
Passenger Transport in China Under Climate Constraints:

General Equilibrium Analysis, Uncertainty, and Policy
by

Paul Natsuo Kishimoto
B.A.Sc. Engineering Science, University of Toronto (2008)

Submitted to the Engineering Systems Division
in partial fulfillment of the requirements for the degree of

Master of Science in Technology and Policy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2012

© Massachusetts Institute of Technology 2012. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Engineering Systems Division

August 10, 2012

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Valerie J. Karplus

Research Scientist,
Joint Program on the Science and Policy of Global Change

Thesis Supervisor

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
John M. Reilly

Senior Lecturer, Sloan School of Management
Co-Director, Joint Program on the Science and Policy of Global Change

Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Joel P. Clark

Professor of Materials Systems and Engineering Systems
Acting Director, Technology and Policy Program



2



Passenger Transport in China Under Climate Constraints:

General Equilibrium Analysis, Uncertainty, and Policy

by

Paul Natsuo Kishimoto

Submitted to the Engineering Systems Division
on August 10, 2012, in partial fulfillment of the

requirements for the degree of
Master of Science in Technology and Policy

Abstract

Vehicle sales and road travel volume in China have grown rapidly in recent years, and
with them energy demand, greenhouse gas emissions and local air pollution. Aviation
and rail travel have also grown, while ceding a large share to private vehicles. What
path will household transport demand in China take in the future? How might it
interact with policies which limit greenhouse gases, and what are the implications for
energy use, the environment and the economy?

To contribute policy insights and a foundation for future study in this area, I under-
take a new calibration of the Chinese household transport sector in the MIT Emissions
Prediction & Policy Analysis (EPPA) computable general equilibrium (CGE) model, im-
plementing income elasticities of demand for vehicle travel and vehicle stock growth
based on historical data. To bracket uncertainty in the literature, I impose three sce-
narios of future growth in demand for purchased (air, rail and marine) and vehicle
modes. These are explored under a no-policy baseline, a climate-stabilization policy,
and with a policy that extends the emissions-intensity goal of China’s Twelfth Five-Year
Plan—both policies are modelled as caps creating prices on carbon.

Examining the results, I find that trends in growth are only modesty affected by
policy continuing present energy-intensity goals, with small decreases in travel activ-
ity and energy intensity of vehicles combining for a reduction in refined oil use; such
a policy has modest cost and affects household transport less than other sectors. In
contrast, my results show that a stringent emissions cap has large impacts on vehicle
efficiency, limits vehicle ownership and general travel activity levels. Compared to the
no-policy baseline, a smaller vehicle fleet (250 million total, or 200 per 1000 capita).
Sixteen percent of the fleet is new energy vehicles (plug-in hybrid-electrics), while to-
tal refined oil use increases by 2050 to nearly three times its 2010 level. However,
these effects come with a reduction in total primary energy as the policy is introduced,
and large costs economy-wide. Chinese national and municipal policies include objec-
tives of promoting vehicle ownership and mobility on the one hand, and of reducing
dependence on carbon-intensive refined oil on the other. My findings illustrate that
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these goals are at odds, and offer inputs to policy design related to vehicle sales, public
transit, congestion, pollution and energy security.

Thesis Supervisor: Valerie J. Karplus
Title: Research Scientist,
Joint Program on the Science and Policy of Global Change

Thesis Supervisor: John M. Reilly
Title: Senior Lecturer, Sloan School of Management
Co-Director, Joint Program on the Science and Policy of Global Change
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Chapter 1

Motivation

1.1 Introduction

Transportation is an important aspect of development. Human mobility brings access

to employment and income, goods and services, and the pleasure of travel itself; cargo

transport allows valued resources and goods to reach people where they live and work.

When developing nations and their citizens pursue economic growth and transforma-

tion as a way of improving quality of life, the past suggests that transport growth is

inevitable (Schäfer and Victor, 2000; Dargay et al., 2007).

Among rapid developing nations, the BRIC countries—Brazil, Russia, India and

China—are often singled out for the weighty combination of their populations and

rates of growth; and China is foremost in both. China’s government has aggressively

promoted economic growth, and in turn, Chinese citizens have spent their rising in-

comes and wealth on travel, resulting in growth in travel volume, energy use, and

emissions; and changes in the modes share for different means of transport which have

been characterized as faster, sooner and more simultaneously than the historical pattern

in the United States (Marcotullio et al., 2005).

After a period of rapid expansion in all areas, China faces difficult policy choices. It

is called to participate in global efforts to meet global greenhouse gas concentration tar-

gets, which are unlikely to proceed or succeed without its participation (Paltsev et al.,

2012). In response, its government has focused on the language in the original Kyoto

11



Protocol that allows for “common but differentiated responsibilities”—expressing its

duty to continue improving quality of life for its citizens, even if this means an increase

in its total greenhouse gas emissions. And even were it not concerned with the effects

of climate change, the central government indirectly acknowledges that the rate of ex-

pansion—the “development of China’s advanced productive forces” which supports the

“fundamental interests of the overwhelming majority of the people” (Jiang, 2000)—is

economically unsustainable in its present form. Discussion of economic rebalancing sig-

nals intent to actively manage an increase in services as a fraction of GDP, while relying

less on exports than on developing domestic markets for consumer goods—including

household vehicles—to support economic growth. The Communist Party of China’s

continued pursuit of a harmonious (和谐社会, héxié shèhuì) and basically well-off (小

康, xiaokang) society depends on the success of this transition.

1.2 Household transport policy: challenges and evidence

China has achieved unprecedented rates of economic growth over the past 20 to 30

years. However, while aiming for a high level of income, it is also attempting to miti-

gate or bypass the higher environmental impacts temporarily experienced by develop-

ing nations during their growth (Geng and Doberstein, 2008). In any such transition

the sequencing of events has a role in shaping their outcomes. This feature appears in

the transport sector—high speed rail and air travel infrastructure are being built while

auto ownership remains at a fraction of the current levels in the United States, Western

Europe or Japan (OECD, 2012; Campos and de Rus, 2009). China differs from the se-

quence in those countries where automobiles were available before these higher-speed

technologies were developed (Schäfer and Victor, 2000). Figure 1-1 shows both that

wealthier provinces are more highly motorized, but also that strong differences are

possible within the country and may be attributed at least in part to the effect of pol-

icy measures—for instance in Shanghai, aimed at mitigating environmental impacts,

that have caused a different growth path than in Beijing. The switch from low-speed

modes—walking, bicycles, buses—to private transport—motorized scooters, motorcy-
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Figure 1-1: Static income–ownership relationship for Chinese provinces as of 2009
(National Bureau of Statistics of China, 2011). Each data point corre-
sponds to a Chinese province, which are grouped into six regions. The
four direct-controlled municipalities are labelled; see Appendix B for their
locations.

cles, passenger cars, light trucks and other light-duty vehicles—that accompanies in-

creasing household income (Schäfer et al., 2009) is occurring at a pace concomitant

with general economic growth. As a result, China has become the world’s largest mar-

ket for new, light-duty vehicles (Wang et al., 2011), and its refined oil demand has

outstripped domestic supply. In 2011, China imported 56.7 percent of the oil it con-

sumed, a fraction that has raised concerns about security of supply and vulnerability to

rapid changes in prices (Xinhua News Agency, 2012).1

Rapidly growing energy use and emissions from Chinese transport contribute to

problems of global environmental externalities, wherein unpriced, common goods (in

this case, sources of limited resources and sinks for greenhouse gases) are overused;

1These national concerns, referred to hereinafter as "energy security," bear resemblance to the con-
cern of global sustainability (Kruyt et al., 2009). Security of supply concerns encompass the negative
consequences, such as price shocks, of high demand when supply is beyond the direct control of national
governments. But the extent and accessibility of global fossil fuel resources are beyond the control of
any government, so the interaction between high demand and total supply raises similar problems, while
not allowing some traditional, national energy security responses, such as foreign policy.

13



but in major urban centres they are also giving rise to local externalities—traffic con-

gestion on the “concrete commons” (Coughlin, 1994) and local air pollution (Saikawa

et al., 2011)—which are familiar in developed countries. However, where Chinese pol-

icy is addressing these issues, it does so within a form of government and in transport

markets which differ from to the well-studied situations in advanced industrialized

countries—in particular, the United States, Western Europe and Japan. Due to Chinese

governments’ capacity to act, including diminishing yet still significant willingness and

ability to employ direct management, and the relationship between municipal and cen-

tral government officials, policymakers are employing a variety of measures influenced

by foreign examples and aimed at a variety of goals (Chien and Ho, 2011; Brown and

Sovacool, 2011).

Given high uncertainty, there is a recognized need for continual improvement in

projections of transport energy use and vehicle ownership as an input to policy. Global,

computable general equilibrium modelling is a method which can be used to simulate

these trends while including the effects of growth in other sectors, and can also be

used to study limits on greenhouse gas emissions which may affect household transport

projections through prices.

1.3 Contribution and organization

In this thesis I contribute to the understanding of the household transport policy chal-

lenges and options facing China, and in particular their interaction with efforts to

address climate change through carbon dioxide (CO2) emissions, and the combined

energy and economic effects of both. I do so with particular attention to alternative

futures in the evolution of demand for two types of household transport: own-supplied

or private vehicle transport, in which households buy and use light duty vehicles to

travel; and purchased transport, in which travel on buses, subways, railways, marine

vessels and aircraft is paid for directly. I apply a general equilibrium model that in-

cludes detail on the Chinese economy to study transportation developments there, and

their implications for CO2 emissions.

14



In Chapter 2, I adapt an existing CGE model to better represent increases in de-

mand for the two types of transport under China’s rapid economic growth by including

price effects and feedbacks possible in a model of the global economy. The model cal-

ibration is updated in response to data availability challenges and the structure of the

Chinese vehicle fleet. By modelling sectoral growth which occurs much more rapidly

than general economic growth, observations up to the present are matched, and I de-

velop three scenarios of future demand for transport and the own-supplied portion.

I develop two types of example policy in order to study their impact on energy use,

greenhouse gas emissions and transport demand.

Chapter 3 reports the results of these simulations. I discuss effects on the stock of

private vehicles with comparison to existing, non-CGE projections; on absolute demand

for refined oil and primary energy and energy- and emissions intensities of transport;

and finally the evolution of household budgets and general economic welfare with and

without policy.

In Chapter 4, I consider the context and objectives of current national- and municipal-

level policies focused on household and personal transport, and the dynamics between

these, in view of the findings from Chapter 3. The policy implications of future trans-

port demand and its interaction with types of climate policy are discussed, followed by

a statement of some worthwhile extensions and a summary of the work.
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Chapter 2

General equilibrium modelling of

household transport

General equilibrium modelling, when compared to econometrics and other sector-

specific approaches used to make projections of passenger travel in China, has the

advantage of representing the entire economy. One disadvantage of a “top-down” ap-

proach is that sectoral detail may suffer. I make use of an existing computable gen-

eral equilibrium (CGE) model, the MIT Emissions Prediction & Policy Analysis (EPPA)

model, version 5, and add more realistic detail in China’s passenger transportation

sector.

The purpose is threefold: first, to better represent the relationship of transport de-

mand and associated energy use with growth of the economy in a rapidly developing

country like China, by doing so within a CGE framework that includes potentially cru-

cial feedback and interactions; second, to study how climate policies could affect deci-

sions made by households to undertake transport activities which consume energy and

emit greenhouse gases differently, and finally to examine these two types of responses

in combination.

A description of the EPPA model is provided in Section 2.1. In Section 2.2 the

model is updated to match data through the present for Chinese household transport

in terms of sector inputs and rates of growth. Three scenarios of future demand and

three climate policies are developed in Section 2.3; full results follow in Chapter 3.

17



2.1 The MIT Emissions Prediction & Policy Analysis (EPPA)

Model

EPPA is a recursive-dynamic, multisector, multiregion computable general equilibrium

model of the world economy. Paltsev et al. (2005) give extensive detail on the previ-

ous version, but because of changes in the updating of EPPA4 to EPPA5, and because

the features and structure of the model are consequential in this analysis, a thorough

description follows. To enable a variety of energy, climate and environmental policy

studies, the economic accounts of EPPA disaggregate electricity generation, transport

and other energy-intensive sectors; include representations of current, advanced and

backstop technologies; and are supplemented with extensive physical accounts and

flows tied to energy-consuming and emissions-generating activities. In particular, these

include all six Kyoto Protocol greenhouse gases,1 which may be treated separately or

combined once converted to CO2 equivalents according to their global warming poten-

tial, and also local pollutants2 responsible for air quality issues, human health impacts,

and other effects.

Sixteen regions correspond to either individual countries or groups of countries,

with EPPA5 using the regional aggregation shown in Figure 2-1. Within each region,

households provide services to production sectors using their endowments of labour,

capital and resources. In return, they receive income payments which are used to pur-

chase the goods and services produced. Fourteen sectors are currently represented as

shown in Table 2-1. Trade flows between regions are represented under an Armington

assumption, wherein imported goods are imperfect substitutes for domestic goods.

For projections, EPPA contains information on stocks of resources, with prices re-

lated to the marginal extraction costs. Population data from the United Nations’ World

Population Prospects (UN Population Division, 2010) is used to model growth in the

labour endowment; labour productivity also increases with time. An autonomous en-

1Carbon dioxide, CO2; methane, CH4; nitrous oxide, N2O; hydrofluorocarbons, HFCs; perfluorocar-
bons, PFCs; and sulphur hexafluoride, SF6.

2Including sulfur dioxide, SO2; nitrogen oxides, NOx ; black carbon, BC; organic carbon, OC; ammo-
nia, NH3; carbon monoxide, CO; and non-methane volatile organic compounds, VOCs.
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Code Region Code Region

USA United States ASI East Asia
CAN Canada CHN China
MEX Mexico IND India
JPN Japan BRA Brazil
ANZ Australia & New Zealand AFR Africa
EUR Europe MES Middle East
ROE Eastern Europe LAM Latin America
RUS Russia-plus REA Rest of Asia

Figure 2-1: Map of EPPA regions.

Label Description Label Description

CROP Crops GAS Gas
LIVE Livestock ELEC Electricity
FORS Forestry EINT Energy-intensive industries
FOOD Food products OTHR Other industries
COAL Coal SERV Services
OIL (Crude) Oil TRAN Transport

ROIL Refined oil CGD Savings

Table 2-1: EPPA5 sectors.
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ergy efficiency improvement (AEEI) in production structures represents trends unre-

lated to prices in the development and application of efficiency-increasing technolo-

gies, and other non-price effects which reduce the quantity of energy used to produce

a unit of output. The initial period in EPPA5 is 2004, which matches the year of the

GTAP7 data base which supplies the input-output tables used to generate the social

accounting matrix (Narayanan and Walmsley, 2008). The model subsequently solves

in 2005, and thereafter every five years until 2100, although in this work my focus is

through 2050.

Capital in EPPA is vintaged, with some being retired in each period and replaced

with new capital of similar type but greater efficiency, or of an alternate type. For most

sectors, including electricity generation, there are five vintages of capital representing

stock that is 5, 10, 15 and 20 years old, respectively. Under price pressure to alter

production technology employed, for example as a result of climate policy, vintaging

has the effect of limiting the rate of turnover of old stock (Paltsev et al., 2005).

EPPA is implemented in the GAMS/MPSGE software, a general-equilibrium mod-

elling subsystem to the mathematical programming language GAMS (Rutherford, 1999).

MPSGE transforms the model description into a mixed-complementarity problem which

is solved as an optimization problem. The solution maximizes household utility and en-

sures market clearance, zero profit and income balance, the conditions for general equi-

librium. The preferences of households over different types of consumption are bench

marked using share and price information in the base year, and are supplemented with

outside information and estimates of long-run income elasticities and substitution elas-

ticities of demand.

2.1.1 Household transport

To enable detailed, technology-rich study of household transport, Paltsev et al. (2004);

Karplus (2011); Karplus et al. (2012b) introduced a set of enhancements to EPPA5 re-

ferred to collectively as EPPA-HTRN (for household transport), but now part of the stan-

dard configuration of the model. The transport component of household consumption
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Household
consumption

Other goods
& services

Transport

Purchased
PDT

Own-supplied
VDT

New VDT

Fuel

TRO

Powertrain
capital
PTOI

Services

TSE

Vehicle
capital

TOI

Vintage VDT

. . . .

σCT

σPO

σF,KPT σSO

Figure 2-2: Consumption structure for household transport (Karplus, 2011). Elasticity
subscripts indicate other consumption vs. transport; purchased vs. own-
supplied transport; fuel vs. powertrain kapital; and services vs. other in-
dustrial capital, and abbreviations for inputs to own-supplied transport are
given. The inputs to the vintaged sector are identical to those for new
own-supplied transport, only in fixed ratios.

was disaggregated as shown in Figure 2-2. Instead of consuming directly from the same

TRAN production sector used as an intermediate input to other production sectors,

the representative household in each region chooses a bundle consisting of TRAN sec-

tor output (which is comprise of commercially-operated freight and passenger-sector

transport)—referred to as purchased transport—and own-supplied transport. In order

to consume the latter, the household must either purchase new vehicle capital, or use

existing vehicle capital. New vehicles become vintage vehicle stock in subsequent pe-

riods. This structure allows for flexibility in the fuel efficiency of the vehicle at time of

purchase as governed by the elasticities in Figure 2-2, which is then fixed once the new

fleet is vintaged. Unlike other EPPA sectors, there are two vintages of vehicle capital,

new and used, given the paucity of data available to parameterize the fuel efficiency of

every vintage in every region. Finally, each type of vehicle powertrain capital is repre-
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Symbol Powertrain Energy input(s)

ICEV Internal combustion ROIL
PHEV Plug-in hybrid-electric ROIL, ELEC
BEV Battery electric ELEC

CNGV Compressed natural gas GAS

Table 2-2: Energy inputs to own-supplied transport, by powertrain type.

Listing 2-1: MPSGE production block for household transport.

$PROD:HTRN(R) s:htrn_sigma(r) b(s):0
O:PTRN(R) Q:(TOTTRN(R) - XBAR(R))

* Own-supplied:
I:PHVTN(R) Q:(OWNTRNNEW(R) - (OWNTRNNEW(R) / OWNTRN(R) * XBAR(R))) b:
I:PHVTU(R) Q:(OWNTRNVIN(R) - (OWNTRNVIN(R) / OWNTRN(R) * XBAR(R))) b:

* Purchased transport:
I:PA("TRAN",R) Q:PURTRN(R) P:PC0("TRAN",R) A:RA(R) T:TP("TRAN",R)

sented by a distinct production function, which allows distinction between power-train

types on the basis of the input to the the “Fuel” bundle, as shown in Table 2-2.

Listing 2-1 gives a portion of the MPSGE code used to model the production of

PTRN (“Transport” in Figure 2-2). In a two-vintage version of structure used elsewhere

in EPPA5, a fixed portion of own-supplied transport comes from vintage vehicles, and

the remainder from new vehicles. Vintage powertrain capital (PHVTU(R)) has a fixed

production structure to represent the impossibility of altering significantly the under-

lying efficiency of the powertrain in used vehicles.

2.2 Data sources and representing growth to the present

In order to apply EPPA5 to a study of Chinese household transport, the model struc-

ture was adapted to better represent the relationship of household transport demand,

income and rapid economic growth. The work in Paltsev et al. (2004); Karplus (2011);

Karplus et al. (2012b) and like studies focused on the United States household trans-

port market, which is more mature, better studied, and has broad features not in com-

mon with the Chinese market. In particular, the U.S. displays roughly constant per
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capita ownership, meaning that most sales can be related to replacement of vehicles

scrapped by current owners, or small changes in GDP (Greenspan and Cohen, 1999).

In China, on the other hand, a large portion of sales are to new owners, and per capita

ownership is growing. These differences warrant attention to the data sources and

modelling structure used to represent China and other rapidly developing regions, to

ensure the representation is as suitable as in the region for which it was initially devel-

oped.

One challenge in performing such physical account calibration of a CGE model in

China is availability of data. In the area of transport, OECD (2012); Euromonitor Inter-

national (2011) and International Road Federation (2010) each republish some series

from the National Bureau of Statistics of China’s China Statistical Yearbooks without

adjustment and with limited detail on data sources and methodology.3 Another issue

is the great diversity of vehicle types visible on Chinese urban roads. Many of these,

including bicycles, electric scooters and motorized carts, are not registered or regu-

lated in the same way as cars and trucks, and so do not appear in the same statistical

accounts. Further difficulty arises from the fact that electricity use due to electric scoot-

ers and vehicles is, at the moment, not reported as a transport energy use quantity, and

thus not distinguishable from general household consumption, making calculation of

on-road energy economy for these vehicles difficult (Weinert et al., 2007).

The recalibration uses data on household expenditures on new vehicles and high-

way distance travelled per vehicle from Euromonitor International’s Passport GMID;

and registrations from the International Road Federation’s World Road Statistics (Inter-

national Road Federation, 2010; Euromonitor International, 2011). The process used

is as described in Appendix A.3 to Karplus (2011), implemented using the code given

in Appendix A, and the resulting figures appear in Table 2-3. Particular changes here

which do not affect China include the use of approximate values from analogous re-

gions at some stages of the calculation, rather than round figures.

3Additional detail about statistical sources is discussed in Appendix C.
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Region USA CAN MEX JPN ANZ EUR ROE RUS

TOI 0.519 0.508 0.508 0.324 0.528 0.383 0.14 0.588
TSE 0.286 0.304 0.182 0.542 0.276 0.492 0.637 0.031
TRO 0.091 0.087 0.208 0.069 0.09 0.049 0.195 0.264
PTOI 0.104 0.102 0.102 0.065 0.106 0.077 0.028 0.118
Region ASI CHN IND BRA AFR MES LAM REA

TOI 0.45 0.346 0.14 0.449 0.383 0.337 0.415 0.287
TSE 0.138 0.12 0.463 0.253 0.115 0.188 0.235 0.375
TRO 0.322 0.465 0.369 0.209 0.426 0.407 0.268 0.28
PTOI 0.09 0.069 0.028 0.09 0.077 0.067 0.083 0.057

Table 2-3: Shares of input to the per-distance cost of own-supplied transport. As
shown in Figure 2-2, the inputs are: TRO refined oil, TSE services, PTOI
industrial (OTHR sector) output representing powertrain capital, TOI in-
dustrial (OTHR sector) representing non-powertrain capital.
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2.2.1 Adapting to rapid growth in Chinese vehicle stock

Simulating changes in expenditure shares over time that are unrelated to price re-

quires moving away from the homothetic preferences assumption. Homothetic pref-

erences have an income elasticity of 1.0, so that the fraction of each type of good or

service consumed by the representative household is maintained even as total con-

sumption grows (Rutherford, 1995). For mature transport markets in the OECD where

per-capita vehicle ownership and travel demand are constant or have an income elas-

ticity of about 1 (Dargay et al., 2007), this is largely an appropriate structure.4 But

in a rapidly-motorizing region such as China where, for instance, annual automobile

sales are growing at a multiple of the GDP growth rate (Wang et al., 2011), the CES

consequence that expenditure on purchased and own-supplied transport—and corre-

sponding imputed physical quantities—grow at the same rate as GDP leads to output

which does not match observations.

The household transport sector as modelled by Karplus (2011) uses a Stone-Geary

utility function over purchased and own-supplied transport,5 but recalibration of the

extra parameters provided by this formulation, even with a very high income elasticity

of household transport demand, is not sufficient to match observed growth through

2010. Therefore, after the general equilibrium is determined in each model period,

the reference quantities are adjusted so that China’s total vehicle stock in 2005 and

2010 matches data from the National Bureau of Statistics; vehicle stock in the model

is calculated by assuming that each individual vehicle uses the same quantity of non-

powertrain (OTHR sector) input to own-supplied transport as in the benchmark year.

2.3 Scenarios and policies modelled

Combinations of three distinct scenarios of transport demand, and three economy-wide

policies on CO2 emissions, were taken to form nine configurations of the EPPA model.

4Some evidence exists that spending on vehicle transport (Davis et al., 2012) and transport generally
is not entirely stable in these markets with rising wealth.

5Visible in the reference quantities (Q:) supplied in Listing 2-1.
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Figure 2-3: Projected growth of total vehicles in use (stock) through 2050 by vari-
ous studies. “Wang (JK)” and “(all)” refer to the projections from Wang
et al. (2011) using the Japan/Korea and all-countries panels, respectively.
The Argonne National Laboratory (ANL) Low-, Medium- and High-growth
projections are from Wang et al. (2006); others from Dargay et al. (2007);
A.T. Kearney (2011); Barclays Capital (2011); International Energy Agency
(2011).

The scenarios and policies are described separately here.

2.3.1 Scenarios of transport demand growth

As shown in Figure 2-3, forecasts of vehicle stock in China vary widely. Other authors

have noted that from the early 2000s through 2011 most studies underestimated the

rate of growth of the privately-owned vehicle fleet; projecting 2010 vehicle populations

of 47-54 million against an actual figure of 78 million (Wang et al., 2006; Chamon

et al., 2008; Kobos et al., 2003; National Bureau of Statistics of China, 2012). This

disparity is due primarily to the underestimation of new vehicle sales growth over

the same period. Studies also differ in the assumptions on vehicle fuel efficiency and

annual distance traveled per vehicle, leading to a wide range in projections of refined

oil demand and GHG emissions.

The variety of outcomes also reflects structural uncertainty: different models of the
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Scenario
Household transport Purchased

2005 2010 2015 2020..2035 2040 2045, 2050 (all periods)

Low 1.085 1.65 1.2 1 1 0.95 1
1.79 2.15 ← ← 1.94

Medium 1.085 1.75 1.7 1 1 0.9 0.875
1.90 3.23 ← ← 2.61 0.263

High 1.085 1.8 2.7 1 0.85 0.85 0.75
1.95 5.27 ← 4.48 3.24 0.0563

Table 2-4: Share-forcing factors for household and purchased transport consumption,
by scenario. Incremental effect for each period in roman, cumulative effect
in italic; the cumulative effect given for purchased modes is in 2050.

relationship between household transport indicators and a plethora of factors reflect

claims about the relative importance of different causal relationships. For instance, a

Gompertz function of income (as in Dargay et al., 2007) or time imposes a technology-

adoption narrative: ownership before availability of a technology is effectively zero;

then grows at a parameterized rate until it approaches, asymptotically, some maximum

per-capita level, at which point it is said to have saturated. Alternately, Kobos et al.

(2003); Chamon et al. (2008); Wang et al. (2011) use a panel method, relating China’s

adoption of vehicles to the historical trend in other countries, aligning series of annual

growth rates according to ownership levels, and averaging across nations to produce

projected growth rates for China—yet authors differ on the appropriate set and periods

of international comparators.

In the present and following chapter, the concern is not with resolving this structural

uncertainty, but with examining the interaction of growth with energy and emissions

policy, most importantly the effect of prices. Accordingly, the literature projections are

taken, as given, to bracket uncertainty in the Chinese vehicle market. Three scenarios

of household transport demand growth are developed which attempt to drive vehicle

ownership to the highest, lowest and average ownership values. In order to impose

these on the model, the same method of shares adjustment described in Section 2.2 is

applied. However, the use for 2015 and onwards is a projective use rather than one

based on history. Table 2-4 gives the share-forcing factors used within EPPA, as well as
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an extra set of factors for the purchased portion of household transport expenditure.

These factors model an expectation that highest demand for ownership and use of

vehicles will occur under both rising total demand and consumer preferences which

shift away from low-speed purchased modes over time; so that a future with the highest

demand for vehicles can be expected to also have a depressed share for low-speed

purchased modes (Meyer et al., 2007; Schäfer et al., 2009). More comment on this

assumption is given in Section 2.4.

2.3.2 Greenhouse gas emission policies

The base policy for EPPA is a business-as-usual (BAU) projection in which no control of

any type is enacted on energy use or emissions. In the no-policy configuration, backstop

technologies are inactive.

A 550 ppm climate stabilization policy is adopted from Paltsev et al. (2012) wherein

each region, including China, participates in a CO2-only cap scheme designed to limit

atmospheric greenhouse gas concentrations to 550 parts per million by 2100. The pol-

icy begins in 2020 and follows the same trajectory of percentage reductions relative to

reference in every region. No trading between gases or regions is implemented; China

cannot achieve its reduction target through abatement of the other Kyoto Protocol gases

modelled in EPPA.

This policy descends from the European Modelling Forum scenarios described by

Clarke et al. (2009) andis extremely stringent, much more so than any policy proposed

by China itself or suggested for it by others. However, it has utility from a methodologi-

cal perspective: by creating a large disruption relative to business-as-usual in the direc-

tion of lower emissions, it enables identification of the effects of policy on the house-

hold transport sector in particular, and of the differences between such effects across

the three demand scenarios described above. Household transport is not a source of

cost effective abatement opportunities relative to other sectors, so mild economy-wide

constraints result in reductions being taken in other sectors (Karplus et al., 2012a); in

reaction to successively more stringent policies, each part of the economy with a lower
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marginal cost of abatement will be engaged in sequence before household transport

shows any response. In short, the purpose of studying this policy is to make readily

apparent the distinctions from the counterfactual.

Finally, a FYP emissions-intensity policy extends, through 2050, China’s commitment

in the Twelfth Five-Year Plan (12-FYP, 2011–2015 inclusive) to a 17 percent reduction

in the CO2 emissions intensity of GDP, or a reduction of 3.66 percent per year on av-

erage. In each subsequent period, the emissions per unit GDP are constrained to be

17 percent less than in the previous period, as follows. First, the business-as-usual

intensity is calculated for 2010. Then, for 2015 and subsequent periods, a target in-

tensity after successive 17 percent reductions is calculated. The resulting intensities

for each period are multiplied by business-as-usual GDP projections to yield total CO2

emissions, which are implemented in EPPA as caps.

The purpose of modelling such a policy is to implement a cap on emissions which

has some actual effect on the economy, including possibly household transport, yet

bears resemblance to previous, current and aspirational goals actually stated by the

Chinese government. In international discussions, China has announced an intent to

cut energy intensity 40 to 45 percent in the period 2005–2020 (Casey and Koleski,

2011). With the achievement of a 19 percent reduction in the Eleventh Five-Year Plan

(11-FYP, 2006–2010 inclusive) (Deutsche Bank, 2011) and assuming the FYP12 target

is met, this leaves a reduction of 11 to 18 percent to be made in the Thirteenth Five-Year

Plan period (2016–2020 inclusive). Extrapolation of the 17 percent target to 13-FYP

is within these bounds; the FYP extension policy simply assumes continual renewal of

the same target through a hypothetical 19-FYP in 2046–2050.

The maximum amounts of carbon dioxide emissions mandated in each policy are

shown in Table 2-5, as well, for comparison, the unconstrained amounts in the refer-

ence scenario and in the model before the adjustment to observed vehicle stock growth

described in this chapter.
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CO2 emissions [Tg = 106 t]
Year Unadjusted Reference FYP Stabilization

2004 5074 5074 5074 5074
2005 4823 4842 4842 4842
2010 7871 8051 8049 8049
2015 9672 10178 10174 10174
2020 11311 12042 11139 3871
2025 12703 13702 13076 3592
2030 13874 15108 14044 3308
2035 15093 16611 14528 3149
2040 15539 17198 14043 2907
2045 15894 17607 14043 2664
2050 15990 17829 13559 2422

Table 2-5: China CO2 emissions, all sources, in the reference run in the medium-
demand scenario, and under two policies modelled. “Unadjusted” column
gives the business-as-usual or reference quantity in the model as configure
prior to the model updates described in Section 2.2.

2.4 Extensions

The following potential extensions of the work would offer further improvement. EPPA

has been used to study transport in the aviation sector (Winchester et al., 2011), and a

parallel version to EPPA-HTRN has been developed which disaggregates civil aviation

from household purchased transport (labelled EPPA-A, Gillespie, 2011). Historical data

(National Bureau of Statistics of China, 2012) show passenger aviation growing in

China in an absolute sense, albeit with a small share of overall travel. The analysis of

Schäfer (2006) places this within a trend of shifts from lower- to higher-speed modes

with increasing income. However, as noted in Section 2.3, the consumption structure

for household transport used here allows only relative share changes between own-

supplied (private vehicle) travel and a bundle including all other purchased modes,

including aviation. Civil aviation, high speed rail, conventional rail, city buses, subways

and other purchased modes differ greatly in their per-distance price and energy and

emissions intensity. Applying the methodology of this chapter to a model with the

combined features of EPPA-A and EPPA-HTRN would allow modelling a three- instead

of two-way mode split to separate movement from low-speed purchased transport to
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own-supplied transport on the one hand, and simultaneous shifts or concurrent growth

in own-supplied transport and higher-speed purchased modes, namely aviation, on the

other hand. As well, more sophisticated scenario design could be pursued which would

capture shifts not possible in EPPA5 alone.

The Five-Year Plan extension policy used here is modelled as absolute emissions

caps calculated a priori from decreasing emissions intensity values and the GDP fig-

ures for the business-as-usual case. If the model solution GDP in a period is less than

business-as-usual—as is the case here—then the cap allows a slightly greater emissions

intensity than the one used in the calculation. This effect compounds over periods.

Because, as noted, the FYP policy is lenient, this error is not large; an average of 16

percent energy intensity reduction is achieved in each five-year period from 2015 to

2050. However, the error could be limited by altering the model structure to calculate

the next-period cap from each period’s GDP and emissions outputs; or better still, to

constrain intensity directly.
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Chapter 3

Results: Effects of rising passenger

transport demand and policy

This chapter examines the outcomes of the application of the model with new China

transport sector detail and scenario and policy modelling described in Chapter 2. The

presentation is organized in three sections: Section 3.1 deals with the own-supplied

household transport sector and private vehicles specifically, Section 3.2 concerns en-

ergy and emissions quantities and prices; and Section 3.3 with aggregate travel and

economic behaviour, including quantities of travel by mode, aggregate consumption

and expenditures on transport. Within each section, the distinctions between the low-,

medium- and high demand scenarios under business-as-usual are discussed, as well as

the impacts of the two policies, and followed by any important differences between the

model response to each policy, across scenarios.

In interpreting the projection outcomes, it is important to note that the model up-

date for China described in Chapter 2 and absence of policy before 2015 mean that

results from the 2005 and 2010 model periods cannot be regarded as predictive. The

salience of results under the Five-Year Plan extension policy depends on the central

government’s willingness continue specifying targets, like those in 12-FYP, that are

intensity-based and only constrain activity (including transport) slightly. Although the

results of the 550 ppm climate stabilization policy will be shown to be dramatic, this

is one example of the effects of absolute, rather than intensity-based targets—the type
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that must be applied to total emissions to have a significant impact on the extent of cli-

mate change that is likely to occur. If China participates in an international agreement

under it which is bears a smaller share of the global reductions burden proportional

to its base-year emissions, the resulting caps would be higher and the effects shown

here would be smaller in degree, yet similar in type. Additionally, in several of the

plots there is a larger change from 2015 to 2020 under the stabilization policy than

between subsequent periods; this is because EPPA does not represent forward-looking

behaviour, nor is it constructed with the time resolution for modelling policy phase-in

over periods of months or years—it is focused on the long term. As noted in Section

4.1, non-binding limits and quotas are sometimes introduced in pilot programmes, and

only scaled up once details of administration and operation are resolved. For economy-

wide climate policy, this strategy would likely be employed, diffusing the sharp impact

of policy. Implications for non-economy-wide policy, specific to the transport sector, are

also discussed in Section 4.1.

For each region and each economic sector or subsector, the model solution yields

both prices and quantities in the base and each projected period; the product of price

and quantity is economic value. Physical quantities are reported according to the

relationship to price, quantity or value in the benchmarking process and technol-

ogy changes as modelled; where relevant, this detail is given before the results are

presented. Together, these physical and economic outputs, as well as exogenous in-

puts—especially the population forecast—provide some insight into the consequences

of policy action (or inaction) for energy, environmental, and economic outcomes.

3.1 Private vehicles

In Figure 3-1, a comparison is made between non-CGE projections of total private vehi-

cle stock from literature and the range of EPPA outputs across scenarios. The medium-

demand, business-as-usual projection reaches a total stock of 496 million in 2050, only

slightly above the low-growth scenario of Wang et al. (2006). The range between the

stocks in the high (530 million) and low (448 million) demand cases is 16.5 percent of
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Figure 3-1: Vehicle stock, by year. Range of EPPA projections displayed as a band
between the low- and high vehicle demand scenarios, with the medium
scenario as a solid line; overlaid on projections from literature as in Fig-
ure 2-3 (green).

the median value, a smaller range than in the literature. The countervailing effects of

high prices for fuel combined with low household income (explored below in Section

3.3) serve to limit the effect of the large demand for own-supplied transport in the high

projection, and fleet growth, while rapid and increasing at 7.9 million (in 2010–2015)

to 10.9 million (2045–2050) vehicles per year in even the lower projection, does not

display as noticeable an exponential trend as in other studies.

In a relationship that is visible across model outputs, the policy based on exten-

sion of the Five-Year Plan carbon-intensity reduction target has only a modest effect,

so that the projections for total stock under this policy (430 to 504 million vehicles)

substantially overlap those from the no-policy scenario. Until 2035, the difference

is less than 5 million vehicles in all cases. The stabilization policy shows the effect

of strong economy-wide climate constraints on vehicle ownership. Total fleet size

plateaus, reaching a maximum of 269 million vehicles in the high demand scenario.

The same effect is visible on a per-capita ownership basis in Figure 3-2. Although
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Figure 3-2: Per-capita vehicle ownership, by year. Range of EPPA projections displayed
as a band between the low- and high vehicle demand scenarios, with the
medium scenario as a solid line.

ownership continues to increase from 2045–2050, the Chinese population projection

used in EPPA has a peak in 2035, and a small decline population slightly outweighs

the increase in ownership to produce a smaller fleet under the stabilization scenario. If

the trend continues, the total vehicle stock peaks, representing a saturated or mature

market—albeit at a level of 200 vehicles per thousand capita, less than half of that in

current mature markets such as the European Union, at 475 per 1000 capita (Inter-

national Energy Agency, 2011). In the reference scenario, or under the FYP extension

policy, ownership continues to grow through mid-century.

Within this smaller total, however, the same high prices of fuel and efficient vehicle

capital make alternative fuel vehicles1 more attractive, because of the option of us-

ing a bundle of (less expensive) electricity and refined oil, instead of refined oil alone.

Figure 3-3 gives the share of own-supplied transport obtained using the backstop PHEV

technology, which is available from 2020 in the model.2 The powertrain capital por-

1The term used in Chinese policy is “new energy vehicle” (NEV).
2For comparison, Gong et al. (2012) note an aspiration target of NEVs representing 5 percent of all

new vehicle sales in 2011 was missed widely, despite subsidies.
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Figure 3-3: Fraction of own-supplied transport volume from plug-in hybrid-electric ve-
hicles, by year.

tion of expenditure on these vehicles is marked up as 40 percent more expensive than

the equivalent input to new internal combustion vehicle transport. No PHEV/NEV us-

age occurs in the business-as-usual projections, in which all backstop technologies are

disabled. Under the FYP extension policy, the share for PHEVs reaches just under 6

percent by 2050. With a 550 stabilization policy, a much larger portion—between 15

and 17 percent—of own-supplied transport is derived from PHEVs by 2050; despite

being a consequence of an economy-wide policy, this is roughly in line with the global

average under stringent or best-effort fuel economy standard targeting only the pur-

chased transport sector, which achieves a smaller reduction in emissions (Karplus et al.,

2012a).

3.2 Transport-related energy use & emissions

Figure 3-4 gives the quantities of primary energy from each type over time, in each

of the three scenarios and under the medium demand projection; Figure 3-5 offers

the same presentation for the low- and high-demand scenarios. The key feature of
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the business-as-usual projection is a sharp rise in oil demand—both as a share of total

energy, rising from 24 to as much as 33 percent, and in absolute terms, where the

2004–2050 increase is by a factor of 5.1 to 5.6 depending on demand. The increase is

especially significant in relation to its effect on demand for imported oil and exposure

to energy security concerns, as discussed in Section 4.1; refined oil demand has not

ceased growing in the period 2045–2050 of the reference case.

The FYP policy results emphasize the limited effect of this policy, while Figure 3-

4(c) and Figure 3-5(c,f) reveal a number of interesting consequences of demand for

own-supplied transport. When the stabilization policy begins in 2020, there is an

immediate and drastic reduction in total energy output, by 41–42 percent.3 This ef-

fect differs across energy types. Coal-fired electricity generation, for instance, is an

emissions-intensive sector with multiple opportunities for substitution. In the low ve-

hicle demand stabilization scenario, energy from coal falls by 73 percent from 2015 to

2020, and in the long term is replaced by increased supply from next-generation nu-

clear, hydroelectric and other renewable power. In contrast, substitution opportunities

in own-supplied household transport are limited, and oil demand falls only 27 percent

in the period in which the policy is introduced, to a level 40 percent below reference in

2050.

While the impact of different levels of household transport demand on total primary

energy is small, focusing on final energy for transport allows the effects of demand to

be examined separately from China’s large and growing coal use. Figure 3-6 shows final

demand refined oil (ROIL sector) use in the household own-supplied transport sector

as vehicle fuel. The reference and FYP extension scenarios, both displaying continued

growth, overtake the 2011 U.S. level of about 190 billion gallons per year4 by 2020,

and approach or exceed twice current U.S. consumption by 2050. Other features of

the final energy projection are similar to the vehicle stock results of Figure 3-1, with

some differences due to the additional effect of investment in more efficient vehicles.

As a result, the FYP projection does not overlap the business-as-usual case as closely.

3Such a decrease is among the reasons such a policy would be unlikely to be adopted by the Chinese
central government; to reiterate, it is used here to provide a useful counterfactual.

4U.S. EIA (2012), sum of gasoline and distillate fuel oil (diesel).
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Figure 3-6: Refined oil use in household transportation, by year. Range of EPPA pro-
jections displayed as a band between the low- and high vehicle demand
scenarios, with the medium scenario as a solid line.
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Figure 3-7: Refined oil prices, by year. The BAU projection closely underlies the FYP
projection, with a slightly narrower range between the low- and high-
demand scenarios.
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Figure 3-8: Average energy intensity of household transport, by year.

Similarly, where the vehicle stock peaks in 2045 under a stabilization policy, refined oil

demand peaks earlier, in 2040, at a level of 132 billion gallons per year in the medium

case.

Figure 3-7 gives the unit price of refined oil in real terms, indexed to 1 in the model

base year. With increasing demand under business-as-usual, the price doubles by 2025

in the high demand scenario; by 2030 under median demand, and between 2030 and

2035 under low demand scenario; in all scenarios the level eventually reached is two

and a half times the base year price.

The FYP policy has a small effect, mainly of increasing the difference between the

high and low demand projections in the years 2025–2045. The stabilization policy, on

the other hand, causes an immediate and rapid increase in price; doubling from the

2004 price occurs roughly three to seven years earlier, and the price reached in 2050 is

14 percent higher than under the FYP policy or business-as-usual.

Average energy intensity of household transport is displayed in Figure 3-8.5 The

5Intensity is calculated for each of purchased and own-supplied transport through dividing emissions
by passenger distance travelled on each, then computing the weighted average according to distance
travelled.
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Figure 3-9: Emissions-intensity of transport, by year for the high-growth scenario, with
and without policy.

reference projection exhibits the autonomous energy efficiency improvement (AEEI)

programmed into the model, with slightly higher demand resulting in a greater in-

vestment in more fuel-efficient powertrain capital even as total own-supplied transport

increases.

The FYP policy results in an improvement of five percent across cases by 2050 rela-

tive to the reference, or 15.6 percent between 2015 and 2050 under medium demand.

While not directly comparable (as the per-distance cost of transport varies) total en-

ergy intensity of GDP decreases by a much larger 70 percent across the entire economy

during the same period. The stabilization policy results in a significant improvement

of 35 percent, despite the fact that household transport is one of the more expensive

options available for emissions reductions.

In Figure 3-9, the mode-share weighted average emissions intensity of transport

is contrasted with the intensity of own-supplied transport alone for the high demand

projection.6 Without policy, and under the FYP extension policy, vehicle transport de-

creases in emissions intensity, but while the reference decrease reflects only the effect

6Note that in this representation an assumption of constant occupancy for private passenger vehicles
is used to convert between own-supplied VDT and PDT.
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Figure 3-10: Trajectories of purchased and own-supplied transport, by scenario, with
unadjusted reference projection (green).

of AEEI on emissions, the FYP extension policy also involves the investment in fuel

economy just described. The modelled shift to greater use of own-supplied transport

(discussed below) results in a slightly increasing emissions intensity of transport overall

from 2015 until the end of the projection period, while the effect of the energy-intensity

policy is to effectively flatten this slow increase.

Under the relatively aggressive stabilization policy, however, investment in energy

efficient powertrain capital becomes an attractive substitute for expensive fuel, and de-

spite a similar shift in modes towards more emissions-intensive private vehicles, overall

intensity of transport continues to decline through 2050.

3.3 Transport volume and household expenditure

A notable effect of both policies is to alter the long-run balance between own-supplied

and purchased household transport. Figure 3-10 shows trajectories of mode share, jux-

taposing the total passenger distance travelled by each set of modes, beginning with the
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base year near the origin and progressing further away as passenger transport grows

with time. The unadjusted (prior to the work described in Chapter 2) reference trend

is also shown, to illustrate a hypothetical situation of “constant mode share” growth.

The position of the business-as-usual trajectories show their (designed) progression

towards more own-supplied transport than in the uncalibrated reference, and also dif-

ferences in final travel distance. The departure from constant mode share increases

over time, reflecting the growing stock of new and vintaged vehicle capital used to

provide own-supplied travel.

Under the FYP policy, the mode share between own-supplied and purchased trans-

port does not change appreciably, while total activity decreases; this is visible as similar

trajectories, shifted inwards towards the origin. Under a stringent climate policy, on

the other hand, the imposed preference for own-supplied transport cannot be met to

the same degree as the household budget share does not stretch as far when vehicle

efficiency improvements required drive up the cost of vehicles, and are not offset by a

reduction in per-distance fuel costs, as shown below. Total travel distance thus even-

tually ceases to grow around the 2025 level of the no-policy, high demand scenario.

The high demand cannot be met without a greater reliance on purchased transport rel-

ative to the medium- and low-demand cases, so the mode share remains closer to the

unadjusted model’s constant mode share.

Figure 3-11 displays, for both sets of policy scenarios, the percentage change in

aggregate consumption measured as equivalent variation relative to the business-as-

usual value. Consumption is a measure of welfare, and change in consumption one

measure of the economy-wide cost of policy; however, some reference below is also

made to GDP (not shown), which includes effects of investment and net exports that

may be differently affected by policy, but follows broadly similar trends.

Before the introduction of policy and in the business-as-usual scenario, China’s en-

tire economy grows at 9.5 per year on average from 2005 to 2010, and is projected

to grow at 8.8 percent from 2010 to 2015; consumption growth is slightly slower at

9.3 and 8.7 percent per year in the same periods. In the reference scenario the an-

nual average growth rate of consumption later declines from 8.2 percent in the period
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Figure 3-11: Change in consumption due to policy relative to reference case, by year.

2015–2020 to 7.1 percent in 2045–2050.

The FYP policy projection shows a very modest impact. The stated energy and

emissions-intensity reduction targets are nearly achieved without policy, and the addi-

tional cost of meeting them is small, reaching only 1 percent in 2030 and 2.2 percent

in 2050. In contrast, the GHG stabilization policy produces an immediate and drastic

reduction in welfare, about opposite in magnitude to one year of GDP growth at recent

rates, shrinking to 15–17 percent less than reference by 2050. The continuing large im-

pact makes the cumulative effects of reduced economic activity visible, with the high

demand welfare under stabilization policy falling progressively further away from its

reference value relative to low demand, reflecting unrealized growth.

In context, the median projection for China’s 2050 per capita GDP under business-

as-usual is USD 18,531, between the 2011 levels for Bahrain and the Czech Republic;

under the FYP extension policy USD 17,736, comparable to Slovakia; and under the

stabilization policy USD 13,960, comparable to Hungary.7

Figure 3-12 shows the share of household expenditure on transport, for the own-

supplied portion and the total with purchased transport. Without policy or under

7All of the three latter are European Union members.
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Figure 3-12: Household expenditure shares for transport.
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the FYP policy, the travel budget share peaks in 2015 and thereafter declines slightly

through 2050. The peaks are at 10, 12 and 14 percent in the low, medium and high de-

mand projections respectively, each within the 5–15 percent range observed by Schäfer

(1998) in other, already-motorized countries. The decline of 0.5 to 2 percent reflects

fuel savings possible with increased energy efficiency of transport.

In response to the stabilization policy, households are faced with a choice between

carbon-priced fuel or more efficient powertrain capital or to reduce demand for trans-

port entirely, all expensive options for providing the combined amount of purchased

travel and vehicles imposed in each demand scenario. Along with the effect of re-

ducing travel distance (Figure 3-10), the result is a further increase in the share of

the household budget devoted to transport, to 19, 22 or 24 percent of the household

budget in 2050 respectively, with the own-supplied portion alone taking 17, 19 or 21

percent of all income. Households are subject to a large price shock in this case as

the price of emissions affects their entire consumption bundle, and transport, as an

important good, may be a less economically attractive choice for emissions reductions.
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Chapter 4

Conclusions and discussion

The foregoing analysis has illustrated ways in which emissions policies representative

of current mandates and a long-term climate stabilization target would interact with

rapid projected growth for personal transport in China, in particular the demand for

vehicles. It shows the impacts of both demand and policy on energy, emissions and

economic activity, including transport activity. The continuation of current policies

would only modestly restrict demand for vehicle and purchased travel, but would do

little for sustainability goals, allowing continued growth in energy use and emissions.

An aggressive greenhouse gas stabilization policy effectively caps vehicle ownership as

well as total demand for refined oil, limits total passenger distance travelled, and has

economy-wide effects.

Insights such as these regarding the effects of future demand for purchased and

own-supplied transport will be received and used differently by municipal and central

policymakers in China, because their areas of concern, latitude and ability to adopt

instruments, and relationship to households differ. While the results of high Chinese

demand for vehicles—including congestion, local air pollution, and high refined oil

demand—are recognizable from other countries, differences in urban form and gover-

nance (Wang, 2010) may mean that direct adoption of policy responses from the West

will not necessarily lead to success.

This chapter considers the context of transport policymaking in China and the ap-

plicability of the modelling results. While they are not included in the model used,
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existing policies and the dynamics between municipal and national-level policymakers

(and between different policies of the national-level government) play an important

role in China, and are important to consider when interpreting model outcomes. In

this context moving to long-term policies that are effective towards climate stabiliza-

tion goals would be challenged by the lack of agreement on the relative importance of

conflicting policy objectives and creating conditions, if possible, where municipal and

state administrators act in concert.

I end with a discussion of interesting avenues for extension of this work, and by

summarizing the work in its entirety.

4.1 Implications for policy

In this section I discuss policies that have been implemented or are under consider-

ation, and the factors affecting positions of the decision makers involved, before dis-

cussing how these relationships might affect the prospects for progress towards more

aggressive reductions. I consider several specific policies affecting household transport

currently in place under China’s central government and the municipal administrators

in some of its largest cities. National-level policies include fuel economy, promotion of

the automotive manufacturing industry and the growth of NEVs in particular, and the

response to the energy security concern of rapidly rising oil imports.

I focus on municipal transport policies from the directly-governed municipalities

of Beijing, Shanghai, Tianjin and Chongqing (Figure B-1 in the appendices), because

these are among the largest and densest in the world, so economic and environmental

externalities of transport are most acute and policy responses more advanced. Urban-

ization is projected to increase in China to 77 percent by 2050 (UN Population Division,

2012), giving rise to more than 100 cities of 1-2 million (Leaver et al., 2012; Loo and

Li, 2006) and many larger cities; the pioneering experiences of the current large urban

centres will be looked to for lessons in managing this growth, including in the area

of transport. As well government entrepreneurialism is an important feature of poli-

cymaking in cities: in an opening and globalizing economy, historical experience and
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peers within China offer few tightly predictive examples, so local administrators rely on

foreign partners (investors, government or experts) to provide ideas for policy (Chien

and Ho, 2011). In city transport, this manifests as parallel experiments with a wide

variety of transport policy instruments employed elsewhere in the world.1

4.1.1 National-level policy: promotion of NEVs and energy security

China’s central government historically managed the automotive manufacturing indus-

try directly, setting up state-owned enterprises (SOEs) in the sector, and later promot-

ing their cooperation with foreign partners through international joint venture (IJV)

arrangements. Objectives of IJV promotion include supporting domestic manufactur-

ing but also transfer of intellectual property and development of innovation capacity

that increases the competitiveness of the domestic participants (Nam, 2010, 2011).

As early as the 9-FYP (1995–2000), the promotion of NEVs has been a feature of

central government policy with respect to vehicles, encompassing promotion of HEVs,

PHEVs, BEVs and fuel cell vehicles (Gong et al., 2012).2 Objectives included avoiding

local air pollutions and “energy saving” (reduction in petroleum demand). Approaches

used included funding research and development; setting targets for adoption; fleet

pilots specifically sited in second-tier cities, and a variety of generous subsidies to busi-

nesses and households purchasing vehicles.

Commentators have long speculated on the supply side of the Chinese energy secu-

rity concerns (Downs, 2004), but note that the central government seemed somewhat

surprised by the recent rapid growth (Downs, 2006), which is projected here to con-

tinue unless stringent policy is enacted. Management of domestic demand as a means

to reduce exposure to import risks remains a major challenge for the government (Dao-

jiong, 2006), but one area of response has been the promulgation of fuel economy

standards (FES) for new vehicles, modelled on the United States’ Corporate Average

Fuel Economy (CAFE) system, with a parallel objective of encouraging adoption of

1As experiments, these have had mixed success; for instance, Shanghai has tolled some arterial roads
and highways, yet with limited impact on congestion (Wang et al., 2008).

2Although the NEV acronym was not used until 2007.

51



more advanced, efficient NEV technologies (Hu et al., 2010). Karplus et al. (2012a)

highlights that, compared to economy-wide climate policy of the type considered here,

requiring emissions reductions to occur in the own-supplied transport sector selects a

non-marginal, high cost means of reducing overall emissions.

The identified effects of policy on the transport sector show that policymakers can

expect refined oil demand, in particular, to continue to rise without policy, or with

energy-intensity style targets which do not impose strict caps on energy use or green-

house gas emissions. Refined oil use accompanies strong growth in automotive fleets

and therefore sales, which would continue to help support the domestic auto industry;

but the policy conditions for large-scale adoption of PHEVs are not created without

the influence of high fuel costs under a climate stabilization policy, and the limitation

of refined oil demand—and therefore imports, and energy security risks—is not solely

due to NEV adoption, but also reduced driving.

4.1.2 Policy in urban areas: vehicle ownership, use and public

transport

In addition to entrepreneurialism leading to heterogeneous policies in cities (Chien

and Ho, 2011), it affects the policy objectives and agenda of municipal governments.

In an inherently conservative bureaucracy without political or electoral mechanisms

incentivizing quick response to public concerns, the main externalities of high vehicle

ownership and use—urban air pollution and road congestion—appear to be addressed

strongly because they directly impact the middle class to which many bureaucrats be-

long (Seligsohn et al., 2010; Seligsohn, 2012). For the same reason, although walk-

ing, cycling, and two-wheel electric vehicles are retain a non-trivial mode share in

Chinese cities (Peng, 2004; Weinert et al., 2007, 2008), their regulation appears to

be a less pressing policy matter; on the other hand, strong purchased transport de-

mand—identified here as continuing to grow rapidly through mid-century even under

stringent policy—is being continually addressed through rapid build-out of public tran-

sit systems both within and between cities.
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Although the policies studied in the foregoing chapters are economy-wide and

national-level policies, they show effects of limiting vehicle ownership, which munic-

ipal governments have been attempting to do directly. Policies on both urban vehicle

ownership and use and the support of purchased travel through public transport infras-

tructure are discussed separately in the following subsections.

4.1.2.1 Municipal policies affecting vehicle ownership and use

Two categories of municipal policies constrain vehicle transport: those which affect the

ownership of vehicles, and those affecting their use. To affect ownership, Shanghai has

conducted license plate auctions for over a decade which restrict the number of new

cars put on the road to about 110,000 per year (Feng and Ma, 2010; Luo et al., 2011). A

limited number of new plates are licensed each month; prices can reach as much as CNY

60,000 (Hao et al., 2011).3 Beyond limiting the number of vehicles, the plate auction

has other effects; vehicles sold in Shanghai tend toward larger, more expensive models

preferred by the richer citizens who can afford to win a plate at auction. This policy

induces some leakage as owners register vehicles instead in surrounding provinces

without auctions (Luo et al., 2011); however, these vehicles are barred from using the

main highways to enter the city during rush hours.

Beijing, in contrast, has recently adopted a lottery system in which no payments

are collected. Waits are long, yet the city still adds nearly 300,000 cars per year to its

population (Hao et al., 2011). In an explicit attempt to combine features of the Beijing

and Shanghai approaches, Guangzhou has announced plans for a hybrid, auction-and-

lottery system (Caixiong, 2012). Hao et al. (2011) give trajectories of income and

vehicle ownership levels for Beijing, Shanghai and the provinces, and also suggest

that, in the absence of policy, Shanghai’s ownership level may have risen at the same

rate as Beijing’s in the period 2001–2010.

Concerning household vehicle use, driving in Beijing was heavily but temporarily

restricted during the 2008 Summer Olympics, with measurable effects on quantities

3Much greater, for instance, than the price of the Chery QQ3 or Geely Meiri minicars, which cost
about CNY 30,000 each (Xi et al., 2009).
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of emissions and air quality (Wang et al., 2010; Wu et al., 2011). A vestige of this

policy remains, with one fifth of vehicles nominally barred from the city’s ring roads

each weekday; however, this is not viewed as being strongly enforced.4 Anas et al.

(2009) show that while fuel taxes and congestion charging may be expected to have

some effect on vehicle use, ultimately this category of policy is less of a determinant

of congestion than the difference in ownership. Beijing has also introduced regional

standards for pollutant levels in fuels as a means of addressing air pollution without

restricting ownership or driving (Xin, 2012); and while other cities have studied re-

strictions on driving, few have adopted them (Yin et al., 2011; Hao et al., 2011; Suen,

2012).

Within the restrictions on ownership, however, are municipal exceptions and sub-

sidies for NEVs, some of which are additional to central government subsidies; these

are undertaken because municipal governments believe that non-gasoline vehicles will

contribute fewer emissions to local air pollution problems that accompany congestion.

However, in the present modelling results, adoption of high-cost NEVs is significant

only under climate stabilization policy which increases the cost of other driving and

fuel use (Figure 3-3). Also, while reducing refined oil use, PHEVs require charging

infrastructure and electricity. Transport emissions in Beijing are a major contribu-

tor to summer air pollution, but winter air quality problems also arise from nearby

coal-fired electricity generation (Sun et al., 2004). If these plants are to be used year

round—or, indeed, if additional plants are built—to supply electricity to private trans-

port, this problem would become persistent and more difficult to address. Similarly,

while biodiesel and other biofuels may produce fewer and less toxic emissions (Mor-

ris et al., 2003), fuel standards cannot eliminate these emissions entirely, and will not

address congestion goals.

Generally, when municipal ownership policies are contrasted to the NEV promotion

goals of policies of central government, these have almost directly opposite aims. A

direct effect of Guangzhou- and Shanghai-style restrictions in constraining ownership

is to lower sales of new vehicles; since the cities are also home to China’s wealthiest

4Personal correspondence.
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citizens, they are being discouraged from purchases which would otherwise serve to

support economic rebalancing for the “pillar” automotive industry (Steinfeld, 2008).

The central government has commented when use of revenue from the auctions ap-

peared to be allocated to non-transport activities, and more recently has suggested

that ownership restrictions are harmful to the auto industry, but to date has not inter-

vened against auctions (Jing, 2012; Zeng, 2012). If the central government chooses

to address energy intensity and emissions in non-transport sectors, and pursue en-

ergy security through foreign policy rather than domestic demand management,5 own-

supplied household transport demand will likely continue to increase, and cities may

elect to pursue congestion and local air pollution goals through continuation of current

policies, exacerbating this conflict.

4.1.2.2 Public transit infrastructure

Track distance [km]

City 2012 Planned @ year

Shanghai 425 877 @ 2020

Beijing 372 1050 @ 2020

Guangzhou 236 677 @ 2020

Shenzhen 178 348 @ 2016

Tianjin 109 255 @ 2016

Table 4-1: Public transit systems in China,
by length (Schwandl, 2012;
Guangzhou Urban Planning
Committee, 2010; Zhang and
Yang, 2012; Xin et al., 2012).

To meet rising transport demand, China’s cities

have also invested heavily in their public tran-

sit networks, which already include the first-

and fourth-largest networks in the world; they

are further planning aggressive expansions of

subway systems at great cost (Table 4-1).

The large and expanding track length, dif-

ferences in fare structure, and feeder networks

of bus and regional rail services affect the rid-

ership levels of these systems (Hu et al., 2010),

which remain high despite passenger conges-

tion having a negative effect on perceived com-

fort of public transport.6 In Shanghai, urban

railways take travellers unable to afford auctioned license plates and vehicles, sup-

5The policy constraints modelled here are not focused on energy security per se, so the EPPA results
are consistent with a scenario in which the government does not act to curtail refined oil use for energy
security reasons.

6Personal correspondence.
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plying one third of passenger travel demand (National Bureau of Statistics of China,

2012).

While early lines were constructed entirely by state-owned entities (SOEs), cities

have since used a variety of public-private partnership (P3) structures to construct and

operate transit projects (de Jong et al., 2008), from one-time, single-line arrangements

with one outside partner, to a structure now standardized for Shanghai in which at

least four separate aspects of rail extension are handled by separate government or

private partners (Yuan and Lou, 2011; Loo and Li, 2006). Growth in future demand for

purchased transport services that—as identified here—continues even with limitation

of overall and own-supplied demand under policy, will affect expected ridership and

revenues, and in turn local governments’ ability to guarantee returns and leverage

private investment.

Further, Schäfer and Victor (2000) note that the travel money budget in Japan is

stable at only 7 percent, due to the Japanese government’s historic strong support of

the Shinkansen high-speed rail network, among other factors. If China’s central gov-

ernment wishes to pursue energy or emissions targets which are more severe than the

current, intensity-based policy and set economy-wide caps on emissions, much higher

household expenditures for transport, as projected in Figure 3-12, are one result. How-

ever, China has also invested heavily in development of a large high-speed rail network

(Campos and de Rus, 2009), so the experience of Japan suggests that providing long

distance travel through non-vehicle modes is one option that may be considered to re-

duce restrictions on mobility—although China’s greater area will affect whether such

approaches are economical.

4.2 Limitations and opportunities for extension

This work offers a number of opportunities for extension. As noted, energy security

is a major national policy concern arising from increased refined oil use associated

with rising demand for household transport. Projections of total demand under policy

scenarios such as those in Chapter 3 can be one input to a framework that models
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global oil markets, and can be useful for understanding long-term energy security risks

might change with reduced demand.

Returning to Figure 1-1, inter-provincial differences in wealth and vehicle owner-

ship are large, and as just noted the wealthiest cities of Beijing and Shanghai have

followed very different paths according to their individual policy choices. Even the

central government, in explicitly assigning provincial sub-targets under the 12-FYP en-

ergy intensity goal, makes explicit reference to differentiated effort between rich and

poor provinces in Zhang et al. (2012)—the Kyoto principle on a sub-national scale. As

urbanization continues, the gap between national aggregate household transport indi-

cators and, for instance, the level of motorization in the poorest provinces may widen.

Projections, analysis or policymaking based on national averages, or a static disaggre-

gation of national figures, may then suffer from the “flaw of averages” (de Neufville

and Scholtes, 2011).

This challenge points to the importance of extending the present analysis into a

CGE model with a more disaggregated representation of China’s economy, to allow

representation of significant provincial, regional, or—at the very least—urban-rural

differences which may be obscured in EPPA. The China Regional Energy & Emissions

Model (C-REM) developed by Zhang et al. (2012) as part of the Tsinghua-MIT China

Energy & Climate Project is one candidate for this extension. C-REM mirrors important

features of EPPA while incorporating a sophisticated integration of disparate statistical

sources on Chinese energy, emissions and domestic trade.

To capture even richer regional detail, as well as allow for separate representation

of various types of small vehicles popular in Chinese cities, a further enhancement

would be to perform a top-down/bottom-up coupling of EPPA or C-REM to a transport

model calibrated on a per-region basis. This would allow representing the transport

response to urban growth trends that may differ from place to place (Nam and Reilly,

2012). Schäfer et al. (2009) demonstrate the value of this sort of linkage in transport

projection and policy analysis, using EPPA and a MARKAL-based transport model; in

the Chinese case a discrete mode choice model might be possible, as data are available

(Jing, 2012).
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4.3 Conclusions

In this analysis, I applied an existing computable general equilibrium model that in-

corporates technology detail and options for substitution in the household transport

sector, to the study of future demand for purchased and vehicle transport in the rapidly-

growing Chinese market. I adapted the model to match China’s observed process of mo-

torization through the present, and further developed three scenarios of future growth

in both total transport demand and the shares given to purchased and own-supplied

modes. With this updated model, I applied two economy-wide policy scenarios, one

simulating the extension of energy intensity measures currently in place in China, and

one related to a global greenhouse gas stabilization strategy.

Comparing the outcomes with a no-policy case, I find that adoption of vehicle trans-

port demand leads to refined oil use associated with transport growing by a factor of

six to approach coal’s share of primary energy by mid-century. Ownership passes 350

vehicles per 1000 capita, and total private vehicle stock reaches nearly 500 million,

with transport taking 10 to 15 percent of household budgets—levels comparable to

developed countries with higher motorization.

I find, further, that these trends are only modesty affected by policy continuing

present energy-intensity goals, with small decreases in travel activity and energy inten-

sity of vehicles combining for a reduction in refined oil use; such a policy has modest

cost and affects household transport less than other sectors. In contrast, my results

show that a stringent emissions cap associated with GHG stabilization has large im-

pacts on vehicle efficiency, limits vehicle ownership and general travel activity levels as

it drives household transport budget share to levels between 19 and 24 percent. Be-

cause of the rapid growth in transport-related refined oil demand without policy, the

transport sector plays a greater role in climate stabilization relative to previous anal-

ysis for the United States. Of a smaller vehicle fleet (250 million total, or 200 per

1000 capita), sixteen percent is composed of new energy vehicles, and total refined

oil use increases less than 3 times from its 2010 level. However, these effects come

with a reduction in total primary energy as the policy is introduced, and large costs
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economy-wide.

These results are salient to passenger transport-related policy objectives of China’s

central and large urban governments, some of which I elucidate. Chinese policymak-

ers can recognize that the industrial and quality-of-life benefits of strong vehicle sales

are accompanied by large increases in emissions and oil imports, even with advanced

technologies available. A strong climate policy will likely be needed to have the vehicle

ownership- and use-limiting effects desired to reduce congestion and local air pollution

in cities, or the management of demand for oil imports, but involves acute tradeoffs in

both household transport and overall consumption. This work lays the foundation for

future work focused on further methodological development and the impact of a wide

range of transport focused policies at the regional level in China and on international

energy markets.
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Appendix A

Calculation of input shares to

household transport

Listing A-1: Calibration of input shares to own-supplied household transport.

from collections import defaultdict
from os.path import join
import sys

import numpy as np
from scipy.constants import mile

# Constants for EPPA regions
from EPPA import *

DATA_DIR = ’/net/fs04/fs02-d0/cecp/data/’ # Location for data files
YEAR = ’2004’ # EPPA5 initial period
opts = {’delimiter’: ’\t’, ’dtype’: None} # Common options for reading CSV

data = defaultdict(dict) # storage for data

np.set_printoptions(precision=4)

def region_data(var, region, report_missing=False):
result = []
missing = []
for country in rc[region]:

if country in data[var] and not np.isnan(data[var][country]):
result.append(data[var][country])
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else:
missing.append(country)

if report_missing:
print(’{}: No {} data for {}.’.format(region, var, ’ ’.join(sorted(
missing))))

return result

def lookup(var, region, function=sum):
if r in country_regions:

try:
return data[var][code[r]]

except KeyError as e:
print(e)
return 0

else:
return function(region_data(var, code[r], True))

## Load the countries-to-EPPA regions mapping
rc = defaultdict(list)
for country, region in np.genfromtxt(join(DATA_DIR, ’countries.csv’),

usecols=(0,2), **opts):
rc[region.decode()].append(country.decode())

del rc[’EPPA5 region’]

## Load parts of the HTRN database
DATA_DIR = join(DATA_DIR, ’htrn’)
opts.update({’names’: True, ’skip_header’: ’comment’})

# Global Market Information Database. Quantities:
#
# * DIES -- Diesel/gas oil consumption 6[10 kg]
# * EXP-O -- Consumer expenditure on operation of personal transport equipment
# 6 [10 USD]
# * EXP-T -- Consumer expenditure on transport services 6[10 USD]
# * EXP-V -- Consumer expenditure on purchase of cars, motorcycles, other
# vehicles 6[10 USD]
# * MGAS -- Motor gasoline consumption 6[10 kg]
# * VDT -- Car traffic volume 6[10 ·carkm]
# * VDT-V -- Average annual distance travelled by car [km]
#
for row in np.genfromtxt(join(DATA_DIR, ’gmid.csv’), **opts):

key = ’GMID {}’.format(row[’Quantity’].decode())
data[key][row[’Country’].decode()] = row[YEAR]
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# International Road Federation / World Road Statistics. Quantities:
#
# * REG-N -- New car registrations [0]
# * VDT -- Vehicle distance travelled per year 6[10 km]
# * VDT-PCAR -- Passenger car distance travelled per year 6[10 km]
# * VDT-V -- Vehicle distance travelled per vehicle, per year [km]
#
for row in np.genfromtxt(join(DATA_DIR, ’irf.csv’), **opts):

key = ’IRF {}’.format(row[’Quantity’].decode())
data[key][row[’Country’].decode()] = row[YEAR]

# Miscellaneous data by region. Quantities:
#
# * VDT -- Vehicle distance travelled 12[10 miles]
# * ACA -- Total consumption 10[10 USD @ 2004]
# * Share -- Transport as a share of total consumption [0]
# * Fuel -- Total expenditure on transport fuel 10[10 USD @ 2004], GTAP
#
misc = np.genfromtxt(join(DATA_DIR, ’misc_region.csv’), **opts)

## Preprocess some data
exp_v = np.zeros([16]) # expenditure on vehicles
reg = np.zeros([16]) # registrations
vdt_v = np.zeros([16]) # distance travelled per vehicle [km]
for r in range(16):

exp_v[r] = lookup(’GMID EXP-V’, r)
reg[r] = lookup(’IRF REG-N’, r)
vdt_v[r] = lookup(’GMID VDT-V’, r, np.mean) / ( mile / 1000.)

# Adjustments in VDT per vehicle:
print(’\nVDT per vehicle adjustments:’)
print(’ AFR from {} to 8000’.format(vdt_v[AFR]))
vdt_v[AFR] = 4000
print(’ CHN from {} to ’.format(vdt_v[CHN]), end=’’)
vdt_v[CHN] = 18200 * 1000 / 1609
print(’{}’.format(vdt_v[CHN]))
for r in (BRA, IND, MEX, RUS, ASI, LAM, REA, ROE):

print(’ {} from {} to 8000’.format(code[r], vdt_v[r]))
vdt_v[r] = 8000

## Calculations
# Capital recovery charge rate
crc = 0.09 * np.ones([16])
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# Levelized cost per distance
lcpd = (misc[:][’ACA’] * misc[:][’Share’] * 10**10) / ( misc[:][’VDT’] * 10**12)
# fuel cost per distance = tro
tro = (misc[:][’Fuel’] * 10**10) / (misc[:][’VDT’] * 10**12)

# cost of new vehicles = expenditure on vehicles / # of vehicles registered
nvc = (exp_v * 10**6) / (reg * 10**3)
# corrections:
print(’\nNew vehicle cost adjusments:’)
# Adjust USA, CAN to reflect share of light trucks
print(’ USA from {} to {}’.format(nvc[USA], nvc[USA]/2.))
nvc[USA] /= 2.
print(’ CAN from {} to {}’.format(nvc[CAN], nvc[CAN]/1.5))
nvc[CAN] /= 1.5
print(’ AFR {}, REA {} \n to IND {}’.format(nvc[AFR], nvc[REA], nvc[IND]))
nvc[AFR] = nvc[IND]
nvc[REA] = nvc[IND]
print(’ ASI {}\ LAM {}, ROE {} to BRA {}’.format(nvc[ASI], nvc[LAM],

nvc[ROE], nvc[BRA]))
nvc[ASI] = nvc[BRA]
nvc[LAM] = nvc[BRA]
nvc[ROE] = nvc[BRA]
print(’ MES from {} to RUS {}’.format(nvc[MES], nvc[RUS]))
nvc[MES] = nvc[RUS]

# Powertrain industrial
ptoi = (0.2 * nvc) * crc / vdt_v
# Total other industrial
toi = nvc * crc / vdt_v
# Services (residual)
tse = lcpd - tro - toi - ptoi

# Fractions of total
tse_frac = tse / lcpd
toi_frac = toi / lcpd
ptoi_frac = ptoi / lcpd
tro_frac = tro / lcpd

## Generate output
with open(’htrn-shares.csv’, ’wb’) as f:

f.write(bytes(’\t’.join(code), ’utf-8’))
f.write(b’\n’)
np.savetxt(f, np.vstack((toi_frac, tse_frac, tro_frac, ptoi_frac)),

delimiter=’\t’, fmt=’%.4g’)
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Appendix B

Map of China
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Figure B-1: Map of Chinese provinces, provincial capitals and directly-governed mu-
nicipalities. Adapted from the Wikimedia Commons file “China adminis-
trative PRC".
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Appendix C

Publications of Chinese transport

statistics

The China Statistical Yearbook is the flagship publication of the National Bureau of

Statistics of China. While these annual documents and accompanying data files contain

some glossary information on the contents of the tables, the NBSC does not publish

enough information about its data collection methodology to allow nuanced critique

or correction by interested third parties. In part this is because of historically limited

resources; with low capacity within the NBSC itself to dictate data collection practices,

it is reliant on per-sector provincial government agencies to furnish data, and these can

have mixed quality for a variety of reasons (Sinton, 2001).

As well, despite the availability of provincial yearbooks containing a variety of less

aggregated transport information not present in the national accounts, these are not

typically translated for a foreign audience, and so usually elude inclusion into English-

language data bases. One example is Sichuan Department of Transportation (2011).

Fourin, Inc. (2011), a Japanese firm, also publishes a China Automotive Industry Year-

book based on data obtained directly from manufacturers, but as a private effort this

is, again, not open to methodological scrutiny.

Close perusal of the data from NBSC itself show that the same points will change

from year to year, and at several points earlier data has been dropped from transport

series and not reintroduced, possibly indicating low quality and a lack of basis for
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correction to the current standard. For instance, the 2002 Yearbook omits previously-

published figures for passenger travel volume from 1952 through 1975, a period which

includes years of the Cultural Revolution (1966–1976) (National Bureau of Statistics

of China, 2002, 2003).
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