT rises by more than 11.5º
 
C and 13º C respectively.

Table 3. Terrestrial carbon sensitivities to CO2 ( L) and surface warming ( L) at different climate
sensitivities (2.0 K, 3.0 K or 4.5 K) for carbon-only (CO) and standard TEM (NL) simulations.

L  (Gt C K-1)L

(Gt C ppm-1) 2.0 K 3.0 K 4.5 K
CO_150 1.33 -99 -81 -69
NL_150 0.51 16 12 4
NL_400 0.53 25 20 15
NL_700 0.53 26 22 17

4. SIMULATIONS WITH AN INTERACTIVE CARBON CYCLE AND PRESCRIBED

ANTHROPOGENIC EMISSIONS

To evaluate the impact of different treatments of carbon/nitrogen interactions on projections of

future climate, we conduct a set of simulations using the IGSM2.2 with an interactive carbon

cycle. In these simulations, atmospheric CO2 concentrations are calculated using prescribed
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anthropogenic carbon emissions and simulated atmospheric exchanges of CO2 with the land and

the ocean. Similar to the protocol in Section 3, four simulations (one uncoupled and three coupled)

are carried out with each version of the TEM. Because the effects of the simulated terrestrial and

oceanic carbon uptake on the predicted atmospheric CO2 concentrations and climate change

depend on the magnitude of anthropogenic emissions, we carry out simulations using two

emission scenarios, namely the Bern SP1000 and SP550 scenarios (see Plattner et al., 2007).

Consideration of carbon/nitrogen interactions in terrestrial ecosystems has a large influence

on the feedbacks between climate and carbon cycle. Because both the carbon-only TEM and the

ocean carbon model, similar to other ocean carbon models, simulate positive feedbacks with

climate, atmospheric CO2 concentrations are estimated to increase (Figure 6) with the increase in

surface warming associated with an increase in climate sensitivity. In contrast, a feedback

between climate and the carbon cycle appears to be practically absent in the simulations with the

standard TEM (Figure 6). The climate-related increase in terrestrial carbon uptake is

compensated for by the decrease in the uptake by the ocean so that atmospheric CO2

concentrations are almost identical in all simulations with the standard version of the TEM. It is

worth noting that, in spite of the climate-change related decrease in terrestrial carbon uptake, the

final atmospheric CO2 concentrations in all of the SP500 simulations (Figure 6b) and in three out

of four SP1000 simulations (Figure 6a) with the carbon-only TEM are lower than the standard

TEM simulations in which terrestrial uptake of carbon is limited by nitrogen availability. The

only exception is a simulation with SP1000 emissions and climate sensitivity of 4.5 K, where

atmospheric CO2 concentration becomes higher than in the corresponding simulation with the

standard TEM only after year 2240. As a result, SAT increases more in all simulations using the

standard TEM (Figure 7). The differences in simulated responses between the two TEM

versions are more noticeable in the simulations using lower anthropogenic carbon emissions

(Figures 6b and 7b). Therefore, accounting for terrestrial carbon/nitrogen dynamics is especially

important for estimating climate impacts of different economic policies aimed to stabilization of

the greenhouse gases concentrations in the atmosphere.
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Figure 6. Atmospheric CO2 concentrations obtained in simulations with SP1000 (a) and SP500 (b)
emissions scenarios with TEM_CO (solid lines) and TEM_NL (dashed lines).
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5. CONCLUSIONS.

Similar to the findings of McGuire et al. (1992) and den Elzen et al. (1997), the results of the

simulations presented here indicate that consideration of the interactions between the carbon and

nitrogen cycles significantly affect the response of the terrestrial biosphere to increases in

atmospheric CO2 concentration and surface air temperature. In addition, carbon/nitrogen

interactions also affect the influence of the terrestrial biosphere on future atmospheric CO2

concentrations and the earth’s surface temperatures. On one hand, the limitation of carbon uptake

by nitrogen availability significantly reduces the effect of CO2 fertilization in the absence of

surface warming. Thus, the standard TEM estimates a much smaller increase in terrestrial carbon

uptake in the uncoupled simulations than in the analogous simulation with the carbon-only TEM.

On the other hand, an increase in the surface temperature associated with elevated CO2

concentrations increases the availability of nitrogen through mineralization of organic matter by

increasing the decomposition of detritus. The elevated nitrogen availability, in turn, alleviates the

nitrogen constraints on plant productivity in nitrogen-limited ecosystems such as boreal and

temperate forests, amplifying the effect of the CO2 increase on GPP. Because the C:N ratios for

vegetation, particularly woody tissues, are significantly higher than those for soil organic matter,

climate-change related increases in vegetation carbon can exceed the loss of soil carbon through

enhanced decomposition to sequester carbon in terrestrial ecosystems (Melillo et al., 2002).

Thus, the standard TEM estimates more carbon will be sequestered in the coupled simulations

than in the uncoupled simulations with a fixed climate. Without consideration of such

carbon/nitrogen interactions, the carbon-only TEM estimates less carbon will be sequestered in

the coupled simulations than in the uncoupled simulations. Due to such differences in the

responses to changes in CO2 and climate, the amount of atmospheric carbon sequestered by the

terrestrial biosphere is quite different and the feedbacks between climate and the terrestrial

carbon cycle simulated by two versions of TEM have different signs.

The impact of carbon/nitrogen interactions on the projected increase in atmospheric CO2

depends, for given set of carbon emissions, on the climate characteristics defining the response

of climate system to external forcing (e.g., climate sensitivity or the rate of heat uptake by the

ocean). In most cases, the terrestrial biosphere as simulated by the standard TEM absorbs less
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carbon than that simulated by the carbon-only TEM, despite climate related increases in carbon

uptake. This leads to a larger increase in atmospheric CO2 concentration and high surface

warming. At the same time, consideration of the dependence of carbon uptake on nitrogen

availability increases the magnitude of the change in surface temperature required to switch the

terrestrial biosphere from being a carbon sink to becoming a carbon source. Thus, the probability

of a runaway increase in CO2 is reduced, but not eliminated.

In our simulations, we assume that the amount of nitrogen in terrestrial ecosystems remains

constant, but this nitrogen may be redistributed between vegetation and soil detritus to influence

terrestrial carbon storage. Nitrogen inputs from atmospheric nitrogen deposition and nitrogen

fixation may also enhance nitrogen availability to potentially alleviate such limitations, but the

changes in nitrogen inputs have to be balanced against corresponding changes in nitrogen losses,

such as N2O and N2 emissions, from terrestrial ecosystems that may result from global change.

Hungate et al. (2003) estimate that 1.2 to 6.1 Pg N could accumulate in terrestrial ecosystems by

the year 2100 from these nitrogen inputs. However, they also show that this nitrogen subsidy is

not nearly enough to support the terrestrial uptake of atmospheric CO2 projected by many

models. Future studies should attempt to better account for the influence of nitrogen inputs and

losses on terrestrial carbon dynamics.

Our research highlights the importance of including carbon/nitrogen interactions in models

used in climate change assessments such as the IPCC. Failure to do so exaggerates the carbon

storage capacity of the terrestrial biosphere and underestimates the control needed on CO2

emissions to stabilize the earth’s surface temperature.
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APPENDIX

Changes in terrestrial carbon storage are the result of how carbon fluxes within the land

ecosystems and between these ecosystems and the atmosphere (Equations 1-3) vary over time.

We examine how CO2 fertilization and warming influence these fluxes along with the role of

carbon/nitrogen interactions to help explain why the temporal patterns of terrestrial carbon

storage differ between the carbon-only TEM and the standard TEM.

The influence of CO2 fertilization alone on these fluxes may be determined by examining the

results of the uncoupled simulations in which the climate forcing is fixed. An increase in gross

primary productivity in the uncoupled simulation with carbon-only TEM (Figure A1a) closely

follows the pattern suggested by the increase in the atmospheric CO2 concentration (Figure 3a).

In contrast, the standard TEM simulation indicates that GPP increases more slowly due to

nitrogen limitations and eventually becomes constrained by nitrogen availability so that the

increase in GPP saturates at a level that is only about 28% of that estimated by the carbon-only

TEM simulations during the year 2300 (Figure A1b). Because climate does not change in these

simulations, both versions of TEM estimate that autotrophic respiration increases with increasing

atmospheric CO2 concentrations (Figures A1c and A1d) due to the accumulation of vegetation

carbon (Figures 5a and 5b). This accumulation occurs because increases in autotrophic

respiration and litterfall, which both depend on the amount of vegetation biomass, always lag the

increases in GPP caused by increasing atmospheric CO2 concentrations. As the carbon-only
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Figure A1. Changes in gross primary production and autotrophic respiration heterotrophic respiration
as estimated by the carbon-only TEM (left column) and the standard TEM (right column).
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TEM estimates much larger GPP inputs to vegetation than the standard TEM, more vegetation

biomass accumulates to support rates of autotrophic respiration and litterfall (Figures A2a and

A2b) that are almost three and five times higher, respectively, than that estimated by the standard

TEM during the year 2300.

Similarly, both versions of TEM estimate that heterotrophic respiration increases with

increasing atmospheric CO2 concentrations (Figures A2c and A2d) due to the accumulation of

soil organic carbon (Figures 5c and 5d). This accumulation occurs because increases in

heterotrophic respiration, which depends on the amount of soil organic matter, always lags the

increases in litterfall caused by increasing atmospheric CO2 concentrations. As the carbon-only

TEM estimates much larger litterfall inputs to the soil detritus pool, more soil organic matter

accumulates to support a higher heterotrophic respiration rate than that estimated by the standard

TEM. However, as was shown by (McGuire et al., 1997), the specific (per gram C) rate of

decomposition also decreases with increasing atmospheric CO2 concentrations in the standard

TEM due to changes in litter quality associated with changes in the vegetation C:N ratio. As a

result, an increase in the soil carbon simulated by standard TEM is about 75% of that simulated

by carbon-only TEM even though the increase in litterfall estimated by standard TEM is only

20% of that estimated by the carbon-only version. Thus, the differences in the response of

terrestrial carbon storage to CO2 fertilization alone between the two versions of TEM are due to

the limitation of primary productivity by nitrogen availability in the standard TEM and changes

in tissue chemistry of plants and the resulting detritus.

Terrestrial carbon fluxes also exhibit different sensitivities to climate change between the two

versions of TEM. These differences are caused by the influence of climate on nitrogen

availability in the standard TEM simulations. While GPP increases with higher temperatures in

both TEM versions (Figures 5a and 5b), GPP simulated by the carbon-only TEM shows very

little sensitivity to changes in climate whereas GPP shows a much larger sensitivity to the same

climate changes in the standard TEM simulations. This enhanced sensitivity is a result of higher

temperatures increasing decomposition so that more inorganic nitrogen become available to

support higher rates of primary productivity (see below). Autotrophic respiration (RA) also

increases with higher temperatures in both versions of TEM, but RA is more sensitive to these

changes in the standard TEM simulations than the carbon-only simulations. This difference in

sensitivity is caused by differences in the accumulation of vegetation carbon, which in turn is

determined by the relative sensitivities of GPP and RA to air temperature between the two TEM

versions. In the carbon-only TEM, autotrophic respiration is more sensitive to changes in air

temperature than gross primary productivity. As a result, net primary production becomes less

with higher temperatures and the vegetation accumulates less carbon under warmer climates than

in uncoupled simulation (Figure 5a). In contrast, GPP is more sensitive to air temperature than

plant respiration in the standard TEM simulations so that NPP increases with higher air

temperatures. The increasing NPP causes vegetation to accumulate additional carbon under

warmer climates than in uncoupled simulation (Figure 5b). The differences in the accumulation

of vegetation biomass between the two versions of TEM also influence the responses of
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heterotrophic respiration (RH) to climate change estimated by the two versions through effects on

litterfall. As decomposition rates increase with increasing temperatures, one would normally

expect RH to increase with higher temperatures similar to the response of the standard TEM

simulations (Figure A2d). However, RH also depends on the amount of soil detritus available to

decompose, which may either increase or decrease based on the relative rates of litterfall inputs

to the soil and losses of carbon by decomposition from the soil (Equation 2). In the carbon-only

version of TEM, decreases in the accumulation of vegetation biomass with higher temperatures

also mean that litterfall will increase more slowly with time (Figure A2a). The slower addition of

litterfall carbon to the soil detritus pool along with the more rapid losses of carbon from

enhanced decomposition rates cause soil detritus to accumulate much more slowly with warming

(Figure 5c). This reduced accumulation of soil detritus with warming has a larger influence on

RH than the direct effect of warming itself in the carbon-only TEM simulations so that

heterotrophic respiration decreases with higher temperatures (Figure A2c). In contrast, the

increases in the accumulation of vegetation biomass with higher temperatures simulated with the

standard TEM also mean that litterfall will increase more rapidly with time (Figure A2b) so that

RH will increase from both the additional amount of carbon available for decomposition and by

the enhanced decomposition rates due to warming (Figure A2d). With warming, the losses of soil

carbon associated with the enhanced heterotrophic respiration becomes relatively more important

than the inputs associated with the enhanced litterfall in the standard TEM simulations so that
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Figure A2. Changes in litterfall carbon and heterotrophic respiration as estimated by the carbon-
only TEM (left column) and the standard TEM (right column).
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soil detritus accumulates more slowly (Figure 5d). Enhanced decomposition with higher

temperatures is also a primary mechanism responsible for terrestrial ecosystems switching from

being carbon sink to becoming carbon source. When heterotrophic respiration rates become

larger than the concurrent litterfall rates, soils lose carbon rather than sequester it. While soils are

estimated to be carbon sinks at the beginning of all of the TEM simulations, they become carbon

sources during the 22
nd

 century in two simulations with carbon-only TEM (see after year 2150

for S=3.0 K and year 2110 for S=4.5 K) as well as in the simulation with standard TEM for

S=4.5 K (see after year 2180). The larger SAT required in the standard TEM for soils to become

a carbon source is a result of the influence of litter quality changes, associated with enhanced

atmospheric CO2 concentrations, on specific decomposition rates as described above.
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