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Abstract
Fourty percent of all crops grown in the world today are grown using irrigation, and shift-
ing precipitation patterns due to climate change are viewed as a major threat to food secu-
rity. This thesis examines, in the framework of the MIT Integrated Global System Model,
the potential impacts of climate change on crop water stress and the risk implications for
policy makers due to underlying uncertainty in climate models. This thesis presents the
Community Land Model - Agriculture module (CLM-AG) that models crop growth and
water stress. It is a global generic crop model built in the framework of the Community
Land Model and was evaluated for maize, cotton and spring wheat. A full climate model,
the IGSM-CAM, was first used to force CLM-AG and show the regional disparity of the
response to climate change. Some areas like the Midwest or Equatorial Africa benefit from
the higher precipitations associated to climate change while others like Europe or Southern
Africa see the irrigation need for crops increase. The effect of a mitigation policy appeared
contrasted, as water-stress for some areas (including Europe and Africa) is increased if
greenhouse gases emissions are limited while for other areas (Central Asia, United States)
it is reduced. A second analysis was carried in Central Zambia using uncertainty ensembles.
The ensembles demonstrate the notable extent of the uncertainty stemming from different
climate sensitivities and different regional patterns in climate models. Crops are impacted
differently but a consistent result is that climate mitigation policies reduce uncertainty in
crop water stress, making it easier to plan for any anticipated future climate change.
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Chapter 1

Introduction

1.1 Background

1.1.1 The Challenge of Feeding Nine Billion People on a Finite Planet

With the global population projected to reach nine billion by 2050 (UN, 2004) and eco-

nomic growth transforming the lives of millions in developing countries, world food de-

mand is expected to roughly double by 2050 (FAO, 2009). This includes a westernization

of diets in lower-income countries, where energy-, land- and water-intensive meat demand

is expected to increase significantly. Agriculture already uses 34% of ice-free land world-

wide (Ramankutty et al., 2008) and is responsible for 10 to 12% of direct global greenhouse

gases emissions1 (Smith et al., 2007), including most of the global emissions of methane.

Humans used about 54% of all attainable runoff in 1996 (Postel et al., 1996). Of this

amount, 87% is used for agriculture, mostly for irrigation purposes (Shiklomanov, 2000).

Despite its footprint on the environment, food production is essential for human sub-

sistence. As shown in Figure 1-1, after declining through the last quarter of the twentieth

century, largely due to the Green Revolution and an unusually mild climate (Ziska, 2011),

food prices have started to rise again, and it is estimated that in 2011 six hundred million

people in developing countries are still undernourished (FAO, 2011). The double concern

1This number would be higher if we were to take into account indirect emissions due to deforestation to
claim new crop land or pastureland, which is much harder to quantify.
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Figure 1-1: FAO Food Price Index, adjusted for inflation, 1961 - 2010, calculated using
international prices for cereals, oilseeds, meats, and dairy and sugar products (FAO, 2011).

of environmental stress caused by agriculture and of the absolute necessity of producing

enough food for humans makes feeding the planet sustainably one of the biggest challenges

of the twenty-first century 2.

1.1.2 The Importance of Irrigation

In the broader context of food security, irrigation is an often overlooked but nevertheless

important issue. Indeed, even if irrigated land composes only 20% of the cultivated area

globally, it accounts for around 40% of the global food production (Döll, 2002). As is

shown on the map of irrigated areas worldwide presented in Siebert et al. (2005) irrigation

is crucial for food production in certain countries like Egypt, Pakistan or India. Any drop in

irrigation capacity, whether from increased water demand from crops or decreased runoff

in the streams would have dire consequences for these countries, especially at the time they

need to ramp up their production capacity to meet the demands of a growing population.

At the same time, the development of irrigation in some areas (mostly in Africa) could spur

2The interested reader can find a more extensive presentation of these issues in a TED talk given by
Professor Jonathan Foley from University of Minnesota (Foley, 2010).
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an agricultural revolution in these countries and increase crop yields, thus improving food

security and being part of the answer to meeting food demand growth.

Irrigation is crucial to the agricultural policies of many countries but evaluating the

relevance of irrigation projects becomes increasingly difficult as climate changes. Indeed,

one of the major factors relevant to assess the potential success of such a project is the

amount of water required by crops to grow healthily. However this irrigation need is highly

dependent on temperature and on precipitation, and is likely to vary significantly under a

changed climate.

Thus tools are needed to assess the potential impact of climate change and its surround-

ing uncertainty to help policy makers make informed decisions on irrigation projects and,

more broadly, to assess the risks future climate change could pose on human food supplies.

The potential impacts of climate change on irrigation need for crops and the uncertainties

policy makers must take into account when dealing with these issues are the subject of this

master’s thesis.

1.2 Contributions

1.2.1 Main Questions and Approaches

The issues that have been outlined in the previous section give rise to many interesting

questions. We will concentrate on the following issues:

• Which areas in the world could face the largest changes in irrigation need by the

middle of the century? What would be the impact of mitigation policies on this

outcome? Would agricultural production be better or worse off in a warmer world,

from a water stress point of view?

• How can we efficiently characterize irrigation need uncertainty at the regional level?

What are the relevant tools we can provide policy makers to help them make informed

decisions on irrigation projects whose success are dependent on a potential change

in climate? Do global climate policies have an impact on irrigation at the local level?
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As it is impossible to rely on past observations to predict future irrigation need – given

climate change and its impact on the planet – we must rely on models to answer these

questions. For this work, a crop and irrigation model called the Community Land Model

- Agriculture module (CLM-AG) has been developed. This model was designed to be a

part of the MIT Integrated Global System Model (IGSM) framework (Prinn et al., 1999;

Sokolov et al., 2005). This integrated approach ensures that all models parameters and

results (from greenhouse gases emissions to irrigation need) are consistent with one another

and do not result in physical impossibilities.

To answer the first question we use the results of a full 3-D climate model, the IGSM

- Community Atmosphere Model (IGSM-CAM, Monier et al. (2012)) driven by the emis-

sions scenarios from the MIT Emission Prediction and Policy Analysis (EPPA, Paltsev

et al. (2005)) model. We then compare the average irrigation need modeled for the period

1980-2000 with what the model predict for the period 2040-2060. Two distinct scenarios

were considered for the future runs: an unconstrained emissions scenario and a climate

change mitigation scenario. This allows us to draw conclusions on the different regional

impacts of climate change and on the potential impact of a mitigation policy on irrigation

need.

To answer the second question, we focus on the Central Province of Zambia in South-

Western Africa and take advantage of the IGSM functionality to run uncertainty scenarios.

For each emissions scenario, the hybridization of a statistically representative ensemble

of 400 IGSM 2-D model runs with AR4 kernels for regional impacts (Schlosser et al.,

2011) leads to a distribution of 6800 possible outcomes. We reduce this distribution to

approximately 400 weighted outcomes using a Gaussian Quadrature reduction technique

(Arndt, 1996). CLM-AG allows us to characterize the impact of these different scenarios

on crop irrigation need and to build probability distribution of the evolution of crop water

stress by 2050 in the Central Province of Zambia under the two emissions scenarios.
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1.2.2 Outline

Chapter 2 reviews the existing literature on the impacts of climate change on agriculture,

on the models that have been used to make these assessments, and on the underlying un-

certainties.

Chapter 3 describes the crop and irrigation model called CLM-AG that was developed

for this study. We also present in this chapter two different evaluations of CLM-AG.

The first one compares CLM-AG to another crop model, the IIASA-FAO Global Agro-

Ecological Zones (GAEZ, Fischer et al. (2012)). The second one compares a subset of

the model for the United States to the water withdrawn for irrigation of maize as reported

in the Farm and Ranch Irrigation Survey conducted by the US Department of Agriculture

(USDA, 2008).

Chapter 4 shows the results of the global study using the IGSM-CAM forcing under

two different scenarios: an unconstrained emissions scenario and a scenario where policies

limit the concentration of carbon dioxide to 550 ppm by the end of the century. We then

identify the impacts of these two policies on major growing areas of corn, wheat and cotton

globally and conclude on some of the impacts of a mitigation policy on irrigation as well

as on the regional patterns of change.

Chapter 5 then presents the results of the regional analysis carried out for the Central

Province of Zambia. We analyze the distribution of the possible outcomes for irrigation

need under two different scenarios and provide a few tools to evaluate them and interpret

the results in a policy making framework.

We finally summarize the main findings of this work in Chapter 6 and discuss future

research that the development of CLM-AG renders possible.
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Chapter 2

Literature Review

This chapter reviews relevant literature in the field. Section 2.1 focuses on the effects

of climate change on agriculture and crop production. Section 2.2 describes the different

varieties of crop models that have been developed to study the impacts of climate change on

agriculture. It assesses the strengths and weaknesses of each model and focuses particularly

on irrigation models. Finally, Section 2.3 reviews the major uncertainties a modeler is faced

with when developing an assessment tool for future agricultural production.

2.1 Impacts of Climate Change on Agriculture

The twentieth century has been characterized by a constant increase in agricultural produc-

tion driven by the use of new varieties and the development of fertilizers (Figure 2-1). This

has been widely referred as the Green Revolution. It has helped keep food prices at a his-

torically low level. However, the Green Revolution occurred during a time of remarkable

climate stability (Swanson et al., 2009). Will agricultural production be able to continue

rising in the coming years under a changing climate? As most of the existing science is

compiled in chapter 8 of the working group II report for the International Panel on Climate

Change (Smith et al., 2007) we only review the main findings here and highlight what can

be explored with CLM-AG.
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Figure 2-1: Increase in global agricultural production. Data source: USDA.

2.1.1 Direct Effects of Climate Change

Water

Crops require water to grow. Currently, irrigated land represents 20 percent of cultivated

land but 40 percent of total agricultural production (Döll, 2002). The largest impact in

the agricultural sector is likely to be felt in irrigation, as water supply becomes scarcer

in some areas and more subject to extreme variations (Ziska, 2011). According to Döll

(2002), two-thirds of current globally irrigated areas will need more water by 2070, due to a

combination of higher temperatures and lower precipitation. At the same time, water supply

– namely river runoff – is likely to decrease in some of these areas (Kundzewicz et al., 2007,

2008). According to a study by Fischer et al. (2007), mitigation could reduce globally the

impacts of climate change on annual agricultural water requirements by about 40 percent,

or 125 to 160 billion m3 compared with an unconstrained emissions scenario. However, this

study relies on a rather simple crop model and we aim at improving the results regionally

by considering a more complete description of the crop and soil hydrology processes.
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Temperature

Crops are very sensitive to temperature. Ziska (2011) provides a table of optimal flowering

and vegetative stage temperatures for the main US crops (Table 2.2 in the cited volume).

Under climate change it is likely that temperature will frequently exceed the optimal range

for crops, leading to reduced yields or a need to develop new hybrids. The main finding is

that crop response to temperature is not linear, as shown in Schlenker and Roberts (2009).

These non-linearities are not implemented in CLM-AG (discussed in Chapter 3) as new

hybrids better adapted to a warmer climate may appear. Nevertheless, temperature indi-

rectly affects the water requirement from the crop as a warmer weather means a higher

evapotranspiration from the plant, which CLM-AG takes into account.

Extremes

Under any climate change (i.e. human or natural), extreme weather events are likely to

become more frequent and/or more intense, for temperatures and precipitation alike (IPCC,

2012). The most impactive of extreme events to agriculture are droughts and floods, as

well as heat waves. These extreme events can dramatically reduce crop yields when they

occur during the most critical stages of crop growth and could impact overall agricultural

production (Rosenzweig et al., 2001; Smith et al., 2007). As the intent of CLM-AG is to

model irrigation, it does not model the direct impact of these events on crop physiology.

It does, however, model the impact of a drought on irrigation demand and the associated

yield reduction.

Change in Carbon Dioxide Concentration

Extensive studies have been conducted on the effect of increasing CO2 concentrations on

crop yields. Kimball et al. (1993) posits a yield increase of 30% under a doubled carbon

dioxide concentration based on closed environment experimentations, but this rate is highly

contested as the technique involves small volumes of air that may create micro-climatic ef-

fects (Ziska and Bunce, 2007). It is thus very uncertain that this result would hold in a

natural environment. It is clear that more research in this area is required before providing
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a conclusive parameterization in this regard, thus this implementation of CLM-AG does not

directly take carbon dioxide concentrations into account when modeling the plant physiol-

ogy.

Nutritional Value

Rising levels of carbon dioxide in the atmosphere also impact the physiology of the plant

through different mechanisms (more efficient nitrogen uptake, stomatal closure, etc.). Taub

et al. (2008) estimate experimentally that crop nutritional value could decrease as much

as 15% if the concentration of CO2 in the atmosphere doubles. Loladze (2002) shows

that rising carbon dioxide could also reduce the quantity of essential micronutrients in

the plants, such as iron, iodine and zinc. These findings have strong implications for the

quantity of food that needs to be grown to feed the planet; however, they do not impact

directly crop water requirements and are not considered in this implementation of CLM-

AG.

2.1.2 Indirect Effects of Climate Change Mitigation Strategies

Fertilizer Price

Synthetic fertilizers are overwhelmingly produced from natural gas. As of 2003, fertilizer

production was consuming approximately 1.2% of the world’s energy and was responsi-

ble for approximately 1.2% of total greenhouse gases emissions (Kongshaug and Jenssen,

2003). Hence any climate policy that prices directly or indirectly emissions (like a carbon

tax or a cap-and-trade policy) will increase fertilizer price, decrease fertilizer use and there-

fore impact global agricultural production. Irrigation can potentially offset the amount of

fertilizer needed to improve yields and is consequently an important tool for mitigating the

impacts of such a climate policy.

Biofuels

Some politicians (see the US Energy Policy Act of 2005 and the EU Directive 2003/30/EC)

and scientists (Demirbas, 2009) have championed replacing conventional fossil fuels with
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biofuels as a way to green the transportation sector. However, Melillo et al. (2009) showed

that the introduction of biofuels created unintended consequences for agricultural produc-

tion. By shifting some of the best land from agricultural production to fuel production (as

biofuel prices as likely to be higher than food prices), it relegates food production to less

fertile land. This would either reduce yields, require an intensification of the production

through the use of more fertilizers, or require more irrigation because food production is

displaced to marginal land. As a consequence, biofuels are generally seen as a threat to food

security (Rosegrant et al., 2008b; Boddiger, 2007). Though it is not the focus of this work,

CLM-AG would allow us to explore in future works the impacts of such a displacement of

food production on the irrigation need and on the water systems of countries.

2.2 Crop Models

Farm production is influenced by biophysical conditions (temperature, rainfall, soil, pests,

etc.) and by the socio-economical context (population, lifestyle, income, water resources,

etc.) Farmers respond to these external conditions through management decisions (crop

choice, irrigation, fertilizer use, etc.) The variety of parameters that influence a crop and

the high adaptivity of farmers makes modeling crops a very difficult task. Moreover, inputs

range from the local (soil, precipitation) to the regional (water resources, subsidies) or even

the global (carbon dioxide concentration, food prices), and all need to be taken into account

if one wants to reliably model food production.

As a result this system is too complex to be studied in its entirety. First, experiments to

study the impact of climate change on food production are not possible. Thus, research has

to rely on models to analyze potential effects. Second, as one cannot model the system in

its entirety, different models perform different types of assessments at different scales.

There are three general types of crop models: process-based models, statistical mod-

els and economic models. We describe all of them below, but focus more extensively on

process-based crop models as CLM-AG falls into this category.
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2.2.1 Process-Based Crop Models

Process-based crop models are usually deterministic. Any change in the model results

is due to input data or parametrization. Most of these models consist of three modules:

a soil module with water infiltration from precipitation or irrigation, a plant module to

represent the growth and physiology of the plant, and a canopy air-space module to simulate

evaporation and transpiration. They are usually based on a numerical integration over a

rather short period of time that can range from hours to a month (Faivre et al., 2009).

These models are all data-intensive but they can capture non-linear responses to climate

change (Challinor et al., 2003).

DSSAT

The Decision Support System for Agrotechnology Transfer model (DSSAT, Jones et al.

(2003)) was developed to provide farmers with a way to predict the response of their crops

to different management options such as fertilizer use or irrigation. It is very detailed and

has been developed for as many as twenty different crops. It focuses on fertilizer use and

plant processes. In climate change studies it has been used to see how crop management

might evolve under a changing climate (e.g. Rosenzweig et al. (1994)) or for local studies

on specific crops (Guereña et al., 2001; Brumbelow and Georgakakos, 2001)). Arguably

the most detailed of crop models, it nevertheless requires a large amount of data. Fur-

ther, its very detailed parametrization becomes problematic at a global scale as field data

aggregation for inputs can lead to large errors.

EPIC

The Erosion-Productivity Impact Calculator (EPIC, Williams and Singh (1995)) is primar-

ily a soil hydrology model. It was developed to track the impacts of erosion and soil

productivity on crops. Stockle et al. (1992) modified the model by adding a carbon dioxide

function for climate change assessments. It has been used since in a number of such climate

assessments (Izaurralde et al., 2003; Tan and Shibasaki, 2003; Easterling et al., 1996). It

is also a field-scale model that requires a number of local parameter inputs and therefore
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becomes parametric intensive on a global scale.

The FAO models: CROPWAT and AquaCrop

CROPWAT (Smith, 1992) is an empirical process-based crop model. In contrast to the

preceding models it has the advantage of being generic and requiring very little input pa-

rameters for the plant or soil specifications. Conversely, this results in a somewhat larger

uncertainty in the outputs. It has been used for local studies of the impact of climate change

on irrigation resources (Rodrı́guez Dı́az et al., 2007; Rosenzweig et al., 2004) or on rainfed

agriculture (Moussa and Amadou, 2006).

AquaCrop (Steduto et al., 2009; Raes et al., 2009) is the evolution of CROPWAT. It is

also a process-based model, focused on evaluating the irrigation need for crops. As it was

developed and released only recently, and is parametrized for relatively few crops, only a

few studies have used it (e.g. Chung (2010)). AquaCrop simulates crop growth over the

season, and tracks a variety of different stresses to the crop (heat, water or nutrient shortage,

soil salinity, etc.) and hydrological processes in the ground. As a result, it outputs a variety

of indicators including yield and water deficit.

CLM-AG is directly inspired by these models as its purpose is to be a global irrigation

model. However, only the water-deficit routines from AquaCrop were implemented as total

yield is secondary to this study. It is, like CROPWAT and AquaCrop, a generic crop model

and has been parametrized for corn, wheat and cotton, given the global agro-economic

importance of these crops.

2.2.2 Agroclimatic Indices and Production Functions

Agroclimatic Indices

Agroclimatic indices are used to determine if a crop can be grown at a given place. They

rely mostly on temperature, average rainfall and soil characteristics to compute the suit-

ability of a given place for a given crop. Carter et al. (1996) at a local level or Fischer et al.

(2005) at a global level use this method to assess the potential shift of agricultural land and

crops under future climate scenarios. This method somewhat accounts for management
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practice adaptations and provides insights on climate impacts on crop localization; how-

ever it does not compute actual yields and irrigation needs, except when coupled with a

process-based model (Fischer et al., 2012).

Production Functions

Production function models are statistical models based on a regression of relevant factors

that underly the yield of a crop. For example, these factors can include temperature, rainfall,

sowing date and fertilizer use. They are mostly modeled after present-day systems and

thus are a very unreliable estimate for future yields as regression coefficients are bound

to change because of climate change and subsequent adaptations (Mearns et al., 1997).

However, Parry et al. (2004) at a global level or Iglesias et al. (2000) at a local level have

combined such models with precise process-based model runs of DSSAT (see 2.2.1) to

calibrate the regressions in the future.

2.2.3 Economic Models

Economic models do not predict the irrigation need of crops as they lack a physical basis.

Aside from macroeconomic models that incorporate results from a process-based model

(Parry et al. (2004) for example), the main economic approach to modeling the impacts of

climate change on the farm is the Ricardian method. This method uses statistical production

functions to compute not a yield but the value of the land or the farm revenue. These outputs

are in turn used to analyze the economic effects of climate change as in Mendelsohn et al.

(1994).

2.3 Uncertainty

As it is the rule for any model, crop models are uncertain in nature and do not exactly

represent reality. This is an even bigger problem when it is run in the future as there is a

wide uncertainty surrounding climate models. The three major sources of uncertainty in

the water stress predicted by any process-based crop model are the uncertainty in green-
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house gases emissions, the uncertainty in the temperature and precipitation outputs from

the climate model and the uncertainty in the computed crop water need from the crop model

itself.

2.3.1 Economic Uncertainty

The largest input uncertainty in climate models comes from the uncertainty in greenhouse

gases emissions (Stott and Kettleborough, 2002; Webster et al., 2002). Indeed these emis-

sions depend largely on the future state of the economy and on the production techniques

that will be chosen, as well as on eventual mitigation policies. One way to quantify the

evolution of these emissions in the future is to use a Computable General Equilibrium

(CGE) model. One such model is the MIT Emission Prediction and Policy Analysis (EPPA)

model (Paltsev et al., 2005). In contrast to the IPCC Special Report Emission Scenarios

(SRES, Nakicenovic et al. (2000)), using a CGE model ensures that emissions and eco-

nomic growth are consistent with each other. However, as summarized in Abler et al.

(1999), there is wide uncertainty associated with CGE models outputs, even given a par-

ticular growth course, as most economic elasticities are highly uncertain. Webster et al.

(2008) provide a technique to quantify some of these uncertainties in the EPPA model.

2.3.2 Climate Uncertainty

Climate model uncertainties are well recognized and documented (Deser et al., 2012; Ran-

dall et al., 2007). Three parameters summarize most of this climate models internal uncer-

tainty: climate sensitivity, ocean uptake rate and aerosol forcing effect1. The uncertainty

surrounding these parameters explains most of the prediction differences between climate

models in terms of temperature increase.

One way to recognize this uncertainty is to create several runs of a given climate model

while varying these parameters. Forest et al. (1999) describes a technique to select a phys-

1The climate sensitivity can be defined as the ratio of temperature change to radiative forcing change in an
equilibrium state, the ocean heat uptake rate is the amount of carbon absorbed by the oceans and the aerosol
forcing is the impact of aerosols and clouds on the radiative forcing of the atmosphere. More complete
definitions can be found in Sokolov et al. (2009).

33



ically possible subset of these parameters given the climate observations during the twen-

tieth century. This is the approach that is used in the MIT Integrated Global System Model

(Sokolov et al., 2005, 2009) to represent the underlying climate uncertainty.

Besides the uncertainty on the level of the climate response to an increased concen-

tration of greenhouse gases, there is a large disagreement between the different climate

models in terms of regional impacts of climate change. For example, some models pre-

dict that precipitation could increase by 20% in the North-East United States while others

predict that they could decrease by 20% (Christensen et al., 2007). Schlosser et al. (2011)

describe a technique to take this regional uncertainty into account and describe a multi-

model ensemble of climate forcings. We discuss this technique at length in Chapter 5.

2.3.3 Crop Models Uncertainty

Finally, there is a very high uncertainty associated with crop models themselves as crop

growth depends on a large number of parameters (Monod et al., 2006). Different types of

models face different issues.

A detailed model like DSSAT represents crops very precisely but in return require ex-

tensive input data. This data is usually not available at the global scale, and aggregation

issues will arise.

On the contrary, a generic crop model like CLM-AG or AquaCrop does not simulate

all the processes involved in crop growth. It is thus likely to be imprecise at the field level.

However, at a global scale the model representation becomes more palatable as it does not

require much data.

Although these uncertainties have an impact on the absolute water deficit the crop is

facing, we argue later in this work that only differences in irrigation need from 2050 to the

present are useful to policy makers. Indeed global model outputs need to be downscaled at

a local level to generate relevant data for decision maker. This process requires changes in

irrigation need (or water stress) and not the absolute values. Following the community, we

contend that differences are much more reliable as they identify the impact of one factor

only (here climate change).
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Chapter 3

The CLM-AG model

In this chapter we describe the CLM-AG model. The chapter first explains the reasons

for developing the model and the specifications the MIT Integrated Global System Model

required it to have. Then we describe its structure and algorithms. Finally we present two

different evaluations of the model on a historic run with past climate data.

3.1 A Process-Based Model for Global Change Studies

3.1.1 The IGSM Framework

The CLM-AG model has been developed with the potential to become a component the

MIT Integrated Global System Model (Prinn et al., 1999) that would be used for water and

food studies under global change. In the context of an integrated global assessment, a crop

water stress and irrigation demand model must meet certain specifications that differ from

other crop models (yield prediction or irrigation planning at the field scale require different

specifications for example). First the model needs to output a monthly irrigation demand

(later used in the Water Basin Model in the IGSM framework) and a rainfed yield factor

(that quantifies the effects of water stress on crop yields, and that is used in calculating the

agricultural output). Second, as the model has to be global, it must be able to run on large

grid cells and to be as computationally efficient as possible. Finally, as it is difficult to

predict how crop characteristics will change in the future, this model needs to be a generic
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crop model with a minimal set of inputs.

Figure 3-1: The IGSM Framework.

Figure 3-1 describes the MIT Integrated Global System Model (IGSM) framework,

with a particular highlight on the Water Resource System (WRS, Strzepek et al. (2010)).

Using emission predictions and economic outputs from the MIT Emission Prediction and

Policy Analysis (EPPA) model (Paltsev et al., 2005) and earth system modeling predic-

tions from the IGSM (Sokolov et al., 2005), the Water Basin Module (WBM) describes

climate impacts on water demand as described in Figure 3-2. Previously, the hydrology

part (runoff) would come from the Community Land Model (CLM, Bonan et al. (2002))

and the agriculture part from CliCrop (Fant et al., 2012). These two distinct parts may

create an inconsistency in the framework. Indeed, CLM and CliCrop did not have the

same soil water calculation algorithms, leading to inconsistencies in their respective water

balance when putting the results together in WBM. CLM-AG solves this issue by integrat-

ing the two models with a single soil water module. It also integrates advances in crop

modeling that were not simulated or simulated differently in CliCrop.
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Figure 3-2: The WRS framework.

3.1.2 Philosophy of the Model and Inspiration

CLM-AG was originally intended to be a simple implementation of CliCrop in the very

flexible Community Land Model (CLM v3.5, Oleson et al. (2004) and Oleson et al. (2008))1.

However, it evolved to include advances in modeling and a better understanding of man-

agement options for agriculture.

1The MIT Joint Program on the Science and Policy of Global Change currently uses the version 3.5 of
CLM for most of its land studies.
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As an evolution of CliCrop, CLM-AG relies on the same principles; the irrigation and

yield reduction routines are taken from CROPWAT (Smith, 1992). However, the physiol-

ogy of the crop needed to be more precise than the one in CROPWAT as CLM runs on an

hourly time-scale (CROPWAT is monthly). CLM-AG thus relies primarily on AquaCrop

physiology routines to drive plant growth (Raes et al., 2009). Meanwhile the soil hydrology

remains unchanged from the original CLM model.

3.2 Description of the Model

We describe here only the agriculture and irrigation routines created during the course of

this work. The interested reader will find a precise description of the other CLM routines in

the CLM 3.0 technical description (Oleson et al., 2004) and the subsequent improvements

of CLM 3.5 in the CLM 3.5 description (Oleson et al., 2008).

3.2.1 Structure in CLM

The CLM structure is a nested subgrid hierarchy under the unit of the gridcell. Climate

inputs are given at the gridcell unit. Each gridcell is composed of multiple landunits, soil

columns and Plant Functional Types (PFTs). Soil properties are defined at the landunit

level. The energy and water balances are made at the column level. Of primary concern

for agriculture, soil hydrology routines operate at this level. Finally, plant dynamics are

simulated at the PFT level with both biophysical and biochemical routines.

Figure 3-3 shows the changes from the usual CLM structure made in CLM-AG. Crop-

land is now a separate landunit with each crop being a distinct column. Separating crops in

different columns (and not only PFTs) prevents them from competing for the same water

resources present in the ground: two distinct fields are completely independent when it

comes to the water content in the soil.

The scheme is entirely flexible and one can add new crops as needed. Currently, only

maize, spring wheat and cotton are implemented in the framework as they are among the

two most important food crops and cash crop, respectively. It is also important to note

that besides the plant physiology, all other CLM routines (hydrology, energy and water
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Figure 3-3: The CLM-AG structure. Changes to the usual CLM structure are represented
in green. (Adapted from Oleson et al. (2004).)

balance, snow cover, etc.) apply to crop landunits as they apply to natural PFTs. This

ensures consistency between the different landunits.

3.2.2 Crop Physiology

CLM-AG adds new plant types to CLM. The physiology of these news plants (the crops)

differs from the other plants physiology as simulated in CLM. In the standard CLM, root ex-

tension is fixed and plant height and Leaf Area Index (LAI) are interpolated from monthly

input data. This is a good approximation for natural plants but is too imprecise to calculate

crop water stresses. To generate an accurate representation of the irrigation demand, we

indeed need a better representation of the crop itself. The representation implemented in

CLM-AG is largely based on the physiology routines of AquaCrop (Raes et al., 2009).

CLM-AG being a generic crop model, all crop parameters appearing below, except

mentioned otherwise, are crop dependent and do not vary geographically. The values of

these parameters for maize, spring wheat and cotton are detailed in Appendix A.
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Growing Degree Days

The planting date and the length of the growing season are prescribed by an input data file

and held constant for this study. In CLM-AG the growth of a crop is not measured in days

but in growing degree days (GDD) that are defined for each day as follow:

GDD =
Tmin + Tmax

2
− Tbase

where GDD is the accumulated growing degree days for the day, Tmin and Tmax are re-

spectively the minimum and maximum temperatures (with minimum and maximum thresh-

old values being the crop parameters Tbase and Tupper) for the day and the crop parameter

Tbase is the base temperature for the crop (all temperatures in Kelvin).

We also define for each crop and each gridcell a GDD ratio as the ratio between the

length of the growing season in a particular gridcell and a standard length of the growing

season. This is to account for the fact that farmers in colder climates will plant faster-

growing crops than in warm climates2 . This standard length is defined arbitrarily as it is

but a reference point and has no impact on the final result. The GDD ratio is calculated as

follow:

gddratio =
gr length(lat, lon)

gr length std

where gddratio is the unitless growing length ratio, gr length(lat, lon) is the growing

length of the gridcell (in GDD) and gr length std is the arbitrary standard value of the

length of the growing season for this crop (in GDD).

Crop Cover

Figure 3-4 presents the AquaCrop physiology implemented into CLM-AG. The crop cover

is the basis for calculating the physiology of the plant and varies with the number of grow-

ing degree days elapsed since the planting date. The crop cover is defined as the proportion

of the ground covered by the crop canopy at a given time. There are four distinct stages in

2A longer growing season usually improves the yield but can create a weather risk (freezing, drought,
etc.) in some areas.

40



the growing season:

• Initial stage: the seed is in the ground and the roots grow until the emergence of the

plant.

• Vegetative stage: the plant grows and develop its leaves until it reaches full canopy

cover.

• Yield formation: the plant is at full canopy cover. This is when flowering happens

and fruits begin to appear.

• Senescence: the canopy cover diminishes as the plant ages and the fruits finish grow-

ing until they are harvested.

We describe below how CLM-AG simulates these different stages in chronological or-

der.

Figure 3-4: CLM-AG crop physiology is a transcription of the AquaCrop model (Raes
et al., 2010).

After planting the seed stays in the ground until emergence time that is prescribed by:

gdd > t em · gddratio
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where gdd is the accumulated3 growing degree days since planting and the time to

emergence t em is a crop parameter (in GDD).

Upon emergence, the initial crop cover of the crop is defined by the crop parameter

CC0 and the crop enters the vegetative state.

Then, until it reaches a crop cover of 0.5 (or 50%), the crop grows exponentially at the

end of every day:

CC = CC0 · exp

(
gdd

gddratio
· CGC

)

where CC is the crop cover, CC0 is the initial crop cover, gdd is the accumulated

growing degree days since emergence (in GDD) and CGC is a crop parameter.

After reaching this threshold of CC = 0.5, the growth rate of the crop decreases until

it reaches 98% of the maximal crop cover value CCx (which is a crop parameter):

CC = CCx − 0.25 · CC2
x

CC0

· exp

(
− gdd

gddratio
· CGC

)

where CC is the crop cover, CC0 is the initial crop cover, CCx is the maximum crop

cover, gdd is the accumulated growing degree days since emergence (in GDD) and CGC

is a crop parameter.

At this point the crop has reached the yield formation stage and the crop cover stays at

CCx until senescence, which is triggered by:

gdd > t sen · gddratio

where gdd is the accumulated growing degree-days since emergence and the time to

senescence t sen is a standard crop parameter (in GDD).

The crop then starts to decay during the senescence stage according to the equation:

CC = CCx

(
1 − 0.05 · exp

(
CDC

CCx

gdd

gddratio
− 1

))

3Growing degree days are accumulated by adding every day to the previous day total the corresponding
number of growing degree days.
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where CC is the crop cover, CCx is the maximum crop cover, gdd is the accumulated

growing degree days since the beginning of senescence (in GDD) and CDC is a crop

parameter.

Finally the crop is harvested when the crop reaches maturity as follows:

gdd > t mat · gddratio

where gdd is the accumulated growing degree days since the beginning of senescence

and the time to maturity t mat is a standard crop parameter (in GDD).

CC is subsequently held at zero until the beginning of the next growing season the

following year.

Crop Coefficient, Crop Height and Root Growth

The basal crop coefficient Kcb expresses how much evapotranspiration comes from the

crop as compared with a well-watered reference grass (a precise definition of which can be

found in Allen et al. (1998)).

As in AquaCrop, before the canopy reaches the maximum canopy cover Kcb can be

calculated as:

Kcb =
(
1.72 · CC − CC2 + 0.3 · CC3

)
·Kcbx

where Kcb is the basal crop coefficient, CC is the crop cover and Kcbx is a crop

parameter representing the maximum basal crop coefficient.

Once the crop has reached maximal canopy cover, and after a five day time lag, the crop

canopy ages and Kcb is expressed as:

Kcb = Kcbx − (t− 5) · fage · CCx

where t is the number of days since maximum canopy cover, the crop parameter CCx

is the maximal canopy cover and fage is a crop parameter.

Finally when senescence starts and the canopy starts to decay the previous expression
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of Kcb is corrected by the ratio CC
CCx

as follows:

Kcb =
CC

CCx

· (Kcbx − (t− 5) · fage · CCx)

The height of the canopy is calculated following AquaCrop by:

h = hx ·
CC

CCx

where h is the height of the canopy, hx is a crop parameter representing the maximum

height of the canopy, CC is the crop cover and CCx is the maximum crop cover. The

crop height does not decrease after senescence starts but stays at maximum height until

harvesting, even after the crop cover declines.

Roots grow by a fixed amount on a daily basis as soon as the crop is planted and until

maximum depth is reached. Initial root depth (rtini), daily root growth (rtgr) and maximum

root depth (rtmax) are crop parameters. The root fraction in a given layer of soil (per unit

of volume) is then calculated at the end of every day using the same routine CLM uses for

other plants (see Oleson et al. (2004)).

Leaf Area Index

The Leaf Area Index (LAI) is defined as the area of leaf per area of ground and repre-

sents the density of the canopy. It differs from crop cover in the sense that it takes into

account multiple layers of leaves. CLM needs the Leaf Area Index as a crucial parameter

to calculate the energy and water balances in the crop. We follow here the observations

and parametrization of LAI by Vina (2004) that shows that the crop cover is an exponential

function of the LAI.

We thus estimate the LAI based on the crop cover as:

LAI = LAIx ·
log(1 − CC)

log(1 − CCx)

where LAI and LAIx are respectively the current and maximum LAI of the plant (LAIx is

a crop parameter) and CC and CCx are respectively the current and maximal crop cover.

44



3.2.3 Biogeophysics and Hydrology

Figure 3-5: The biophysical and hydrological processes simulated in the Community Land
Model (Oleson et al., 2004).

Figure 3-5 presents the biogeophysical and hydrological processes simulated in CLM

3.5. CLM-AG uses these same routines for crop columns to preserve consistency.
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It is interesting to note that CLM has ten different soil layers among which water flows.

This implies for crops that even if it does not rain they may still absorb required moisture

from deeper soil layers. Accurate simulation of the snow pack is also crucial in some

areas. On the American Great Plains for example most of the water crops need come from

snow melt on the field at the beginning of the season. The interested reader will find a more

extensive description of the biogeophysical and hydrological routines in the CLM technical

description (Oleson et al., 2004).

3.2.4 Irrigation Need and Yield Reduction

Following CROPWAT (Smith, 1992), the water deficit is calculated in CLM-AG as the dif-

ference between potential and actual evapotranspiration of the crop. Actual evapotranspi-

ration is easily drawn from existing CLM variables, however we need to define a measure

of the potential evapotranspiration.

Potential Evapotranspiration

There are several methods to calculate evapotranspiration in the literature; they differ in

precision and complexity. The historic and most trusted method is the Penman-Monteith

equation (Monteith, 1965; Allen et al., 1998). However, this formula is data-intensive as it

requires precise measures of humidity and wind. To address this issue, many methods have

been developed to estimate potential evapotranspiration (PET) with less data requirements.

One such method is the Modified Daily Hargreaves method (Farmer et al., 2011) devel-

oped at the MIT Joint Program. It requires only daily average, maximum and minimum

temperatures as well as daily precipitation.

CLM-AG follows this approach and expresses daily PET as:

PET = 0.0019 · 0.035 ·Ra · (Tm + 21.0584) · ((Tx − Tn) − 0.0874 ∗ P )0.6278

where PET is the daily PET (in mm/day), Ra is the incoming solar radiation (in

W/m2), Tm, Tx, Tn are respectively the average, maximum and minimum temperature (in
◦C) and P is the precipitations (in mm/day).
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Actual Evapotranspiration and Evapotranspiration Demand

The Actual Evaporation is calculated from the CLM routines of canopy fluxes and plant

biochemistry using Monin-Obukov similarity theory and a Newton-Raphson iteration to

solve for energy and water vapor fluxes (Oleson et al., 2004). We define the actual evapo-

transpiration of the crop as:

ETA = Qevapveg + Qevapsoil

where ETA is the actual evapotranspiration (in mm/day), Qevapveg and Qevapsoil are

the evaporation (and transpiration) of the plant and the soil, respectively.

The evapotranspiration demand is then calculated following AquaCrop methodology

(Raes et al., 2010) as:

ETD = (Kcb + Ke) · PET

where ETD is the evapotranspiration demand (in mm/day), Kcb is the basal crop co-

efficient calculated as described in the previous section and Ke is the soil evaporation

coefficient.

The soil evaporation coefficient Ke depends on the crop cover CC and is calculated as

in AquaCrop by:

Ke =
(
1 −

(
1.72 · CC − CC2 + 0.3 · CC3

))
·Kex

where the maximum evaporation coefficient Kex is a model parameter (constant for all

crops and locations) taken equal to 1.1 as in AquaCrop.

To account for reduced evaporation due to dead canopy cover during senescence, the

previous Ke is multiplied during the senescence stage by (1 − fCC · CCx) where fCC is a

crop parameter.

Irrigation Demand

The irrigation demand is the difference between potential and actual evapotranspiration.

For a given month, the irrigation demand is expressed as:

47



IRR = Σdays (ETD − ETA)

Yield Factor

The yield factor expresses the percentage of the yield of a crop lost due to water stress

as compared with that of an irrigated crop with the same inputs (fertilizer, soil, etc.) The

yield factor is defined in CROPWAT (Smith, 1992) and we employ this same method in

CLM-AG.

The yield factor is defined as:

Y F = 1 −
∏
s

(
Kys

(
1 − ET s

A

ET s
D

))

where the yield coefficient Kys is a crop parameter dependent on the growing stage

s, ETDs and ETAs are the total demanded and total actual evapotranspiration for the

growing stage s (in mm) respectively.

The four growing stages are the same as those defined in Section 3.2.2:

• Initial Stage: from planting to 10% of the crop cover.

• Vegetative Stage: from 10% of the crop cover to full crop cover.

• Yield Formation: from full crop cover until senescence. It is the stage where crops

are the most sensitive to water stress with Ky3 often greater than one.

• Senescence: from the start of senescence to harvesting.

3.3 Model Evaluation: Historic Runs

To evaluate the model, we run it with observed weather from the late twentieth century

and current crop datasets. As observations of irrigation demand at the aggregate scale are

unavailable, we evaluate the model by comparing it to an existing modeled dataset: the

IIASA-FAO Global Agro-Ecological Zones (GAEZ) dataset (Fischer et al., 2012). CLM-

AG is run for corn, spring wheat and cotton for this comparison.
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For a second evaluation, we concentrate on the United States and use the 2008 USDA

Farm and Ranch Irrigation Survey (FRIS, USDA (2008)) for corn crops. After computing

a measure of the irrigation efficiency, we compare it to usually accepted values for this

parameter.

3.3.1 Input Data and Method for the Evaluation

Crop Data

The crop parameters used in this study are drawn from multiple sources that include CROP-

WAT, AquaCrop and several other publications. These values and their sources for maize,

spring wheat and cotton can be found in Appendix A.

The crop calendar (planting date and length of the growing season) is drawn from the

GAEZ dataset. It is important to note that the planting date identified in GAEZ is modeled

as the one that results in the highest yield for the year and is not based on observation or

survey. However, as in the real world, rainfed crop planting dates can differ significantly

from irrigated planting dates. We use crop calendars that are reflective of irrigated maize

and cotton and rainfed wheat for this study.

Weather Data

We use the National Centers for Environmental Prediction/National Center for Atmospheric

Research Corrected by Climate Research Unit (NCC, Ngo-Duc et al. (2005)) as a weather

forcing data for CLM-AG. NCC is a six-hourly weather dataset with temperature, rainfall,

snowfall, wind, pressure, specific humidity, longwave and shortwave incident radiation at a

resolution of 1x1 degrees. It is built by taking the six-hourly NCEP/NCAR reanalysis runs

and correcting the monthly means with CRU observations. To reduce the processing time

of CLM, we run it at a 2x2.5 degrees resolution instead of 1x14.

4Another reason for running at 2x2.5 degrees is that it is the standard IGSM resolution used in most other
MIT Joint Program studies.
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Evaluation Model Runs

We run the model from 1975 to 2000 and calculate the average irrigation need on the 1980-

1999 period (the first five years being considered as a spin-up time for the soil hydrology

in CLM before it reaches an equilibrium state).

3.3.2 Results and Comparison with GAEZ

The GAEZ Dataset

The IIASA-FAO Global Agro-Ecological Zones (GAEZ) dataset (Fischer et al., 2012) is a

dataset constituted as the output of a global agriculture and soil model. It has a resolution

of five by five minutes of arc. GAEZ includes numerous data for a wide variety of crops.

It distinguishes irrigated and rainfed crops, the input level (low, intermediate or high)5, and

the year (the model uses the CRU global historic weather dataset).

For this particular study, we look at the water deficit (in mm) for the three selected

crops (irrigated maize, irrigated cotton and rainfed spring wheat) under an intermediate

input scenario averaged over the years 1961-1990.

Results for Maize

This section only shows the results for maize as the results for spring wheat and cotton are

highly similar. These other results can be found in Appendix B.

5A low input level is associated with a traditional subsistence agriculture. An intermediate input level is
associated with a subsistence and partially market-oriented agriculture with some mechanization. High input
level relates to industrial agriculture. It is useful to note that the input level does not change the planting date
or the length of the growing season in GAEZ, but only the yield.

50



Figure 3-6: CLM-AG water deficit (in mm) for irrigated maize - NCC dataset, 1980-1999
average.

Figure 3-7: GAEZ water deficit (in mm) for irrigated maize - CRU dataset, 1961-1990
average.
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Figure 3-8: Difference in water deficit estimates between CLM-AG and GAEZ (in mm) for
irrigated maize – same specifications as the previous figures.

Analysis

CLM-AG and GAEZ define the same patterns in terms of irrigation need for maize in the

world (Figures 3-6 through 3-8). Wet zones more suitable for agriculture appear at the

same place in CLM-AG and GAEZ, while drier zones (with a higher irrigation need) also

match between the two models. As Figure 3-8 shows, the only difference resides in the

magnitude. CLM-AG is quite wetter than GAEZ in dry areas (Western USA, Australia,

Mediterranean Basin, etc.) and slightly drier in wet areas (Eastern USA, Central Europe,

Northern Argentina, etc.). This difference may be explained by a difference in the treatment

of the soil in the models. CLM-AG benefits from the full ten-layer CLM model, while

GAEZ relies only on a ”bucket layer” soil that evaporates more quickly under a dry climate;

the deep layers of soil in CLM do not evaporate so as rain percolates down, water remains

available in the ground longer for the crop to use. Appendix B presents similar results

for rainfed spring wheat and irrigated cotton. It is worth noting that CLM-AG is globally

slightly drier than GAEZ for rainfed spring wheat, which may be explained by differences
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in crop parametrization between the models.

Despite these few differences and considering the uncertainty in both models, CLM-

AG represents the irrigation need accurately enough for studies in the global framework

we have developed.

3.3.3 Evaluation for the USA with FRIS

Every five years the United States Department of Agriculture - National Agricultural Statis-

tics Service (USDA-NASS) conducts the Agriculture Census as mandated by law. For a few

selected farms in the country (around 10 percent of the total number of farms) the census

includes an extra survey on irrigation. The Farm and Ranch Irrigation Survey (FRIS) is

usually released a year after the census. The latest available version is the 2008 FRIS with

2007 data (USDA, 2008). From the results of the survey, FRIS reports the amount of water

withdrawn by farmers per acre of land irrigated and per crop aggregated at the State level.

Results

To carry out this analysis, we aggregate CLM-AG results at the State level and calculate the

implied irrigation efficiency (defined as the irrigation demand from CLM-AG divided by

the amount of water withdrawn by the farmers as reported in FRIS). Table 3.1 presents the

results for the states where irrigated maize covers more than fifty thousand acres of land.

Analysis

The average efficiency (weighted by the cultivated surface) is 51.4% according to this

study6. Pimentel et al. (1997) reports an average irrigation efficiency of 50% for the United

States so CLM-AG is an accurate measure of irrigation need on this measure.

Individual numbers vary significantly from a state to another. There are several expla-

nations for this fact, some explaining why different states have different efficiencies, some

being modeling shortfalls.

6Nebraska and Kansas alone make for more than three quarter of the surface irrigated.
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State (sorted by acreage) Irrigation efficiency modeled
Nebraska 50.3%
Kansas 44.1%
Texas 62.2%

Colorado 46.9%
Missouri 45.0%
Illinois 67.5%

California 67.4%
Arkansas 65.4%
Michigan 69.0%
Minnesota 54.9%

Indiana 74.6%
South Dakota 59.9%
Mississippi 36.9%
Louisiana 21.9%
Georgia 48.8%

Oklahoma 42.5%
Wisconsin 42.3%

Iowa 72.1%
Washington 36.4%

North Dakota 59.9%
Idaho 32.9%

Table 3.1: Irrigation Efficiency for Maize in the United States drawn from CLM-AG results
and FRIS data.

First, states where water is scarce (Texas, California) tend to have a higher irrigation

efficiency thanks to highly efficient irrigation systems while wetter states (like Missouri or

Washington) are not as efficient.

Second, we do not take into account in CLM-AG water needs for other uses than crop

irrigation itself like freezing prevention or salt leaching7. These can make a significant

difference in the total irrigation need in certain states.

Third, FRIS data is likely to contain systematic biases and/or errors as it is a survey of

farmers and not field observations. FRIS itself warns that farmers in drier areas keep better

accounting of the water they use as the price they pay for it is higher.

However, the biggest discrepancies may come from the spatial aggregation of the data.

Irrigation can vary notably from location to location within a state (or even within a 2 x

7Use of irrigation for salt leaching probably explains the very low number obtained for Louisiana.
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2.5 degree grid cell) and any one farm will likely have a different approach to irrigation

from the next one. This study also aggregates water demand at a state level. This raises

two issues. First, precipitation and hence water deficit can vary significantly inside the

state borders (this is particularly a concern in a state like California). Second, farms may

not be homogeneously spread in the state and concentrate on a specific area where there is

a specific climate (for example in Colorado, farms are situated on the Eastern part of the

State that faces a drier climate than the Western mountainous areas).

Going forward, we contend that CLM-AG is far too imprecise to be used in a current

situation setting to do water planning at a regional scale8. Nevertheless, it adds value

by correctly approximating the irrigation need and determining the large-scale patterns.

Moreover, despite being imperfect at the local level, it will be able to measure the relative

impacts of climate variations on irrigation needs. After this evaluation, CLM-AG can be

confidently used to provide insights on the impact of future climate on water stress for

agriculture.

8We would recommend using a model like DSSAT instead.
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Chapter 4

Irrigation in 2050 - A Global Perspective

in an Integrated Framework

In this chapter we run CLM-AG under a full 3D climate model – the IGSM-CAM – under

two different policy scenarios. We investigate the impact of an Unconstrained Emissions

scenario on the irrigation demand for maize and cotton and on the rainfed yield for spring

wheat by 2050. We also run a mitigation scenario that limits concentrations of “greenhouse

gases” by the end of this century to 660 ppm CO2 equivalent1 to assess the impact of

potential mitigation policies.

4.1 Datasets

4.1.1 Climate Data

The climate data for these runs are taken from the IGSM-CAM model (Monier et al.,

2012). The Community Atmosphere Model (CAM) is a climate model developed by the

National Center for atmospheric Research (NCAR). The IGSM-CAM version developed

at the MIT Joint Program on the Science and Policy of Global Change is composed of

two main modules (among others that also consider ocean and urban airshed processes) –

1This is the total quantity of greenhouse gases that would be equivalent to having 660 ppm of carbon
dioxide in the atmosphere but no other greenhouse gas. This is roughly equivalent to a concentration of 550
ppm of CO2 in a standard emission scenario.
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an atmosphere module and a land module – that interact. Two different sets of data are

required for these runs:

• Greenhouse Gases Forcing: CAM requires as a forcing a time series of the con-

centration of the main greenhouse gases. Two policy scenarios are run in EPPA to

generate emissions scenarios, which then provide inputs into the IGSM to create the

corresponding greenhouse gases concentration forcing sets. The first one is an Un-

constrained Emissions scenario (UCE) where no specific policy is put in place to

address climate change. The second one is a so called Level 2 stabilization scenario

(L2S) where emissions are limited globally to stay below a concentration of green-

house gases in the atmosphere equivalent to 660 ppm CO2 by the end of the century

(2100)2.

• Ocean Forcing: CAM is constrained by the Sea-Surface Temperature (SST) anoma-

lies from the IGSM 2.3 (2-D atmosphere and full 3-D ocean model) added to a cli-

matological annual cycle taken from an observed dataset (Hurrell et al., 2008).

The IGSM-CAM is run for the period 1950-2050 at a resolution of 2 degrees of latitude

by 2.5 degrees of longitude using median climate sensitivity, rate of ocean uptake and

aerosol forcing as described in Sokolov and Monier (2011). The output is an hourly dataset

of surface temperature, precipitations, radiation, humidity, wind and surface pressure. This

is the input needed to run CLM-AG.

4.1.2 Crop Data

The crop data inputs are the same as those described in Section 3.3.1. The crop parameters,

drawn from various sources, can be found in Appendix A. The planting dates and length

of the growing cycles are drawn from the Global Agro-Ecological Zones project (GAEZ,

Fischer et al. (2012)).

There is no crop management adaptation to climate change beyond a reduction of the

length of the growing season due to the rise in temperature under climate change as the

2More details on the construction of the L2S scenario can be found in Webster et al. (2012).
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growing season length is prescribed in Growing-Degree Days and not in days in CLM-AG.

Though there are very good reasons to believe that farmers will adapt to climate change (see

for example Smit and Skinner (2002) or Easterling et al. (2007)), quantifying the effect of

these adaptation strategies is far from trivial and falls outside of the scope of this work.

The results of this chapter should thus be interpreted as the impacts of climate change on

irrigation need in the absence of adaptation and under one particular climate model. We

discuss further the implication of these limitations in Section 4.3.

4.2 Results

4.2.1 Evaluation of CAM versus NCC

Figure 4-1 presents the results of a historic run of CLM-AG with IGSM-CAM forcing.

Pictured is the irrigation need for maize averaged over the years 1990-1999. The relative

location of wet and dry areas are the same as the ones obtained using NCC forcing data, or

using the IIASA dataset (see Chapter 3, Figures 3-6 and 3-7). One of the main differences

is that Africa and Asia feature a lower irrigation need using CAM forcing while North

America appears drier than under NCC. To confirm this observation we plot the absolute

(Figure 4-2) and relative (Figure 4-3) differences in irrigation demand for maize between

NCC and CAM forcing.
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Figure 4-1: CLM-AG water deficit (in mm) for irrigated maize – IGSM-CAM run, 1990-
1999 average.
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Figure 4-2: CLM-AG water deficit (in mm) for irrigated maize – absolute difference be-
tween the IGSM-CAM run and the NCC run (a positive number indicates that IGSM-CAM
is drier than NCC), 1990-1999 average.

Figure 4-3: CLM-AG water deficit for irrigated maize – relative difference (in percent)
between the IGSM-CAM run and the NCC run (a positive percentage indicates that IGSM-
CAM is drier than NCC), 1990-1999 average.
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CAM appears to be wetter than the historic average as recorded by NCC in the Southern

hemisphere. These results were expected as the NCAR Community Climate System Model

(CCSM) model – whose atmosphere is modelled by CAM – overestimates precipitation

rates (Hack et al., 2006). Once again we warn against interpreting the absolute results of a

climate model and contend that only variations and trends relative to a model’s climatology

(between future and historic runs) are relevant to capture some of the dynamics in play.

Consequently the next section presents absolute and relative variations of future versus

historic runs instead of absolute numbers.

4.2.2 Future Runs and Impacts of Policy

There are two common methods for evaluating impacts of climate change: “differences”

and “ratios”. Using “differences” means the relevant number used for results interpretation

is the difference between the future and the historic run in absolute terms (mm for irrigation

need, for example); using “ratios” means the relevant number is the percentage change

between future and historic values. The two methods stem from the need to downscale

imprecise global models to the regional scale that is relevant for policy making. Both

techniques have advantages and disadvantages and there is no commonly accepted method

to distinguish which one is unequivocally more insightful. We thus present both absolute

change and relative change.

Maize

The next two pages successively present the change in irrigation need between future (2040

- 2050) and historic (1990 - 2000) values for irrigated maize under first an Unconstrained

Emissions scenario and second a Level 2 Stabilization scenario. On both pages, the first

figure represents the absolute change in mm and the second figure the relative change in

percent. For this second figure, the values have been limited to a range of -50% to +50%.

Indeed very large values of relative change can occur where the irrigation need is extremely

close to zero in historic runs.
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Figure 4-4: CLM-AG water deficit for irrigated maize – absolute difference (in mm) be-
tween the 2040-2049 Unconstrained Emissions scenario average and the 1990-1999 aver-
age.

Figure 4-5: CLM-AG water deficit for irrigated maize – relative difference (in percent)
between the 2040-2049 Unconstrained Emissions scenario average and the 1990-1999 av-
erage.
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Figure 4-6: CLM-AG water deficit for irrigated maize – absolute difference (in mm) be-
tween the 2040-2049 Level 2 Stabilization scenario average and the 1990-1999 average.

Figure 4-7: CLM-AG water deficit for irrigated maize – relative difference (in percent)
between the 2040-2049 Level 2 Stabilization scenario average and the 1990-1999 average.
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To analyse these results we concentrate on the largest maize producing areas globally.

The largest irrigated producing areas are from West to East: the Western US Corn Belt,

Western and Central Europe, the Nile and Zambezi Valleys, Northern Pakistan and North-

Eastern China. Other important areas where maize is irrigated exist but are less dependent

on irrigation to achieve a reasonable yield and are thus less likely to be impacted by climate

change. Tables 4.1 and 4.2 summarize what can be drawn from the maps above for these

areas.

Area Observed Change
U.S. Corn Belt 20 to 30% decrease

Europe 5 to 15% increase
Nile Delta Increase of about 5%

Zambezi Valley 5 to 20% increase depending on the area
Northern Pakistan Nearly no change

N.E. China Nearly no change

Table 4.1: Changes in irrigation need between 2050 and 2000 under an UCE scenario for
the major corn producing regions with irrigation.

Area Observed Change
U.S. Corn Belt Sharp decrease of 30 to 50%

Europe Large increase of 15 to 25%
Nile Delta 5 to 10% increase

Zambezi Valley 10 to 25% increase depending on the area
Northern Pakistan Increase of about 15%

N.E. China Nearly no change

Table 4.2: Changes in irrigation need between 2050 and 2000 under a L2S scenario for the
major corn producing regions with irrigation.

A first observation is that the US Corn Belt appears to be a beneficiary of climate

change as modeled by CAM, while other areas see their irrigation need increase, especially

sharply for Europe and the Zambezi River Valley. A second interesting observation is that

the changes seem to be more important under a L2S scenario than under the UCE scenario

which is quite counter-intuitive. To get a clearer view on the impact of the L2S policy

compared to the UCE scenario we plot on the next page the difference between the two

scenarios for maize irrigation need.
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Figure 4-8: CLM-AG water deficit for irrigated maize - absolute difference (in mm) be-
tween the 2040-2049 Level 2 Stabilization scenario average and the 2040-2049 Uncon-
strained Emission scenario average.

Figure 4-9: CLM-AG water deficit for irrigated maize - relative difference (in percent)
between the 2040-2049 Level 2 Stabilization scenario average and the 2040-2049 Uncon-
strained Emission scenario average.
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As summarized in Table 4.3 putting in place a L2S policy that would limit global green-

house gases emissions to 660 ppm CO2 equivalent actually increases the impact of climate

change for key corn producing regions. The change benefits the U.S. Corn Belt where the

stabilization policy makes the climate wetter – and thus further decreases irrigation need –

while in Europe, the Zambezi Valley or Northern Pakistan irrigation needs increase further.

A more thorough analysis of CAM results shows that these increases root in the fact that

precipitations increases in a UCE scenario for these regions (or decrease less compared

with the historic average in the case of Europe) which reduces irrigation need despite in-

creased temperature. Another item of note is that warmer climate results in faster crop

growth, which in turn decreases total growing season water demand in CLM-AG.

Area Difference between the two scenarios
U.S. Corn Belt 10 to 20% decrease

Europe Increase of about 10%
Nile Delta Increase of about 5%

Zambezi Valley Increase of about 5%
Northern Pakistan Increase of about 10 to 15%

N.E. China Nearly no change

Table 4.3: Changes in irrigation need in 2050 between a L2S and a UCE scenario for the
major corn producing regions where irrigation is present.

Spring Wheat

Spring wheat is rarely an irrigated crop. More relevant than irrigation need is the impact of

water stress on the yield of spring wheat. As explained in Chapter 3, CLM-AG computes

a water-stress yield factor as the amount by which the yield of the rainfed crop is reduced

because of water stress, independently of other production factors. The major producing

areas of spring wheat are the Northern American Great Plains, the Black Sea area (Ukraine

and Turkey), the Ganges Valley, Central-Eastern China and Southwestern Australia.

We only present here the relative yield factor change – and not the absolute change – as

it represents directly a relative yield change for the crop.
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Figure 4-10: CLM-AG yield factor for rainfed spring wheat – relative difference (in per-
cent) between the 2040-2049 Unconstrained Emissions scenario average and the 1990-1999
average yields.

Figure 4-11: CLM-AG yield factor for rainfed spring wheat – relative difference (in per-
cent) between the 2040-2049 Level 2 Stabilization scenario average and the 1990-1999
average yields.
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The following tables (Tables 4.4 and 4.5) present the results for the major spring wheat

producing regions as it appears on the maps above. North America becomes wetter, which

is reflected in a rise of rainfed spring wheat yield. Ukraine and Turkey both see decreases

of rainfed yield under climate change. Neither the Ganges Valley nor China see any major

change as these areas are not water-stressed – the rainfed factor as calculated by CLM-AG

is 1, meaning that the crop can produce at a full non water stressed yield – and it does

not change in our simulations. Southwestern Australia, like Europe, see its rainfed spring

wheat yield diminish.

Area Observed Change
Northern Great Plains Increase of about 20 to 30%

Ukraine No change
Turkey 15 to 25% decrease

Ganges Valley No change
China No change

SW Australia Decrease of about 10%

Table 4.4: Changes in rainfed yield between 2050 and 2000 under an UCE scenario for the
major regions producing spring wheat.

Area Observed Change
Northern Great Plains 5 to 15% increase

Ukraine Decrease of about 10%
Turkey 10 to 20% decrease

Ganges Valley No change
China No change

SW Australia Decrease of about 10%

Table 4.5: Changes in rainfed yield between 2050 and 2000 under a L2S scenario for the
major regions producing spring wheat.

To better show the implications of putting in place a Level 2 Stabilization policy, we

map the relative yield difference between the UCE and L2S scenarios in 2050.
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Figure 4-12: CLM-AG yield factor for rainfed spring wheat – relative difference (in per-
cent) between the 2040-2049 Level 2 Stabilization scenario average yields and the Uncon-
strained Emissions scenario average yields.

Once again, because the climate becomes globally wetter in IGSM-CAM under a UCE

scenario than a L2S scenario, putting in place a Level 2 Stabilization policy globally de-

creases the rainfed yield of spring wheat. Only Turkey sees a positive impact of mitigating

climate change in terms of spring wheat yield.

Area Observed Change
Northern Great Plains 5 to 15% decrease

Ukraine 5 to 10% decrease
Turkey 5 to 10% increase

Ganges Valley No change
China No change

SW Australia Nearly no change

Table 4.6: Changes in rainfed yield between 2050 and 2000 under a L2S scenario for the
major regions producing spring wheat.
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Cotton

Cotton is one of the principal cash crops in the world and some economies rely on it heavily

to balance exports and imports. For some nations it contributes up to 5 percent of GDP.

Consequentially, any change in the price of cotton has high repercussions in such differ-

ent countries as Nigeria, Zimbabwe, Pakistan, India or Turkmenistan (see Baffles (2004)).

Even if not all these countries irrigate cotton, irrigation need changes in other regions can

have dire impacts on the commodity price.

Of the main cotton producing areas in the world, irrigation plays a major role in Cal-

ifornia Central Valley, Northern Texas, the Mississippi Valley, Georgia, Greece, Southern

Turkey, the Nile Valley, Central Asia (Turkmenistan, Uzbekistan, Tajikistan and Kyrgyzs-

tan), the Indus Zalley and Eastern China.

On the next two pages we successively present the change in irrigation need (or water

deficit) for irrigated cotton under first an Unconstrained Emissions scenario and second

a Level 2 Stabilization scenario. On both pages, the first figure represents the absolute

change in mm and the second figure the relative change in percent. For this second figure,

the values have been limited to a range of -50% to +50%. Indeed very large values of

relative change occur only on wet areas where the irrigation need is very close to zero. In

some areas like California or Central Asia, the absolute change is more significant than the

relative change as the irrigation need is already high (more than 500 mm per year).
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Figure 4-13: CLM-AG water deficit for irrigated cotton – absolute difference (in mm)
between the 2040-2049 Unconstrained Emission scenario average and the 1990-1999 aver-
age.

Figure 4-14: CLM-AG water deficit for irrigated cotton – relative difference (in percent)
between the 2040-2049 Unconstrained Emission scenario average and the 1990-1999 aver-
age.
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Figure 4-15: CLM-AG water deficit for irrigated cotton – absolute difference (in mm)
between the 2040-2049 Level 2 Stabilization scenario average and the 1990-1999 average.

Figure 4-16: CLM-AG water deficit for irrigated cotton – relative difference (in percent)
between the 2040-2049 Level 2 Stabilization scenario average and the 1990-1999 average.
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Overall, the irrigation change patterns for cotton mirror those of maize. Slight differ-

ences exist in some areas as growing seasons can differ between the two crops. Although

the relative change is lower than for corn, the absolute change is not as cotton is usually

grown in drier areas. Even if a decrease of 20 mm of water need in California appears small

compared to the average irrigation need of 500 to 700 mm, it still makes a significant dif-

ference for stressed water resources. The Tables 4.7 and 4.8 below summarize the changes

for each of the major growing areas.

Area Observed Change
California Slight decrease of 10 to 20 mm

Texas and Mississippi Decrease of about 10%
Georgia (US) Decrease of about 5%

Greece Increase of about 5%
Turkey Increase of about 5%

Nile Valley Decrease of about 5%
Central Asia Very slight decrease of 5 to 10 mm
Indus Valley 5 to 10% decrease

Eastern China No change

Table 4.7: Irrigation need changes between 2050 and 2000 under a UCE scenario for the
major cotton producing regions where irrigation is present.

Area Observed Change
California Slight decrease of 5 to 10 mm

Texas and Mississippi Decrease of about 15%
Georgia (US) Decrease of about 15%

Greece Increase of about 5%
Turkey Decrease of about 5%

Nile Valley No change
Central Asia Decrease of 20 to 30 mm
Indus Valley Increase of about 5%

Eastern China No change

Table 4.8: Irrigation need changes between 2050 and 2000 under a L2S scenario for the
major cotton producing regions where irrigation is present.

To better show the effects of implementing a Level 2 Stabilization policy, we map the

absolute and relative differences between irrigation under the UCE and L2S scenarios in

2050.
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Figure 4-17: CLM-AG water deficit for irrigated cotton – absolute difference (in mm)
between the 2040-2049 Level 2 Stabilization scenario average and the 2040-2049 Uncon-
strained Emission scenario average.

Figure 4-18: CLM-AG water deficit for irrigated cotton – relative difference (in percent)
between the 2040-2049 Level 2 Stabilization scenario average and the 2040-2049 Uncon-
strained Emission scenario average.
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Area Observed Change
California Increase of about 10 mm

Texas and Mississippi Decrease of about 5%
Georgia (US) Decrease of about 10%

Greece No change
Turkey Decrease of about 5 to 10%

Nile Valley 5% increase
Central Asia 20 to 25 mm decrease
Indus Valley 5 to 10% increase

Eastern China No change

Table 4.9: Irrigation need changes between 2050 and 2000 under a L2S scenario for the
major cotton producing regions where irrigation is present.

Here again, the picture differs from region to region and mitigating climate change does

not always have a positive impact on cotton water deficit. Besides Turkey and Central Asia

where an actual mitigation of negative effects of climate change happens (in the case of

Turkey even reversing from an increase to a decrease in irrigation need) and the South-

Eastern US where a mitigation strategy brings a larger decrease in water deficit than in an

Unconstrained Emissions scenario, the other areas see an increase in water deficit under a

Level 2 Stabilization scenario compared with an Unconstrained Emissions scenario.

4.3 Analysis and Policy Implications

4.3.1 Main Findings and Analysis

Independently from the crop-by-crop area-by-area results, we review here general findings

from the IGSM-CAM CLM-AG study presented above.

First, the analysis suggests that climate change has a real impact on irrigation need of

vital crops. Some of these changes may contradict the common intuition that irrigation

demand increases in a warmer climate, as climate change appears beneficial to some areas,

at least from a crop water-stress point of view.

Second, these changes are not global but vary significantly among regions. On the

one hand, North America and Sub-Saharan Africa see their water deficit decrease under
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climate change. On the other hand, Europe and Southern Africa become drier and water

needs increase.

Third, implementing a mitigation policy (such as a global limitation of greenhouse

gases to 660 ppm CO2 equivalent in this case) may create unintended effects. If such a

policy effectively mitigates the harmful effects of climate change in some areas (most no-

tably Central Asia), it reinforces water stress impacts overall. Indeed precipitation increase

is globally larger under an Unconstrained Emissions scenario than under a mitigation sce-

nario. One notable area profiting from climate change is the U.S. Midwest where a larger

increase of precipitations under the L2S scenario results in a dramatically decreased irriga-

tion need.

Fourth, there are some notable differences between crops. While the model shows rain-

fed spring wheat crops barely affected by climate change in the Zambezi Valley, irrigated

cotton or maize – grown at a different time of the year – see their irrigation need increase

significantly.

4.3.2 Limitations of the Study

As outlined in the chapter introduction, this study shows the impacts of climate change

on irrigation need or rainfed yield in the absence of adaptation and under one particular

climate model. The rest of this section explores these two main limitations of this study.

Adaptation

As outlined in Smit and Skinner (2002), farmers have many adaptations techniques avail-

able to reduce the impact of climate change on crop production. The most relevant for

mitigating the impacts of climate change on irrigation (or taking profit of it in the case

of a better climate for crops) are changing the timing of planting and harvesting, chang-

ing the crop varietal planted on-farm or even changing the crop grown in an area itself3.

For example, during the exceptional drought of the 2000s, Australia’s Murray River Valley

shifted irrigation water from paddy rice culture towards orchards and grapes, preserving

3Cassava for example requires less water than maize and could be a replacement for drought stricken
areas.
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the economic output of the area despite historically low precipitations. Hence, the major

cultivated areas identified in the analysis above could become secondary growing areas

for the considered commodity. On the other hand as warming makes more land suitable

for agriculture (especially in the northernmost latitudes), new growing areas could emerge

where it was unthinkable before.

Despite these general observations, adaptation is difficult to predict accurately as it

relies partly on management practices and farming decisions as well as on macroeconomic

factors such as commodity prices and national GDP. As a consequence, even if modeled

predictions of irrigation need for a specific crop were perfectly accurate, forecasting the

exact repartition of the crops grown and their characteristics in 2050 is not possible.

The analysis we carry out in this chapter (as well as in the next one) is an analysis

of agriculture as is. It describes the impacts of climate change on the current agricultural

system and subsequent effects should this system stay static. If it does not predict the

future, it gives valuable insights on potential new stresses and their effects on agriculture.

Modeling

The climate model itself is a substantial uncertainty in this study. All climate models predict

an atmospheric warming if greenhouse gases concentrations rise, however there is little

agreement in impacts on precipitation (Randall et al., 2007). Figure 4-19 from the IPCC

Fourth Assessment Report (AR4) shows how models do compare4. White represents places

where less than two thirds of the models agree on the sign of precipitation change. Notable

areas where disagreements exist include Southern Africa in winter and Northern America

and Central Asia in summer. On the other hand, stippled areas show where more than 90%

of the model agree. A notable example is a sharp drying of the Mediterranean area.

As the models exhibit large differences in future precipitation, there is a wide uncer-

tainty on the measures of water-stress presented in this chapter. There is little agreement on

methods to reduce this uncertainty in regional precipitation patterns and there is no telling

whether IGSM-CAM is closer to what would be a true prediction than other models.

Further, we are using for this study a median climate sensitivity parameters but, as

4There are a total of 19 models in this AR4 comparison.
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Figure 4-19: Relative changes in precipitation (in percent) for the period 2090-2099, rela-
tive to 1980-1999. Values are multi-model averages based on the SRES A1B scenario for
December to February (left) and June to August (right). White areas are where less than
66% of the models agree in the sign of the change and stippled areas are where more than
90% of the models agree in the sign of the change. Figure 3-3 in IPCC (2007).

described in Forest et al. (2002) there is a wide uncertainty in these parameters. There is

no certainty that the median case is the one that will occur in the future.

To address some of these modeling limitations,the next chapter presents a technique

based on a statistical sampling of both parameters uncertainty (based on Sokolov et al.

(2009)) and climate model regional uncertainty (based on Schlosser et al. (2011)) to quan-

tify regional irrigation need uncertainty stemming from climate models uncertainty.

79



80



Chapter 5

Climate Change Uncertainty: a Regional

Study in the Zambezi River Valley

This chapter describes a technique to reveal climate change uncertainty and its impact on

irrigation. Using the IGSM framework we derive a distribution of the expected impact of

two policy scenarios – an Unconstrained Emissions scenario and a Level 1 Stabilization

scenario – on climate change in Central Zambia and the subsequent impact on irrigation

need and crop production. We finally discuss the underlying uncertainty, what it implies

for policy making and how to best use this new tool.

5.1 Motivation and Model

5.1.1 Central Zambia in the Zambezi River Valley

The Central Province is one of the most important agricultural provinces in Zambia. The

area is characterized by a strong rainy season during the summer months between October

and March when the Inter-Tropical Convergence Zone moves over Southern Africa from

North to South. Heavy precipitation is followed by dry weather during the winter months.

The dry season provides a substantial decrease in soil moisture compared with the rainy

season. Zambian agriculture features both irrigated and rainfed crops. Some crops are

grown during winter (dry season), others during summer (rainy season). This study features
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irrigated maize, as it is the most important crop for the country (see Banda (2011)) and

irrigated cotton, an important cash crop. To compare rainy season and dry season dynamics,

the study also considers rainfed spring wheat1.

Figure 5-1 shows a map of the Zambezi River Valley and highlights the area chosen for

this study.

Figure 5-1: Map of the Zambezi River Valley. This study examines the area contoured in
green, approximately covering Zambia’s Central Province.

5.1.2 Climate Data and Uncertainty Quantification

As outlined in previous chapters, different climate models lead to varying results for change

in precipitation. Furthermore, the uncertainty in climate sensitivity and other key param-

eters can lead to varying results in temperature and precipitation change for any single

model. To take into account these two types of uncertainties, Schlosser et al. (2011) com-

bined the MIT IGSM framework with a Hybridized Frequency Distribution (HFD) ap-

proach. This approach is presented in this section.
1Contrary to maize and cotton, wheat is planted in late February and grows mostly during the dry season.
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IGSM-EPPA ensemble run

As described in Forest et al. (2002) and Sokolov et al. (2009), it is difficult to estimate

key climate parameters (climate sensitivity (S), rate of ocean heat uptake (Kv) and aerosol

forcing (Faer) from historic records. At best one can generate an estimation of a probability

distribution of these parameters: Figure 5-2 represents, for example, the probability space

of the marginal probability distribution of the climate sensitivity and of the rate of ocean

heat uptake, holding the aerosol forcing constant as a constant. An ensemble of (S, Kv,

Faer) vectors sampling this distribution is built using these probabilities. The exact process

used to carry out this sampling is explained in further detail in Sokolov et al. (2009). The

sample chosen is a 400 ensemble of these three parameters consistent with historic records

(the red dots in Figure 5-2 represent the S and Kv values in the ensemble).

To investigate the impact of climate policies on crop water stress, two scenarios on

the Emission Prediction and Policy Analysis (EPPA, Paltsev et al. (2005)) model have

been run: one Unconstrained Emissions (UCE) scenario and a Level 1 Stabilization (L1S)

scenario that limits greenhouse gases concentration to 550 ppm CO2 equivalent by the end

of the century2. The emissions of the different gases obtained in EPPA are then used as an

input into the IGSM 2-D model (Sokolov et al., 2005) which is run with each of the 400

(S, Kv, Faer) parametrizations for these two scenarios globally.

Hybrid Frequency Distribution

After these steps a 400-member ensemble of zonal averages of monthly changes in temper-

ature, precipitations, pressure, humidity and wind (at a four degree of latitude resolution)

was produced for each scenario. The IGSM is a 2-D model in altitude and latitude but this

study requires regional results in longitude as well. A method to downscale the zonal re-

sults to local results (on a two by two degrees grid) is to project these changes to a 3-D grid

using available outputs from the AR4 AOGCMs (Atmospheric and Oceanic Global Climate

Models). Technique and validation are explained in detail in Schlosser et al. (2011); but a

brief summary follows below.

2This is the most stringent proposed climate policy and the one that limits global warming to 2 degrees
from pre-industrial levels under the average of the IPCC AR4 models.
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Figure 5-2: Probability space of the climate sensitivity (K) and ocean heat uptake (Kv).
The shading and thick contours denote rejection regions for significance levels of 10%
and 1%, respectively. Green circle and triangle indicate the mode and the median of the
distribution, respectively. Black diamonds indicate values of the parameters of the MIT
IGSM climate model needed to represent the behavior of different AR4 GCM models. Red
dots represent a 400 hundred ensemble obtained by a Bayesian estimate. Reproduced form
Sokolov et al. (2009) with the permission of the MIT Joint Program on the Science and
Policy of Global Change.

Figure 5-3 describes the technique. For each of the two values of interest (average

temperature and total precipitation) the IGSM produces a monthly average value for the

latitude band Vy. To obtain the gridcell value of latitude-longitude coordinate this value is

multiplied by a coefficient CV,m,x,y depending on the variable V , the month m, the latitude

y and the longitude x such that:

Vx,y = CV,m,x,y · Vy

where Vx,y is the variable of interest in the gridcell (x,y), CV,m,x,y is the transformation

coefficient and Vy is the zonal average of the variable of interest over the latitude band y.

The approach postulates that the local change in relevant climate parameters (tempera-
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Figure 5-3: Schematic of the hybridization technique described in Schlosser et al. (2011).

ture and precipitation) can be associated with anthropogenic global change in temperature.

The CV,m,x,y coefficients were calculated using a first-order Taylor expansion:

CV,m,x,y(∆TGlobal) = Chist
V,m,x,y +

dCV,m,x,y

dTGlobal

· ∆TGlobal

where TGlobal is the average monthly global temperature, ∆TGlobal its variation from the

historic value and the other variables are defined as follows:

The historic coefficients Chist
V,m,x,y were calculated using the Climate Research Unit

dataset (CRU, New et al. (1999)) for temperature and the Global Precipitation Climatology

Project (GPCP, Adler et al. (2003)) for precipitations. For temperature for example, the

historic coefficient for the month m is3:

Chist
T,m,x,y =

TCRU
x,y (m)

TCRU
y (m)

For precipitation, it is:

3For this study, the values of TCRU
x,y (m) are averages for the given month over the years 2000 - 2010
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Chist
P,x,y =

PGPCP
x,y

PGPCP
y

The climate shift coefficient dCV,x,y

dTGlobal
is defined for each AOGCM and each variable as:

dCV,x,y

dTGlobal

=
C2075

V,x,y − Chist
V,x,y

T 2075
Global − T hist

Global

where C2075
x,y and Chist

x,y are the average model coefficients for 2070 - 2080 and 2000

- 2010 respectively and T 2075
Global and T hist

Global are the average temperatures of the model for

2070 - 2080 and 2000 - 2010 respectively. Thus ∆TGlobal of the IGSM is calculated using

a 2000 - 2010 base.

This technique was used to create, for each of the 17 AR4 models considered and each

of the 400 runs of the IGSM ensemble described in the previous section, a monthly ∆T

and ∆P . This constitutes a total of 6800 runs for each scenario. As using all of these cases

in CLM-AG would be too time-consuming, a method has been developed to reduce the set

while preserving the observed distribution.

Gaussian Quadrature

The challenge of preserving the distribution of irrigation need is that the final distribution

cannot be observed. The goal is thus to select relevant variables whose distributions need to

be conserved. A Gaussian Quadrature method was used to sample the distribution (Arndt,

1996; Arndt et al., 2006). This method supposes that substantial information inherent in

the distribution of climate outcomes can be summarized in a limited number of variables.

We use the specific dataset developed in Arndt et al. (2012) for a study of the Zambezi

River Basin under climate change. This dataset has been developed to preserve the distri-

butions of six distinct variables over two areas (Western and Eastern Zambezi). The six

variable are:

• Maximum monthly precipitation in 2050

• Maximum monthly change in temperature in 2030

• Maximum monthly change in temperature in 2050
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• Climate Moisture Index4 in 2030

• Climate Moisture Index in 2050

• Standard deviation of the change in seasonal precipitation in 2050

This selection of variable allows the new distribution to conserve the moments (mean,

variance and skewness) of the significant variables for irrigation in particular. Subsection

5.2.1 presents the temperature and rain distributions for the two scenarios (UCE and L1S)

after the Gaussian Quadrature sampling.

Generation of Hourly Data

After the reduction of the ensemble using the Gaussian Quadrature, the UCE and L1S

sets were each populated with approximately 400 climatologies for the Zambezi River

Valley, with monthly temperature and precipitation variations from the historic climate

(1990-2000). However CLM-AG requires hourly data to run.

The NCEP/NCAR corrected by CRU dataset (NCC, Ngo-Duc et al. (2005)) is the basis

for this temporal downscaling. We use historical NCC data for all variables but temperature

and precipitations (arguably the most important to agriculture). Bootstrapping is not a

relevant option here as it could lead to large physical impossibilities5 so historical time

series are reproduced. To account for temperature change in the future, the time series is

modified as:

TCLM
2040+y(t) = TNCC

1980+y(t) + ∆T IGSM(month)

where TCLM
2040+y(t) is the temperature created for CLM-AG in year 2040+y and at instant

t, TNCC
1980+y(t) is the historic temperature from NCC in year 1980 + y and at instant t and

∆T IGSM(month) is the monthly temperature difference calculated by the IGSM for the

month and year t belongs to.

4The Climate Moisture Index is defined in Willmott and Feddema (1992) and measures the climate aridity
of an area. It is calculated as a function of the ratio of precipitation to potential evapotranspiration. CMI
ranges from -1 to +1, where -1 is very dry and +1 is very humid.

5Weather parameters are somewhat correlated with each other (rain and temperature for example) and
temporally (a large jump in temperature or humidity in six hours is very improbable).
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Precipitation change form the historic average6 is outputed by the IGSM as a monthly

total, but it has to be distributed during the month. However it would not make sense to

distribute it over all time steps. Therefore, it is distributed proportionally to the intensity of

the events in the historic NCC month. Mathematically:

PCLM
2040+y(t) = PNCC

1980+y(t) +
∆P IGSM(month)∑

month P
NCC
1980+y(t)

where PCLM
2040+y(t) is the precipitation (in mm) created for CLM-AG in year 2040 + y

and at instant t, PNCC
1980+y(t) is the historic precipitation (in mm) from NCC in year 1980 + y

and at instant t and ∆P IGSM(month) is the precipitation (in mm) calculated by the IGSM

for the month and year t belongs to.

Two 400-climates ensembles of regional temperature and precipitations that preserve

the moments of the distributions of relevant outcome variables of the 6800-climates IGSM-

HFD ensembles are built using this method (one for a UCE and one for a L1S scenario).

5.1.3 Crop Data

The crop data used in this study is the same as in previous chapters (see Section 3.3.1 and

4.1.2). In Zambia, according to GAEZ (Fischer et al., 2012), both maize and cotton are

planted in late July to be grown and harvested during the early rainy season while spring

wheat is planted in late February at the end of the rainy season and grows on moisture

accumulated in the soil. As spring wheat planted in February is harvested before the end

of June and maize planted in July is harvested before the end of December, these two crops

can be planted in a rotation on the same field. Cotton has a longer growing season and is

harvested at the end of January or beginning of February.

5.2 Results

This section presents the results of the analysis for central Zambia. It first shows the evo-

lution of temperature and precipitation by 2050, then it shows the change over time of

6This historic average is calculated over 2000 - 2010.
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irrigation need for maize and cotton, and finally the yield for rainfed spring wheat.

5.2.1 Distribution of Temperatures and Precipitations

For temperature and precipitation, we plot on the same graph the distribution of the change

in decadal average by 2040-2050 for the two scenarios (UCE in blue and L1S in green)

as well as the historic variability (in red). The historic variability distributions are built by

considering all realizations of either temperature or precipitation differences to the average

over the years 1961-2000, each year being one point in the distribution.

Temperature Change

Figure 5-4: Probability function of the distribution of annual average temperature change
(in degrees C) in the Central Province of Zambia. The zero line represents the historic
average, while the red line represents the historic variability over 1960-2000. The blue
and green lines represent, respectively, the UCE and L1S distributions of the change of
the average irrigation need by 2040-2060 from 1960-2000 using the Gaussian Quadrature
sample of the IGSM climate ensembles.
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Figure 5-5: Cumulative probability function of the distribution of annual average tempera-
ture change (in degrees C) in the Central Province of Zambia. The zero line represents the
historic average, while the red line represents the historic variability over 1960-2000. The
blue and green lines represent, respectively, the UCE and L1S distributions of the change of
the average irrigation need by 2040-2060 from 1960-2000 using the Gaussian Quadrature
sample of the IGSM climate ensembles.

Temperature change is the most recognizable and best accepted signal of climate change.

The Central Province of Zambia undergoes an average temperature rise of 1.3 degrees Cel-

sius under a L1S scenario and of 2.3 degrees Celcius under a UCE scenario by 2050 across

the hybridized frequency distribution of potential future climates as simulated by the IGSM.

This is a very significant change as the decadal average temperature is very likely to exceed

the warmest year on record from 1960-2000 in both scenarios (90% chance under a L1S

scenario and 100% chance under the UCE scenario). Almost certainly, more than half of

the years in the 2040-2050 decade will see a higher average temperature than the historic

record between 1960 and 2000. Under a UCE scenario, the average temperature could be

as high as three degrees Celsius warmer than what it was in 1960-2000. This change is

likely to have significant direct impacts on human activities in itself. However, these are

not the focus of this work.

Precipitation Change
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Figure 5-6: Probability function of the distribution of annual precipitation change (in per-
cent) in the Central Province of Zambia. The zero line represents the historic average,
while the red line represents the historic variability over 1960-2000. The blue and green
lines represent, respectively, the UCE and L1S distributions of the change of the average
irrigation need by 2040-2060 from 1960-2000 using the Gaussian Quadrature sample of
the IGSM climate ensembles.

Figure 5-7: Cumulative probability function of the distribution of annual precipitation
change (in percent) in the Central Province of Zambia. The zero line represents the historic
average, while the red line represents the historic variability over 1960-2000. The blue and
green lines represent, respectively, the UCE and L1S distributions of the change of the av-
erage irrigation need by 2040-2060 from 1960-2000 using the Gaussian Quadrature sample
of the IGSM climate ensembles.
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The average historic precipitation rate for central Zambia is 975 mm per year. Both the

UCE and L1S scenarios lead to an average decrease in rainfall by about 7%. However, the

distributions vary. If under a L1S scenario, 90% of the distribution of potential change is

between 5 and 10% decrease, the distribution for the UCE is more spread out with a greater

chance of both a larger than 10% decrease in precipitation and a greater chance of a smaller

than 5% change. 40% of the runs show indeed an decrease of more than 10% and 20% of

the runs show a decrease of less than 5% in precipitations.

This average change has consequences for extreme events. Indeed in the past, the ten-

year drought meant that the country would get 20% less water than on an average year. If

climate change decreases this average precipitation value by 7% (which is approximately

the mean of the distribution for both scenarios), what was previously the one-in-ten-year

drought will mechanically happen more often. If we suppose that every year sees a diminu-

tion of 7% of its precipitation, the distribution of the variability around the average total

precipitation stays the same but it is shifted towards a dryer climate. What used to be the

ten-year drought occurs now every three years on average. This is a notable change and

we explain more in detail in Section 5.3.2 below what it means for public perception and

policy making.

Notwithstanding exceptional events, rain falls during the rainy season (from October to

March). To get a more precise picture we plot in Figures 5-8 and 5-9 the distributions of

simulated precipitation change over the early rainy season (October - November - Decem-

ber) and over the late rainy season (January - February - March) respectively. Historically,

the early rainy season saw an average of 377 mm of rain and the late rainy season an average

of 588 mm.
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Figure 5-8: Probability function of the distribution of early rainy season (October - Novem-
ber - December) precipitation change (in percent) in the Central Province of Zambia. The
zero line represents the historic average, while the red line represents the historic variabil-
ity over 1960-2000. The blue and green lines represent, respectively, the UCE and L1S
distributions of the change of the average irrigation need by 2040-2060 from 1960-2000
using the Gaussian Quadrature sample of the IGSM climate ensembles.

Figure 5-9: Probability function of the distribution of late rainy season (January - February
- March) precipitation change (in percent) in the Central Province of Zambia. The zero line
represents the historic average, while the red line represents the historic variability over
1960-2000. The blue and green lines represent, respectively, the UCE and L1S distribu-
tions of the change of the average irrigation need by 2040-2060 from 1960-2000 using the
Gaussian Quadrature sample of the IGSM climate ensembles.
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While the historic variability in precipitation was approximately the same for both

halves of the rainy season, the impact of climate change is markedly different. On the

one hand in the early rainy season, the ten-year average total rainfall decreases by 14.5%

for the UCE and by 12% for the L1S scenario, which constitutes a very large decrease

compared with the historic variability. On the other hand, the total rainfall in January-

February-March decreases by only 2.3 and 3.9% for UCE and L1S, respectively (with a

very significant probability of a precipitation increase under the UCE scenario). Conse-

quently, patterns of change in water stress are likely to be different for early season crops

(like maize and cotton) compared with late season crops (like spring wheat).

5.2.2 Irrigation Need for Maize

We present here the results of the uncertainty run for irrigated maize. In Zambia, maize is

planted at the end of July and has a growing season of about four and a half months. Figures

5-10 and 5-11 below present the probability distribution and the cumulative probability

distribution, respectively, of the average irrigation need change by the middle of the century.

The historic variability, being much larger than the expected change, is not plotted on the

following figures.
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Figure 5-10: Probability function of the distribution of irrigation need change (in percent)
in the Central Province of Zambia for maize. The zero line represents the historic average.
The blue and green lines represent, respectively ,the UCE and L1S distributions of the
change of the average irrigation need by 2040-2060 from 1960-2000 as calculated by CLM-
AG using the Gaussian Quadrature sample of the IGSM climate ensembles.

Figure 5-11: Cumulative probability function of the distribution of irrigation need change
(in percent) in the Central Province of Zambia for maize. The zero line represents the
historic average. The blue and green lines represent, respectively ,the UCE and L1S dis-
tributions of the change of the average irrigation need by 2040-2060 from 1960-2000 as
calculated by CLM-AG using the Gaussian Quadrature sample of the IGSM climate en-
sembles.
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There is a clear increase in the irrigation need for maize under both scenarios. The

distribution for the UCE scenario presents an average 9.9 % increase and the L1S scenario

an average 6.6% increase. The spread of the distribution is larger for the UCE scenario

than L1S scenario with values up to a 15% increase in water deficit.

Further analysis of the historic run shows that the historic ten-year drought leads to an

increased irrigation need of 20% compared to an average year. Using the historic variability

distribution (not pictured here), it is possible to deduce how often this statistical ten-year

drought would occur under a changed climate (still considering that the distribution of the

year-to-year variability does not change). This is done by shifting the historic variability

distribution by the average change calculated, and observing the new statistical probability

of the value of the one-in-ten-year historic drought.

Under an average UCE scenario – which would increase the average irrigation need by

9.9% – this statistical ten-year drought would now occur every three years, notwithstanding

the fact that extreme droughts would also become more intense as the average irrigation

need increases. Under an average L1S scenario (featuring an irrigation need increase of

6.6%), the ten-year drought would now statistically occur every five years. Other values in

the distribution would lead to a difference in the future frequency of the historic ten-year

drought, with dramatic effects if the worst outcomes are realized.

5.2.3 Water-Stress Yield Reduction for Wheat

We present here the results of the uncertainty runs for rainfed spring wheat. In central

Zambia, wheat is planted at the end of February and has a growing season of about three

months. Figures 5-12 and 5-13 below present the probability distribution and the cumula-

tive probability distribution, respectively, of the average change in yield by the middle of

the century. The yield change we refer to here is only due to water stress change under

climate change. It does not incorporate any management change or adaptation policies.

The historic variability, being much larger than the expected change, is not plotted on the

following figures.
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Figure 5-12: Cumulative probability function of the distribution of yield change (in per-
cent) due to water-stress in the Central Province of Zambia for wheat. The zero line rep-
resents the historic average, while the red line represents the historic variability over 1960-
2000. The blue and green lines represent, respectively, the UCE and L1S distributions of
the average yield change due to water-stress by 2040-2060 from 1960-2000 as calculated
by CLM-AG using a Gaussian Quadrature sample of the IGSM ensembles.

Figure 5-13: Cumulative probability function of the distribution of yield change (in per-
cent) due to water-stress in the Central Province of Zambia for wheat. The zero line rep-
resents the historic average, while the red line represents the historic variability over 1960-
2000. The blue and green lines represent, respectively, the UCE and L1S distributions of
the average yield change due to water-stress by 2040-2060 from 1960-2000 as calculated
by CLM-AG using a Gaussian Quadrature sample of the IGSM ensembles.
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The results for wheat are notably different from those for maize. Under a UCE scenario,

the average change on wheat yield as taken from the distribution shows an increase of 1.7%

in yield, while the L1S average scenario presents an average yield decrease of 0.2%. These

positive results are likely due to the fact that changes in precipitation are smaller for the

late rainy season – when spring wheat starts to be grown – than for the early rainy season –

when maize is grown.

In fact, if one considers only the average change in crop yields one could think that

climate change has no significant impact on spring wheat yield in central Zambia. However,

the actual outcome of climate change could lead to more significant impacts. Under a UCE

scenario for example, some possible future climates forecast average yield increases of up

to 8%, a considerable amount.

It is also interesting to note that, even as the worst outcome is the same for both scenar-

ios (a decrease in yield of about 4%), the best outcome for the UCE scenario is substantially

better than for the L1S scenario, making more climate change somewhat beneficial, on av-

erage, for spring wheat harvests.

5.2.4 Irrigation Need for Cotton

We present here the results of the uncertainty run for irrigated cotton. Cotton is planted at

the end of July and has a growing season of about six months. Figures 5-14 and 5-15 show

the probability distribution and the cumulative probability distribution, respectively, of the

average change in irrigation need by the middle of the century.
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Figure 5-14: Probability function of the distribution of irrigation need change (in percent)
in the Central Province of Zambia for cotton. The zero line represents the historic average,
while the red line represents the historic variability over 1960-2000. The blue and green
lines represent, respectively, the UCE and L1S distributions of the change of the average ir-
rigation need by 2040-2060 from 1960-2000 as calculated by CLM-AG using the Gaussian
Quadrature sample of the IGSM climate ensembles.

Figure 5-15: Cumulative probability function of the distribution of irrigation need change
(in percent) in the Central Province of Zambia for cotton. The zero line represents the
historic average, while the red line represents the historic variability over 1960-2000. The
blue and green lines represent, respectively, the UCE and L1S distributions of the change
of the average irrigation need by 2040-2060 from 1960-2000 as calculated by CLM-AG
using the Gaussian Quadrature sample of the IGSM climate ensembles.

99



The averages of the two distributions show an increase in irrigation need for cotton of

21% and 13% for UCE and L1S scenarios, respectively. This is a salient increase. For the

UCE scenario for example, an increase of 21% corresponds to a historic one-in-five-year

dry year becoming the average year for irrigation need of cotton. For cotton, the L1S policy

reduces significantly the risks of an extreme outcome as the worst case scenario presents a

15% increase in irrigation need, which is smaller than the 21% increase under the median

UCE scenario. It is also interesting to note that the UCE distribution is extremely wide for

cotton.

5.3 Analysis and Policy Recommendations

5.3.1 Use of Probability Distributions in a Policy-Making Environ-

ment

The distributions presented in the previous section can inform decision makers not only on

the magnitude of climate change impacts, but also on the underlying uncertainty of these

predictions. This section examines what information is relevant and how the distributions

can be used in a policy making context.

Relevant Criteria for Decision Making

For a decision maker, the following criteria should be considered when using a model for

future irrigation projects:

• Relevance of the prediction: The outcome of the model is as precise as possible

and gives the number(s) that is (are) useful to make the right decision. For example

simply giving the average change in irrigation need would not be completely relevant,

as it does not communicate the wide uncertainty surrounding it. This uncertainty may

have important implications in the policy making process.

• Ease to communicate results with the decision maker and public: Decision makers

are busy people and want models that are easy to understand. If the result is too com-

100



plicated a decision maker may overlook it by lack of time to understand it. Moreover,

any decision may be scrutinized and if a model has been used in the decision-making

process it may have to be explained to the public. A policy maker will always favor

a model that is simple to understand and to explain for these reasons.

• Risk prevention: The model is accurate at identifying potential harmful outcomes.

It allows the decision maker to plan for the worst and best case scenarios. This is

particularly important for irrigation projects: if the source of the water – a lake, for

example – runs dry, the consequences for the area could be dramatic in terms of food

production.

• Time to carry out the analysis of the scenarios after the assessment: As irrigation

projects are usually of a long span, the shorter the analysis, the better for the decision-

maker. Indeed delays in planning are common and reducing the length of any step,

here the model analysis, is a huge advantage and reduces the cost of the planning

phase.

The 400-run ensemble distributions presented in the previous section satisfy easily two

of these four criteria. They are relevant as they present all the information needed, and

is accurate for risk prevention as it identifies the best and worst case scenarios. However,

probability distributions are not easy concepts and it would take time for a decision maker

to understand all the implications, let alone the general public.

Furthermore, using the full ensemble could considerably slow the analysis process. In-

deed when making decisions about the economic relevance of an investment, for example,

one would use the irrigation need as a parameter to a complex economic model. Using four

hundred values and running this new model for each possibility would be time consuming.

As a consequence, if the ensemble distribution provides relevant information, it can be seen

as providing too much information to the decision maker. Thus it is interesting to create a

tool that would convey the most relevant information to the decision maker.
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Box Diagrams

A good way to communicate simply the underlying uncertainty in future climate change

while retaining relevant information is to use box diagrams. These allow decision makers

to have a quick and clear view of the median, the 50% confidence interval, and the extreme

values of the distribution. While some information is lost and the graph is not as precise

as a 400-run ensemble probability distribution, it is much easier to describe and explain.

In addition it still emphasizes the high-risk scenarios (contrary to a simple average value).

Finally it provides only five values to describe the distribution, which reduces the subse-

quent analysis time: the best and worst case scenarios, the median scenario, and the upper

and lower bounds of the 50% confidence interval. Box diagrams thus answer the four key

concerns of a decision maker as outlined above, providing simple and relevant information.

Figures 5-16 and 5-17 represent the box diagrams obtained for the irrigation need

change by mid-century for maize and cotton, respectively, in Central Zambia, while Figure

5-18 represents the change in average yield of wheat due to water stress over the same pe-

riod. These are the box diagrams associated with the distributions presented in the previous

section.
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Figure 5-16: Box diagram of the distribution of the change in average irrigation need for
maize in the Central Province of Zambia (in percent) between 2040 - 2060 and 1960 - 2000.
The central box represents the median 50% of the distribution. The thick line represents
the median of the distribution.

Figure 5-17: Box diagram of the distribution of the change in average irrigation need for
cotton in the Central Province of Zambia (in percent) between 2040 - 2060 and 1960 - 2000.
The central box represents the median 50% of the distribution. The thick line represents
the median of the distribution.
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Figure 5-18: Box diagram of the distribution of the change in average yield for wheat in
the Central Province of Zambia (in percent) between 2040 - 2060 and 1960 - 2000 due to
water stress. The central box represents the median 50% of the distribution. The thick line
represents the median of the distribution.

5.3.2 Policy Implications

Impact of Mitigation Policies on the Distribution of Outcomes

Using both the probability function distributions from Section 5.2 and the box diagrams in

Section 5.3.1, some conclusions can be drawn on the impact of mitigation policies on crop

water stress in the Central Province of Zambia.

For cotton and maize, all scenarios under both an Unconstrained Emissions policy or

a Level 1 Stabilization policy lead to an increase in irrigation need. However, the impact

of a L1S climate mitigation policy is generally positive for the Central Province of Zambia

(compared with an Unconstrained Emissions scenario). First, mitigating climate change

reduces the median irrigation need in the distribution of possible climates for both maize

(from 10.5% to 6.5%) and cotton (from 21% to 13%). The improvement is notable in both

cases as the 50% confidence intervals of the UCE and L1S scenarios do not overlap for

both crops. Second, the mitigation policy markedly reduces the probabilities of extreme

irrigation need outcomes for both maize and cotton. Indeed it makes the best case scenario

slightly worse, but decreases considerably the harmful effects associated with the worst
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case scenario. For both crops, the worst case scenario under a L1S policy is indeed better

than the median case for a UCE scenario for irrigation need.

Spring wheat, on the other hand, fares on average slightly better under a UCE sce-

nario than under a L1S scenario. For example yields could increase as much as 8% under

unconstrained future emissions compared to a maximum of 5% under a strict mitigation

policy, the median of the distributions being at +1% and -1%, respectively. The difference

is however not unequivocal as the 50% confidence intervals for UCE and L1S overlap.

Notwithstanding extreme outcomes in the distributions, impacts of climate change – due to

water stress – on spring wheat yields for central Zambia are minor.

However, uncertainty remains dominant under both scenarios and policy makers have to

adapt their processes accordingly. In practice, this means that flexibility and robustness are

key to any project whose success is highly dependent on future climate. Even if planners

use the average (or median) outcome of the distribution as a basis for their projects, they

should study the impact of the most extreme results in the distribution and develop con-

tingency options to flexibly adapt to all possible outcomes. Best practice policies would

try to maximize the return of the project in the 50% confidence interval, while planning

contingency options for the best and worst case scenarios identified in the box diagrams.

Nevertheless, planning flexibility options for extreme outcomes is usually costly. This

is why reducing uncertainty is critical for decision makers. The analysis of CLM-AG re-

sults shows for all three crops that a mitigation policy reduces the spread of the distribution

of possible outcomes and prevents the possibility of more extreme outcomes. Mitigation

thus reduces the uncertainty and allows for easier and cheaper planning of the future for

project developers.

Historic Variability and Policy Making

Comparing potential climate change to historic variability is important as it determines

both the public perception of climate change and the relative severity of the impact on

human systems. Indeed even if the variation in the average temperature is mathematically

significant, it will neither capture the attention of the public, nor have a significant impact

on the decision making process if it stays well within the natural year to year weather
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variability. Decision making on irrigation systems or water systems is for example very

dependent on climate change. These systems are usually planned to be resilient to all but

the most extreme years on record (somewhere between ninety and ninety-nine years out of

one hundred on record). Climate change thus becomes an extremely significant factor for

these projects and requires major adaptation work (both in the planning and the operating

phases) if the induced change increases the frequency of extreme events. For example, if

the hundred-year drought now occurs every ten years in the future (becoming in fact a ten-

year drought) adaptation becomes crucial. On the contrary, if the year to year variability

does not change significantly7 and the average climate change is limited compared with the

natural variability, the likely impact on policy making would be minimal.

In Zambia, this is extremely important to take into account. Indeed for maize, the

increase in irrigation need under the median UCE scenario is of approximately 10% for

the average year, while the standard variation is 15%. This suggests that climate change

consequences will be perceived as large by the public and decision makers alike, as what

used to be extremely dry weather becomes more usual. The average irrigation need rises

to reach, on average, values that were associated with bad years. The situation for cotton

is similar, with the average increase in irrigation need for the median UCE scenario being

two thirds of the standard deviation of the historic distribution.

For spring wheat on the other hand, the median scenarios present close to zero change.

Even the best and worst scenarios present average changes of 4%, while the standard de-

viation of the historic distribution is 13%. Notwithstanding eventual changes in the distri-

bution of extreme events, climate change is likely to have little impact on policy making

as the system planned based on historic events, would be resilient to these comparatively

small changes.

5.3.3 Limitations and Use of the Model

As explained in Section 2.3, there are many uncertainties surrounding such an analysis of

impacts of climate change on agriculture. This study of the Central Province in Zambian

7This is probably an erroneous assumption as most studies predict an increase in the frequency of extreme
events (IPCC, 2012). It is however still debated and not the subject of this work.
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addresses the issue of quantifying the uncertainty in impacts due to the uncertainty in cli-

mate models. However it does not address fully either the emission uncertainty associated

with predicting greenhouse gases emissions (besides using two different scenarios) or the

uncertainty directly associated with the imperfection of the crop model. Moreover, this

analysis spans only a portion of what can be called the ”known unknowns”, or the uncer-

tainties that are well-identified and quantifiable.

Concerning the greenhouse gases emissions uncertainty, the scenarios used in this study

reflect the two extreme future scenarios. Many policies other than a Level 1 Stabilization

have been proposed but all credible ones lead to higher emissions than the L1S scenario8.

This study could be repeated with other mitigation scenarios – or other emission patterns

for the Unconstrained Emission scenario – but extreme or mean values are unlikely to be

far outside the bounds delimited by the two scenarios run here. Consequently, even if

these scenarios may not happen, a policy maker could use them to bound her predictions

of climate change.

Concerning the crop model uncertainty, CLM-AG is very generic and thus may not take

into account details of crop management or the specific crop varieties planted in Zambia.

This could be partly solved by adapting the invariant CLM-AG crop parameters to the area

studied, though this could render the model less relevant for the rest of the world. In any

case, CLM-AG remains too imprecise to produce results at the individual field level. For

this reason, it is mostly intended to, first, isolate the climate change impact on water stress

and, second, provide a general measure of the associated uncertainty.

Used together with a precise field model like DSSAT for calculating historic values in

a specific location, or historic observations if they exist, CLM-AG can provide a range of

possible water stress outcomes given a specific emissions scenario. This range can then

be used to determine the design of irrigation projects or other water projects, while fully

recognizing the uncertainty in the key parameter that is water stress.

8The L1S scenario limits the concentration of carbon dioxide in the atmosphere to 450 ppm, which is
predicted to result in a temperature increase of two degrees by the end of the century compared to pre-
industrial average (on average over the IPCC models). This level is the one deemed ”safe” by the United
Nations Framework Convention on Climate Change (UNFCC) Conference of Parties and so it is highly
unlikely any policy will try to achieve a lower target.

107



108



Chapter 6

Conclusion

6.1 Key Findings and Policy Implications

CLM-AG is a global generic crop model developed for water stress studies under climate

change. Parametrized for three different crops at the time – maize, spring wheat and cotton

– it can be extended to different crops and used in a variety of studies. For this work, two

studies have been carried out: a global study with forcing from a single climate model

and a regional uncertainty study in central Zambia. The main results of these studies are

summarized below.

6.1.1 Global Findings

Evaluation of the Model

Chapter 3 shows that at a global level CLM-AG reveals the expected patterns of wet and

dry zones for irrigation need. The comparison to the Global Agro-Ecosystem Zones dataset

(GAEZ, Fischer et al. (2012)) shows that CLM-AG, forced with a historic dataset repro-

duces the salient patterns of water stress at a global level for the type of studies it was

designed for.

Further evaluation was carried at the United States level. Using the irrigation obser-

vations contained in the Farm and Ranch Irrigation Survey (FRIS, USDA (2008)) and the

crop irrigation needs as calculated by CLM-AG, a theoretical irrigation efficiency table was
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constructed. This irrigation efficiency was aggregated by state and the results are presented

in Table 3.1. These results are extremely close to what would be expected given the dif-

ferent irrigation systems efficiencies over the United States. Overall, the average irrigation

efficiency for maize in the United States is estimated at 51.4% using CLM-AG. This is

consistent with the approximate value of 50% reported by Pimentel et al. (1997).

IGSM-CAM Global Runs

CLM-AG was then run under a future climate to assess the impact of climate change on

irrigation need and water stress on crops. The climate forcing was created with a 3-D model

developed at the MIT Joint Program on the Science and Policy of Global Change, the MIT

IGSM-CAM (Monier et al., 2012).

Results of these runs confirm that climate change has a significant impact on irrigation

need and water stress. However, these impacts are not global but vary widely on a regional

basis. Under the IGSM-CAM, for example, North America and Sub-Saharan Africa see

decreasing water deficits while Western Europe and Southern Africa become drier. Counter

intuitively, some crops in some areas actually benefit from climate change as precipitation

increases. This is notably true for corn crops in the U.S. Midwest, where irrigation need

decreases dramatically under future climate as simulated by the IGSM-CAM.

Different crops experience different water stress changes by 2050. For example, in

some countries maize and spring wheat are not planted at the same time. As climate change

affects the weather differently in different seasons, a given area could see water stress for

maize increase, but water stress for wheat decrease. Though it is unusual, this is notably

true for the Zambezi River Basin under the IGSM-CAM.

Finally, a global climate change mitigation policy may have unintended consequences

for agriculture. Even if such a policy effectively mitigates the harmful effects of climate

change for crops in Central Asia or increases the beneficial effects in the U.S. Midwest

(reducing the irrigation need for maize for example), it is not necessarily the case in other

areas of the world. Indeed, as precipitation decreases, most areas experience significant

drying under a mitigation scenario (Level 2 Stabilization in this study) compared with an

Unconstrained Emissions scenario. Consequently, these areas see a higher irrigation need
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and water stress in 2050 under a future with a mitigation policy than under a future lacking

a specific climate policy. This phenomenon is particularly strong for Europe and Africa.

However, it is important to note that these results are based on modeling out to 2050, and

could change by the end of the century and that they represent the climate as predicted by

only one climate model.

6.1.2 Findings in Central Zambia

The second study carried out in this work builds on the uncertainty capacities of the IGSM

(Sokolov et al., 2009) associated with the Hybridized Frequency Distribution approach

(Schlosser et al., 2011). Using this approach, coupled with a Gaussian Quadrature sam-

pling technique, a distribution of 400 representative potential climates for the Zambezi

River Valley was created for both an Unconstrained Emissions and a Level 1 Stabiliza-

tion scenarios. This distribution spans both the global climate sensitivity uncertainty of

the IGSM model as well as the regional climatic uncertainty (described based on the IPCC

AR4 models).

Each of the 400 potential climate time series in the ensemble was used as a climate

forcing for CLM-AG. Chapter 5 presents the results for the Central Province of Zambia for

corn, spring wheat and cotton. The results are summarized in box diagrams in Section 5.3.

These box diagrams convey visually in a simple form the relevant information related to

the distribution of possible outcomes.

Maize and cotton are strongly impacted by climate change in Central Zambia while

the average impact on spring wheat is minimal (and even beneficial for potential future

climates). These diagrams also show how large the uncertainty associated with climate

models remains. The key for policy planners whose projects depend on future climate is

thus to rely on flexibility and plan contingency options in case one of the extreme scenarios

happens in the future.

However, as mitigation reduces potential climate change, it also reduces the underlying

uncertainty. It prevents the most extreme outcomes from happening and decreases the

average change in water stress. It is thus easier to make informed decisions under a climate
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mitigation policy.

6.2 Future Research

CLM-AG opens new possibilities for research at the MIT Joint Program on the Science and

Policy of Global Change. First, the approach used in Zambia can be repeated in any other

area of the world, to differentiate the regional water impacts of climate change on the food

producing system.

Second, as explained in Chapter 3, the irrigation need calculated by CLM-AG can be

used in the Water Resource System framework (WRS, Strzepek et al. (2010)) to account

for crop water need globally. Using this framework, one can identify water stressed areas

in the world and study their evolution under climate change. This approach integrates

economic and climatic changes to water demand and provides an integrated assessment of

the resource and of its potential evolution.

Moreover, used together with the IGSM uncertainty framework, WRS could be used

regionally to identify the relevant uncertainties in stream flows and the probabilities of

major droughts. This approach would inform water planners on the probability of major

droughts in the future, given a particular greenhouse gases emissions scenario.

Future studies coupling CLM-AG, WRS and an economic model of the agricultural

sector such as IMPACT (Rosegrant et al., 2008a) would create a framework to study the

impacts of climate change on food prices and thus on the economy. Such a coupling would

directly put a price on impacts of climate change, which would help build feedbacks in the

MIT IGSM.
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Appendix A

Crop Parameters

Parameter Maize Spring Wheat Cotton Source
Tbase (in ◦C) 8.0 0.0 12.0 AquaCrop
Tupper (in ◦C) 30.0 26.0 35.0 AquaCrop
CC0 (unitless) 0.004 0.075 0.007 AquaCrop
CCx (unitless) 0.90 0.95 0.90 AquaCrop

CGC (in GDD-1) 0.012 0.006 0.0065 AquaCrop
CDC (in GDD-1) 0.010 0.004 0.0025 AquaCrop
t em (in GDD) 75.0 150.0 50.0 AquaCrop
t sen (in GDD) 1400.0 1650.0 1400.0 AquaCrop
t mat (in GDD) 250.0 500.0 200.0 AquaCrop
Kcbx (unitless) 1.05 1.10 1.10 AquaCrop
fage (in day-1) 0.003 0.0015 0.003 AquaCrop
hx (in m) 2.0 1.0 1.3 TexasET (2012)

rtini (in mm) 30.0 30.0 30.0 AquaCrop
rtgr (in mm/day) 20.0 15.0 20.0 AquaCrop
rtmax (in mm) 2500.0 2000.0 2500.0 AquaCrop
LAIx (unitless) 6.0 3.0 5.0 See below
fCC (unitless) 0.5 0.5 0.6 AquaCrop
Ky1 (unitless) 0.4 0.2 0.2 FAO Water
Ky2 (unitless) 0.4 0.6 0.5 FAO Water
Ky3 (unitless) 1.3 0.8 0.5 FAO Water
Ky4 (unitless) 0.5 0.4 0.25 FAO Water

Table A.1: Crop Parameters.

Maximum LAI values come from Vina (2004), Li et al. (2004) and Heitholt (1994).
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Appendix B

Evaluation of CLM-AG versus GAEZ

for Cotton and Spring Wheat

B.1 Cotton

Figure B-1: CLM-AG water deficit (in mm) for irrigated cotton - NCC dataset, 1980-1999
average.
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Figure B-2: GAEZ water deficit (in mm) for irrigated cotton - CRU dataset, 1961-1990
average.

Figure B-3: Difference in water deficit estimates (in mm) for irrigated cotton between
CLM-AG and GAEZ - Same specifications as the previous figures.
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B.2 Spring Wheat

Figure B-4: CLM-AG water deficit (in mm) for rainfed spring wheat - NCC dataset, 1980-
1999 average.
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Figure B-5: GAEZ water deficit (in mm) for rainfed spring wheat - CRU dataset, 1961-
1990 average.

Figure B-6: Difference in water deficit estimates (in mm) for rainfed spring wheat between
CLM-AG and GAEZ - Same specifications as the previous figures.
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