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Abstract	
	
Carbon	 dioxide	 (CO2)	 and	 methane	 (CH4)	 are	 the	 main	 greenhouse	 gases,	
contributing	 about	 81%	 of	 the	 total	 human	 induced	 radiative	 forcing.	 Sufficient	
observations	 exist	 to	 quantify	 the	 global	 budget	 of	 carbon	 dioxide	 and	 methane	
which	 is	 necessary	 for	 calculating	 the	 resulting	 radiative	 forcing.	 Still,	 more	
observations	 are	 needed	 to	 constrain	 their	 time	 evolution	 and	 regional	 budgets	
which	are	needed	for	climate	change	mitigation	policies.		Atmospheric	observations	
are	 particularly	 scarce	 on	 the	 African	 continent,	 despite	 Africa’s	 significant	 CO2	
emissions	 from	 agriculture,	 biomass	 burning	 and	 	 land	 use	 changes,	 as	 well	 as	
methane	 emissions	 from	 wetlands.	 	 there	 are	 very	 few	 low	 frequency	 flask	
measurements	 due	 to	 limited	 logistics	 and	 there	 is	 no	 land	based	 station	 at	 all	 in	
equatorial	Africa.	Satellite	observations	can	only	provide	an	incomplete	record	due	
to	frequent	clouds	and	aerosol	in	the	equatorial	belt.	
We	 have	 set	 up	 a	 high-frequency	 in-situ	 greenhouse	 gases	 monitoring	 station	 in	
North	West	 Rwanda	 at	Mount	Mugogo.	 The	 station	 is	 intended	 to	 be	 a	 long-term	
station,	hence,	 filling	the	gap	of	current	 lack	of	measurements	in	Equatorial	Africa.	
The	station	is		part	of	the	Advanced	Global	Atmospheric	Gases	Experiment	(AGAGE)	
and	follow	its	calibration	protocols	and	operational	standards,	therefore,	providing	
data	of	 internationally	recognaized	quality	standards.	We	have	 found	that	massive	
regional	scale	biomass	burning	largely	drives	the	bi-model	seasonal	cycle	of	carbon	
dioxide,	carbon	monoxide	and	black	carbon	with	the	burning	following	the	shift	of	
the	inter-tropical	convergence	zone.	The	seasonal	cycle	of	methane	is	largely	driven	
by	 the	 inter-hemispheric	 gradient,	 where	 methane-rich	 northern	 hemisphere	 air	
masses	are	advected	to	the	station	during	the	northern	winter.	
We	have	used	the	Reversible	Jump	Markov	Chain	Monte	Carlo	mothods	to	estimated	
optimized	methane	 and	 carbon	 dioxide	 emissions	 in	 the	 Central	 and	 East	 African	
region.	We	have	found	that	the	region	emitted	about	25	Tg	of	CH4		and	139	Tg	of	CO2	
in	2016.	
	
Thesis	supervisor:	Ronald	G.	Prinn	
Title:	TEPCO	Professor	of	Atmopheric	Science	
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Chapter 1

Introduction

Since the beginning of the industrial revolution, human activities have led to an increase
of atmospheric concentrations of most greenhouse gases (GHGs), and the resultant human-
induced radiative forcing of the Earth’s climate is largely due to the increase in these con-
centrations. Carbon dioxide (CO2) and methane (CH4) are the most radiatively important
anthropogenic greenhouse gases; together they contribute to about 81% of the total radiative
forcing of well-mixed greenhouse gases [IPCC:WGI 2013, Table 8.2]

Observed emissions trends have been consistently tracking the intergovernmental panel
on climate change (IPCC)’s emissions scenarios that lead to the highest temperature in-
creases [Peters, Andrew, et al. 2013; Le Quéré et al. 2009; Raupach et al. 2007], Figure 1.1
[Peters, Andrew, et al. 2013] shows the estimate of observed CO2 emissions compared to the
four generations of intergovernmental panel on climate change (IPCC) scenarios. Interest-
ingly, the observed emissions are out of the range of the most recent IPCC representative
concentration pathways (RCP) scenarios, and this suggests that the upper end of possible
emissions pathways might need to be readjusted to accommodate even higher emissions in
the future. But, more importantly, Figure 1.1 emphasizes the urgent need for an immediate
and sustained global mitigation strategy.

Diagnostic studies, commonly called ‘top down’ methods, which use direct atmospheric
measurements lead to independent emissions estimates [Prinn 2000; Weiss et al. 2011; Dlugo-
kencky, Nisbet, et al. 2011; Nisbet et al. 2010] that can be used to better understand responses
of climate to emissions and to validate emissions declarations under the UN Framework Con-
vention on Climate Change (UNFCCC).

The accuracy of emission declarations is mixed. Bergamaschi, Krol, et al. [2005] used an
atmospheric transport model with observed CH4 mole fractions to estimate national-level
emissions for Europe. They found that emissions reported by some nations to the UNFCCC
were underestimated by 50-90% compared to model inversions. Kort et al. [2008] used a La-
grangian particle dispersion model with aircraft measurement of CH4 and found that North
American inventories compiled by the Emissions Database for Global Atmospheric Research
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Figure 1.1: Estimated CO2 emissions over the past three decades compared with IPCC special
report on emission scenarios (SRES) and representative concentration pathways (RCP) scenarios.
Only IS92-E, IS92-F and SRES A1B exceed the observed emissions[Peters, Andrew, et al. 2013]

(EDGAR) and Global Emissions Inventory Activity (GEIA) are reasonably consistent with
observations, at least for the limited temporal and spatial extent of their study.

Current observational networks are suitable to constrain emissions at large scales [Nis-
bet et al. 2010; IPCC:WGI 2013] but not at regional to national scales necessary to verify
emissions reductions. This is particularly true in the tropics where there is virtually no long-
term land-based time series of concentrations [Dlugokencky, Nisbet, et al. 2011]. The lack
of accurate meteorological data, particularly in Africa, constitutes an additional limitation
to top down estimation of regional emissions and sinks of CO2 and CH4.

The objective of this study is to provide significantly more accurate estimations of CO2

and CH4 sources and sinks in Central and Eastern Africa through a new high frequency
greenhouse monitoring station and a new method for objective quantification of model un-
certainties in inverse modeling.
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1.1 Problem statement

The role of the tropics in the global carbon budget is becoming more apparent and is likely
to be central in the coming decades. This is due to the significant share of carbon emissions
from agriculture, biomass burning and other land use change, which is, in fact, the most
uncertain term in the global CO2 budget [Houghton et al. 2012]. Furthermore, the tropics
played a central role in the recent increase of atmospheric methane [Rigby et al. 2008; Dlu-
gokencky, Bruhwiler, et al. 2009; Bousquet, Ringeval, et al. 2011].

This section reviews the status of observational networks in Africa including ground-based
and satellite observations, highlighting the urgent need for high frequency ground-based
observations.

1.1.1 CO2 and CH4 measurement in Africa

1.1.1.1 Ground-based observations

Atmospheric measurements are mostly made by developed countries and where logistics make
them feasible. This results in large gaps in sampling. In particular, there are only a few sta-
tions measuring CH4 and CO2 in the tropics, and virtually no long-term interior land-based
time series[Dlugokencky, Nisbet, et al. 2011]. Figure 1.2 shows the distribution of stations
that contribute to World Data Center for Greenhouse Gases (WDCGG) of World Meteoro-
logical Organization (WMO) global atmosphere watch (GAW) program [GAW November,
2013]. Only two low frequency flask stations, operated by National Oceanic and Atmospheric
Administration (NOAA)/Earth System Research Laboratory (ESRL), are located on the
entire African continent, and there is currently no station in equatorial Africa (The Mount
Kenya station shown on the map stopped operating in June 2011) [NOAA/ESRL/GMD
November, 2013]).
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Figure 1.2: Distribution of fixed stations that contribute data to the WDCGG The red symbol
denotes that the data from the station have been updated in the last 365 days prior to this report
[GAW November, 2013]

1.1.1.2 Satellite observations

Satellite data complement ground-based observations due to their wider geographical cov-
erage. Satellites are particularly valuable in tropical latitudes where long term in situ data
are scarce. In a recent CO2 fluxes estimation, Maksyutov et al. [2013] have found that
including Greenhouse gases Observing SATellite (GOSAT) column-averaged mole fractions
reduced uncertainty in estimated fluxes in the tropics by 60% compared to ground-based
observations only. A similar study [Fraser et al. 2013] for CH4 found at least twice the
error reduction using Greenhouse gases Observing SATellite (GOSAT) plus surface mea-
surements compared to the surface network only. Bergamaschi, Houweling, et al. [2013] have
found that addition of Scanning Imaging Absorption Spectrometer for Atmospheric Cartog-
raphy (SCIAMACHY) column averages produces more reasonable spatial distributions of
emissions in the tropics. However, after the retirement of SCIAMACHY, GOSAT and the
Orbiting Carbon Observatory 2 (OCO-2) are currently the only available satellites for CO2

and CH4 column data.

The usefulness of satellite data relies on the existence of ground-based validation and
calibration networks. Relying on reflected sunlight and ground infrared emissions, GOSAT
retrievals are highly affected by aerosol and clouds and have been associated with large biases.
In a preliminary validation of GOSAT retrivals, Morino et al. [2011] have found a negative
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bias of 8.85 ± 4.75 ppm and 20.4 ± 18.9 ppb respectively for CO2 and CH4 and Yoshida
et al. [2012] have also found a time-dependent degradation of GOSAT’s radiometric sensor.
Although a correction has been applied, this still suggests a need for regular validation and
calibration of satellite data.

Figure 1.3 shows the stations location for the Total Carbon Column Network (TCCON)
[Wunch et al. 2011], which is currently used to validate and calibrate GOSAT retrievals.
TCCON has only a handful of stations and a single station in the tropics. This is a severe
limitation, given high cloud fractions and aerosol loading found in the tropics. There is
therefore an urgent need for much high accuracy in situ time series from the tropics [Dlu-
gokencky, Nisbet, et al. 2011]. In addition, the frequent cloud cover in equatorial regions,
makes it difficult for the satellite to ‘see’ the equatorial atmosphere, which leads to under-
sampling those regions. The maps of typical monthly average CO2 columns are represented
in Figure 1.4 for July 2009 and January 2010. A large gap in equatorial regions is due to
elevated aerosol loading and cloud fraction corresponding to the approximate location of
the inter tropical convergence zone (ITCZ), while the data gap in the northern hemisphere
winter is due to the high surface albedo.

1064 I. Morino et al.: Volume mixing ratios of carbon dioxide and methane

Table 1. Ground-based FTS sites used for GOSAT product validation.

Site Country Coordinate [Lat., Long.] Alt. [m a.s.l.] Reference

Bialystok Poland 53.23� N, 23.0253� E 180 Messerschmidt et al. (2010)
Orléans France 47.965� N, 2.11253� E 130 Messerschmidt et al. (2010)
Garmisch Germany 47.476� N, 11.0633� E 746.6 Sussmann et al. (2009)
Park Falls USA 45.945� N, 90.2733�W 442 Washenfelder et al. (2006)
Lamont USA 36.604� N, 97.4863�W 320 Wunch et al. (2010, 2011)
Tsukuba Japan 36.0513� N, 140.12153� E 31 Ohyama et al. (2009)
Darwin Australia 12.424453� S, 130.891543� E 32 Deutscher et al. (2010)
Wollongong Australia 34.40633� S, 150.8793� E 30
Lauder New Zealand 45.03843� S, 169.6843� E 370
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Fig. 1. Ground-based FTS sites used for the GOSAT product vali-
dation in the present study.

retrieved from bands 1 and 2 of TANSO-FTS. The grid point
values of the meteorological data analyzed by the Japan Me-
teorological Agency are interpolated to the retrieval points.
The XCO2 and XCH4 data shown here (general public users,
or GU subset) are filtered for AOD less than 0.5. As a plane-
parallel atmosphere is assumed in the retrieval, data with so-
lar zenith angles greater than 70 degrees are not processed,
and data over high mountain ranges such as the Rockies, the
Andes, and the Himalayan mountains are removed.

4.2 Global distribution of XCO2 and XCH4

Figures 2 and 3 show the global distribution of the monthly-
averaged GOSAT SWIR XCO2 and XCH4 data, gridded in
1.5� by 1.5� bins in April and October 2009, respectively.
These retrievals satisfy the filter criteria over North Africa,
the Arabian Peninsula, and Australia. Data over land are ob-
tained mainly for 10–60� N and 15–45� S in April, and 10–
50�N and 0–50� S in October. Data over ocean are retrieved
in the regions of 10� S–30� N in April and 40� S–10� N in
October by observing the specular reflection of sunlight in
the direction of sunglint.

XCO2 in April is generally higher in the Northern Hemi-
sphere than the Southern Hemisphere (Fig. 2). This is be-
cause plant photosynthesis in the Northern Hemisphere is not
yet competitive with respiration in April. In October, similar
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Fig. 2. Global distribution of GOSAT SWIR XCO2 averaged
monthly in 1.5 by 1.5 degree bins for (a) April and (b) October
in 2009.

XCO2 is observed in both hemispheres. The standard devi-
ations of monthly mean XCO2 is about 1% for a 10� ⇥ 10�

grid over Australia, where gradients are anticipated to be
very small.

XCH4 in the Northern Hemisphere is higher than in
the Southern Hemisphere in both April and October 2009
(Fig. 3). Elevated XCH4 is observed from India to Japan in
October 2009. These features are similar to those obtained
by SCIAMACHY (Frankenberg et al., 2006) and simulated
by an inversion model (Bergamaschi et al., 2007).

Atmos. Meas. Tech., 4, 1061–1076, 2011 www.atmos-meas-tech.net/4/1061/2011/

Figure 1.3: Ground based Total Carbon Column Network (TCCON) sites used for GOSAT
product validation [Morino et al. 2011]

(a) July 2009 (b) January 2010

Figure 1.4: Typical monthly average CO2 columns from GOSAT [GOSAT leaflet, GOSAT Project
2013]
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1.1.2 Goals of the current project
This study aims at improving the accuracy of regional estimates of CO2 and CH4 fluxes
in Central and Eastern Africa in two complementary approaches. First, we have estab-
lished a high frequency high precision greenhouse gases monitoring site in Rwanda, which
measures multiple greenhouse gases including CO2, CH4, CO and meteorological parame-
ters. The measured parameters are detailed in chapter 2. The new site located at Mount
Mugogo(1�35.175 S, 29

�
33.941 E), follows the protocols and calibration standards of the

Advanced Global Atmospheric Gases Experiment (AGAGE) [AGAGE, Prinn, Weiss, et al.
2000] and is joining the AGAGE global network. The location of the new station is shown
by a black dot and arrow in the map of Figure 1.2.

Second, we have used the high frequency data from the new station to optimally estimate
the surface fluxes of CO2 and CH4 in Eastern and Central Africa. The optimized emissions
provide improved knowledge and understanding of the drivers of the carbon cycle in this
region.

1.2 Rationale

The station in Rwanda is the only high frequency greenhouse monitoring station on the
African continent. This station is being integrated in the AGAGE network, to provide a
new long term series of measurements added to the present AGAGE research project. The
high frequency mixing ratios combined with meteorological data, allowed the detection of
changing surface fluxes or processes from all the surrounding regions sampled due to the
shifting wind patterns, and has allowed the discrimination of local versus remote pollution
sources. The newly established station has been a valuable resource not only for this study
but also for the scientific community seeking to estimate regional and global fluxes of CO2

and CH4.

We have produced the first comprehensive regional observation-based optimal estimates
of net surface fluxes of equatorial African CO2 and CH4. The estimated fluxes constitute
additional data for comparison and cross-checking global inversion studies, for calibration of
ecosystem models, and for regional emissions verification.

The regional climate of Eastern and Central Africa where a very dry season alternates
with a heavy rainy season has provided a unique opportunity to qualitatively assess the
response of ecosystem CO2 sources and sinks and wetland methane emissions to different
meteorological conditions. Therefore, we have, at least partially, contributed to the currently
unresolved question of the role of this region in the global CO2 cycle [IPCC:WGI 2013] , and
the potential drivers of the recent global methane increase as discussed in section 6.3.
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1.3 Budgets of carbon dioxide and methane

1.3.1 Global and Regional Budgets of Carbon Dioxide
The fifth assessment report (AR5) of the IPCC has concluded that the tropospheric mix-
ing ratio of CO2 was 390.5ppm in 2011[IPCC:WGI 2013, table 2.1] while the most recent
estimate of tropospheric CO2 mole fractions from NOAA is 406.36 ppm . This is a well
constrained quantity with the 90% confidence interval uncertainties of 0.07% and 0.04% re-
spectively for estimates from scripps institution of oceanography, university of california, san
diego (SIO) and NOAA.

The partition of global CO2 emissions into different sources and sinks is relatively well
constrained by observations. The largest source of net CO2 emissions is fossil fuel combus-
tion with a 1750-2011 cumulative estimate of 365± 30PgC, while the most uncertain term
in the global carbon budget is the land-to-atmosphere flux with the 1750-2011 cumulative
estimate of 30± 45PgC, that has 150% uncertainty (90% confidence interval)[IPCC:WGI
2013; Houghton et al. 2012; Ballantyne et al. 2012].

Current observational networks are sufficient to quantify global annual mean burdens
of CO2, but they are not sufficient for accurately estimating regional scale net emissions
and their evolution with time. This is particularly the case for land-to-atmosphere CO2

fluxes. The results from atmospheric CO2 inversions, terrestrial ecosystem models and forest
inventories consistently show that there is a large net CO2 sink in the northern extra-tropics,
with no robust conclusion in the tropics due to the very limited availability of observations
[IPCC:WGI 2013, AR5, p.165].

1.3.2 Global and regional budgets of methane
Methane is an attractive target for short term reduction in greenhouse gas induced warm-
ing. The short lifetime and high global warming potential relative to CO2 mean that the
benefits of emissions reductions manifest in short term. Investment in methane abatement
is relatively cheap [Dlugokencky, Nisbet, et al. 2011] and would, therefore, buy time for de-
velopment of cheaper CO2 mitigation technologies.

Methane is emitted to the atmosphere by natural (wetlands, oceans, wild animals, ter-
mites, wild fires ) and anthropogenic (fossil fuel exploitation, domestic ruminants, rice cul-
tivation, waste decomposition, biomass burning) sources. Both natural and anthropogenic
sources have approximately equal contributions to atmospheric CH4. Figure 1.5a [adapted
from: Global Carbon Project(2013) Methane budget and trends 2013; Kirschke et al. 2013]
illustrates that wetland emissions are the single largest source of CH4 in the atmosphere.
As indicated by Figure 1.5b, the relative magnitude of removal processes of atmospheric
methane; the major removal mechanism is the reaction of CH4 with the hydroxyl radical
(OH) in the troposphere.
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(a) Sources of methane (b) Sinks of methane

Figure 1.5: Sources and sinks of atmospheric methane [adapted from: Global Carbon
Project(2013) Methane budget and trends 2013; Kirschke et al. 2013]

Additional minor removal pathways include reaction with atomic chlorine in the marine
boundary layer [Dlugokencky, Nisbet, et al. 2011; Kirschke et al. 2013] soil uptake and strato-
spheric sinks which include reaction with Cl, OH and O(

1D).

Since the beginning of the industrial era, atmospheric methane concentrations have in-
creased from 733 ppb to 1803 ppb in 2011[IPCC:WGI 2013]. Atmospheric CH4 concentra-
tions were relatively stable from 1990 to 2006. Several possible scenarios have been proposed
to explain this near-cessation of methane growth rate: Simpson et al. [2012] and Chen et al.
[2006] have suggested a reduction of anthropogenic emitting activities such as coal and gas
industry and animal husbandry especially in the former Soviet Union; Bousquet, Ciais, et
al. [2006] and Chen et al. [2006] have proposed a compensation between increasing anthro-
pogenic emissions and decreasing wetlands emissions; while a significant [Rigby et al. 2008]
or small [Montzka et al. 2011] increase in OH concentrations (i.e. increase in sink) have been
proposed.

Dlugokencky, Nisbet, et al. [2011] have found that the difference between northern
(53 � 90

�N) and southern (53 � 90

�S) annual mean CH4 mole fractions, referred to as
the inter-polar difference (IPD) was decreasing from 1991 to 1992 and has not yet recovered.
The decreasing IPD suggests that the recent post (2006) methane increase was not driven
by a source in northern high latitudes. Analysis of �13C in CH4 and CO mole fractions
[Dlugokencky, Nisbet, et al. 2011], and tropical precipitation patterns suggest that these
increases were driven by higher than average precipitation in the tropics [IPCC:WGI 2013].
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Figure S1: Zonal mean fluxes of CH4 from natural wetlands (top), biomass burning (including biofuel, 318 

middle), and OH loss (bottom). The zonal mean has been computed over the period 1990-2006 for 319 

wetland emissions and 1980-2005 for biomass burning emissions. The coloured lines correspond to B-320 

U models or inventories as specified in the legend (the same as those used to compute the gridded 321 

maps in Fig. S0). Coloured ranges indicate the minimum and maximum of the zonal mean fluxes 322 

derived from T-D inversions. Zonal mean of methane loss through OH oxidation is computed by the 323 

ACCMIP models and the T-D inversions (PYVAR and LMDZ-MIOP), temporal average being 324 

calculated over the 2000s. Note that vertical scales are different for the three plots. 325 

(a) Methane flux from wetlands
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(b) Methane flux from biomass burning

Figure 1.6: Zonal mean flux of CH4 from wetlands and biomass burning [Kirschke et al. 2013,
Supplementary information]

Methane fluxes from tropics play an important role in the global methane budget and
inter-annual variability; Figure 1.6 from Kirschke et al. [2013] shows the zonal mean flux of
CH4 from wetlands and biomass burning, which shows that the largest fluxes of CH4 are
located in the tropics. In addition, the largest CH4 sink is also in the tropics due to the
strong tropical sunlight producing OH. Despite the important role of the tropics in the CH4

budget, there are only a handful of sites measuring CH4 at high frequency (e. g. hourly)
and virtually no long-term interior land-based time series [Dlugokencky, Nisbet, et al. 2011].
The available satellite tropical data are of limited usefulness if not validated by much higher
accuracy in situ measurements in the tropics.

1.3.3 Method for estimation of sources and sinks of CO2 and CH4

1.3.3.1 Bottom up methods

Current emissions reduction legislation relies upon accounting methods for calculating emis-
sions inventories of industrial and biogenic greenhouse gases at their sources, and this ap-
proach is generally called ‘bottom-up’ reporting. IPCC has developed detailed guidelines
[IPCC 2006] for emissions inventories and reporting. The IPCC approach is to combine
information on the extent to which human activities take place (called activity data or AD)
with the coefficients quantifying the emissions or removals per unit of activity (called emis-
sion factor EF). The basic equation is therefore:

Emissions = AD ⇥ EF (1.1)

Other ‘bottom-up’ GHG emissions estimations include global extrapolation of direct flux
(or proxy flux) measurements, where local exchange fluxes are measured from different source
types and extrapolated to regional or global scales, thus enabling quantification of the flux
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budgets, under the assumption that the study sites are representative of those scales. The
challenge for this method is the typically large heterogeneity of surface fluxes depending on
the type, extent and state of the considered ecosystem.

Process models are additional ‘bottom-up’ methods which seek to represent the actual
physical and biological process that produce a considered greenhouse gas [e.g. Saikawa et al.
2013]. This approach suffers from modeling uncertainties, especially those equations and
parameters linking climate variables to actual fluxes .

Bottom-up GHG estimates often tend to differ significantly from those deduced from ob-
servations and inverse modeling. But these methods usually do better than inverse methods
in attributing emissions to different source types [e.g. Kirschke et al. 2013].

1.3.3.2 Top down methods

The Bayesian setting for inverse problems offers a rigorous foundation for inference from noisy
data and uncertain forward models. It is a natural mechanism for incorporating both prior
information, and quantitative assessments of uncertainty into the inferred results (a detailed
formulation of the Bayesian inverse problem is provided in section 4.1). In the Bayesian
inference, the condition for optimality is often expressed by the need to minimize the “cost”
or “objective” function. Different Bayesian methods differ mostly in the way they minimize
the cost function: sequential data assimilation like Kalman filters, iterative minimization like
variational methods and sampling methods like Markov Chain Monte Carlo methods. The
latter method is usually the most general and flexible method for complex high-dimensional
problems [Marzouk et al. 2007; Miller et al. 2013]. The following paragraphs briefly review
common methods used in Bayesian inference and some example applications in atmospheric
sciences.

General approach: Stochastic filtering

The Kalman Filter(KF): The Kalman filter [Kalman 1960] is an optimal sequential
data assimilation method for a system driven by linear dynamics and involving measurement
processes with Gaussian errors. The KF, therefore, provides an unbiased, minimum variance
estimate of the state of the system from noisy measurements. A Kalman smoother uses
past and future (relative to a given time) observations to update the priors. Fixed-lag
Kalman filter/smoothers use a fixed time window of observations to recursively update the
priors. Fixed-lags are particularly useful in application to the atmosphere because a pulse
in emissions at a given location and time gradually decays within a few months. Rigby
et al. [2008] have used a Kalman filter together with a 12-box model to investigate the
possible drivers a renewed growth of atmospheric methane [see also, Chen et al. 2006, for
KF application to methane in a 3D model]. Maksyutov et al. [2013] have used a 3-months
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window fixed-lag Kalman smoother to estimate regional CO2 emissions from GOSAT satellite
column data [see also, Bruhwiler et al. 2005, for details on the fixed-lag Kalman smoother].

The Extended Kalman Filter (EKF): For nonlinear systems, a linearization process
can be used to approximate the nonlinear dynamics, thus applying the Kalman filter on
the approximate model. The linearized models are often obtained by a first-order Taylor
approximation or by Tangent linear models. The resulting filter is known as the Extended
Kalman Filter [Chui et al. 1991]

Variational data assimilation is used for nonlinear models for an iterative mini-
mization of the cost function. Bergamaschi, Houweling, et al. [2013] have used 4-dimensional
variational data assimilation to optimally estimate the surface fluxes of methane using SCIA-
MACHY satellite retrievals and NOAA surface observations.

Ensemble Kalman Filter (EnKF): The ensemble Kalman filter [Burgers et al. 1998]
aims at resolving some of the drawbacks of the extended Kalman filter. The EnKF is based
on forecasting the error statistics using Monte Carlo sampling. The major drawback of the
EnKF is the large number of model runs necessary to properly approximate the model state
statistics.

Markov Chain Monte Carlo (MCMC): MCMC algorithms make it possible to
generate realizations of the unknown quantity from high-dimensional probability density
functions. MCMC methods can be applied in the Bayesian inference for inverse problems as
an efficient method for calculating multidimensional integrals needed to extract information
from the a posteriori probability density function. This method relies on the generation of
conditional realizations: each realization is a guess of the unknown that should represent
a random draw from the posterior probability distribution. The algorithms create a new
realization based only on the previous one. Miller et al. [2013] have used synthetic methane
data for the US in order to compare various methods used in inverse flux estimation. They
have found that MCMC implementations produce the most realistic best estimate, condi-
tional realizations and uncertainty bounds. MCMC methods are discussed in section 4.2
while transdimensional MCMC methods are discussed in section 4.3.

1.4 Site selection and characterization

1.4.1 Geography and climate of Rwanda
Rwanda is a landlocked country in Central/Eastern Africa bordered by Uganda to the North,
Burundi to the South, Tanzania to the East and the Democratic Republic of the Congo to
the West. With 26 338 km

2, Rwanda is the fourth smallest country on the African mainland.
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Rwanda is mostly high altitude with the lowest point at 950m above sea level in the
South West. The central and western parts of Rwanda are dominated by mountains which
are part of the Albertine branch of the East African Rift, and in this region the altitude
ranges between 1500 to 2500m above sea level, with the highest point found at the summit
of the volcano Karisimbi at 4507m. The eastern part of Rwanda is savannas and plains
which are generally around 1400m above sea level.

Despite being in the tropical belt, Rwanda experiences a temperate tropical highland cli-
mate as a result of high elevations. The daily average minimum temperature varies between
10

�
C to 16

�
C and the average maximum temperature between 20

�
C to 28

�
C [Mendelsohn

et al. 2016; Vital Signs 2016]. The temperature varies across different regions due to the
elevation changes, but it is fairly constant around the year for a specific location. The moun-
tainous North West is generally cooler than the low-lying eastern part of the country.

Rwanda experiences a bimodal pattern of rainfall, which is primarily driven by the pro-
gression of the Inter-Tropical Convergence Zone (ITCZ). The two rainy seasons of March-
April-May and October-November-December alternate with two dry seasons of January-
February and June-July-August-September.
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Figure 1.7: Monthly average rainfall for different regions of Rwanda (vertical bars) and monthly
average temperature (red curve) at Kigali airport [McSweeney 2011]

1.4.2 Site selection
Mount Mugogo is located in the Northern province of Rwanda. The site is located at lati-
tude 1

�
35.175 South, longitude 29

�
33.941 East and altitude 2590 m above sea level. Mount
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Mugogo was primarily selected for its ability to sample air masses from a wide area of trop-
ical Africa and a wide range of altitudes. Figure 1.8 depicts the 7-day back trajectories
of air masses arriving at Mount Mugogo during the year 2008 [Prinn, Huang, et al. 2011].
Trajectories are computed by the NOAA Hybrid Single Particle Lagrangian Integrated Tra-
jectory Model (HYSPLIT) using National Centers for Environmental Prediction (NCEP)
reanalysis meteorology.

!Figure 1.8: Back trajectories of air mass coming to Mount Mugogo for the year 2008[Prinn, Huang,
et al. 2011]

Back trajectories were calculated every six hours and each trajectory was run for 7 days
backward in time. The trajectories of air masses sampled at Mugogo stretch Northeast as
far as Saudi Arabia and the Indian West Coast. In the South East direction the air masses
sampled at Mugogo come from as far as Madagascar. The air masses from the East of Mu-
gogo travel over the East African region characterized by a high population density, urban
areas and intense agricultural activities. On the western side of Mugogo, air parcels come
mainly from the equatorial forests in the Democratic Republic of Congo and Central African
Republic.

The low infrastructure costs and accessibility of Mount Mugogo also motivated the choice
of this site. Mount Mugogo was already equipped with two telecommunication towers, power
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supply, back-up power supply and an existing building suitable for a field laboratory.

Mount Mugogo is located in a rural area at about 70 km away from the capital city of
Rwanda, Kigali and 13 km away from the nearest town of Musanze. Depending on wind
and boundary layer height, measurements taken at Mount Mugogo may be occasionally
influenced by local sources including emissions from the nearby city and wood fires from
small rural settlements around Mugogo.
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Chapter 2

Field Set up and Instrumentation

One of the main goals of this project was to setup a station that measures greenhouse gases
in North West Rwanda to continuously monitor carbon dioxide, methane and other trace
gases.
This chapter describes the field site and the instrument used. This chapter also provides
technical descriptions of our approach to minimizing water vapor interference as well as the
precision, drift and linearity of the instrument . The last section is an overview of other
instruments that were also installed at our field site.
We have found that the instrument has very good precision, comparable to the values re-
ported in literature for similar instruments. Furthermore, the instrument was stable with no
measurable drift during the course of this work.

27



2.1 Description of the field site

Figure 2.1: Laboratory building for the
station. The tall tower is in the background
and the smaller tower in the foreground

The climate observatory station is housed in
a small three-room building at the summit of
mount Mugogo. On the same summit there is a
50-meter tall tower which hosts the instrument
inlets as well as Radio, TV and mobile com-
munication equipment. There is also another
smaller tower used by telecommunication compa-
nies.

The station is powered by mainline 240V

power from national grid, with a backup auto-
matic diesel generator conveniently located at 300
meters below and away from the station. Instru-
ments in the laboratory are powered through an
Uninterruptible Power Supply (UPS).

Figure 2.2: View of Mount Mugogo
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2.2 Picarro G2401 for high frequency measurement of

carbon dioxide, methane and carbon monoxide

Figure 2.3: Picarro G2401

The main instrument for this work is the Picarro
G2401 which measures CO2, CH4, carbon monoxide
(CO) and water vapor (H2O).
This is an optical instrument which uses Caviy Ring-
Down Spectrometry (CRDS) to accurately measure
mole fractions of CO2, CH4, CO and water vapor
(which is also used to correct for H2O interference
with CO2 and CH4). The G2401 attributes are re-
view below [Yver Kwok et al. 2015; Rella et al. 2013;
Picarro 2016]:

1. The measurement cell is a low-loss (mirror re-
flectivity of 99.995%) optical resonant cavity
consisting of three highly reflective mirrors. The
optical cavity serves as a compact flow cell with
volume less than 10 cm

3 and effective optical
path length of 15 to 20 km

2. When a pulse of laser light is introduced into
the cavity, it is reflected multiple times and par-
tially transmitted through the mirrors. A photosensitive detector located behind one
of the mirrors detects the transmitted light and monitors the decay (ring-down) time
of the laser light. The decay time depends on the cavity loss as well as the amount of
absorbing gases inside the cavity.

ok

3. The concentration of the absorbing gas inside the cavity is estimated by comparing
the ring down time of an empty cavity(with no absorbing gas) to the cavity containing
the gas. An empty cavity is achieved by alternatively tuning the laser to different
wavelengths where the gas absorbs light and then to wavelengths where the gas does
not absorb light.

The cavity ring down spectroscopy which is a relatively new technology [Crosson 2008] has
gained global attention [Yver Kwok et al. 2015; Andrews et al. 2014] in greenhouse gas field
measurements because it provides multiple advantages compared to gas chromatography
systems and nondispersive infrared sensors. Some of the advantages of cavity ring down
systems include low maintenance and consumables, linearity and stability robustness and
easy deployment.

2.2.1 Earth Networks sampling and drying unit
The atmospheric water vapor concentration affects measurements of CO2 and CH4 mainly
in two ways: dilution and spectral line broadening.
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Dilution effect: The dilution effect is the change of the mole fractions of atmospheric
trace gases due to the variation in the humidity. Increasing humidity adds additional water
vapor to the air thus decreasing the mole fractions of other gases. Similarly, when the air
becomes dryer, the mole fractions of CO2 and CH4 will be enhanced due to water vapor
molecules that have been removed from the air.

Spectral broadening effect: This is an effect by which thermal vibrations and random
collisions of the target molecule with surrounding molecules cause the broadening of the
spectral line. This Lorentzian broadening is parameterized by the line broadening param-
eter � which is proportional to the pressure and the compositions of the background gas
mixture and is, therefore, affected by the presence or absence of water vapor.

Water vapor can vary very rapidly geographically and in time, which causes variability in
mole fractions of CO2 and CH4. The variability due to change in humidity can potentially
mask the smaller variability in mole fractions of CO2 and CH4 that are due to surface-
atmosphere exchanges [Rella et al. 2013]. Consequently, mole fractions of CO2 and CH4 are
meaningful only when they are reported relative to dry air conditions.

The Global Atmospheric Watch program of the World Meteorological Organization
(WMO/GAW) has set an inter-laboratory compatibility goal of ±0.1 ppm and ±0.05 ppm
for CO2 in Northern and Southern Hemispheres respectively and an inter-laboratory com-
patibility goal of ±2 ppb for methane [WMO 2011, Table 1]. Traditionally to achieve this
WMO requirements using non-dispersive infrared spectroscopy for carbon dioxide and gas
chromatography for methane, measurement has to be taken from a dry sample; for example
a water vapor mole fraction of 500 ppm (dew point of �32 �

C at 1 bar) causes a dilution bias
of �0.2 ppm for lower CO2 readings [Rella et al. 2013].

Drying systems come with several disadvantages among others: they add cost and com-
plexity to the sampling system, they use consumables that need periodic replacement and
most of then require periodic human intervention for proper operation.

Cavity ring down spectroscopy based analyzers allow accurate and precise measurements
of dry mole fractions of carbon dioxide and methane by measuring water vapor and using
experimentally derived water vapor correction algorithms.

Yver Kwok et al. [2015] have conducted a thorough testing of Picarro CRDS analyzers
using 62 Picarro CRDS instruments, 47 instruments in the laboratory and 15 instruments
in the field for a period of five years, their recommendations which are echoed by Picarro’s
own study [Rella et al. 2013] are summarized below:

• for water vapor mixing ratios below 1% the Picarro CRDS analyzers are well within
the GAW compatibility goals, even if all instruments use the same water correction
factors.
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• When an instrument-specific correction factors are used, the water vapor mixing ratio
ranges can be extended to 2%

• If correction factors are determined periodically over time, the water vapor mixing
ratio ranges can be extend to 4%

For our station located around 1.5°S, water vapor concentration above 2% are expected
to be common during the rainy seasons. We address this issue using the Earth networks
sampling and drying module (Figure 2.4), Figure 2.5 shows the water vapor mixing ratio
measured by the Picarro G2401 before February 2016 when the station has not yet acquired
the Earth Network dryer, and from February 2016 when the sample air was dried, the cor-
responding percentage corrections for CO2 and CH4 are presented in Figure 2.6. During
the short rain season of October, November and December; water vapor mixing ratios where
consistently greater than 2%. Worth noting is that the measured water vapor mixing ratio
before February 2016 does not represent the whole picture because the short dry season of
January to March and the long rain season of March to June are not represented. To stay
in the GAW compatibility goals, periodic calculation of water vapor correction coefficients
would, therefore, be required for our station. H2O corrections coefficients experiments are
difficult to perform especially for our field work which is located in a remote region.

Figure 2.4: Earth Networks
sampling and drying unit

A more attractive alternative to periodic determina-
tion of water vapor correction coefficients has been imple-
mented by Earth Networks Inc. which operates a com-
mercial meteorological observing system including green-
house gas monitoring [Welp et al. 2013]. In this ap-
proach, a simple but effective drying technique is used
with residual water vapor mixing ratio generally close
to 0.2% (0.1% for our case) . With water vapor
mixing ratio of 0.2% or less the Picarro CRDS ana-
lyzer is guaranteed to provide accurate dry mole frac-
tions of carbon dioxide and methane during the life-
time of the instrument. The Earth Network sam-
pling and drying unit uses a nafion dryer that is
purged by reusing the sample gas that has been par-
tially dried passing through the inner nafion membrane,
and, therefore, the Earth Network sampling and dry-
ing unit does not use consumables that need to be re-
placed.

During this study we have used the Picarro G2401 without
Earth network sampling and drying unit from June 2015 to
end of January 2016. From February 2016 ongoing, the station
uses the Earth Networks unit.
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Figure 2.5: Measured water vapor mixing ratio in humid air (up to January 2016) and in dry air
(from February 2016), the vertical line indicates the start of drying

(a) Carbon dioxide (b) Methane

Figure 2.6: Percentage water corrections (dry - wet)/dry. The vertical line indicates when we
started drying the sample
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2.2.2 Site setup and calibration
The air sample inlet which is a stainless steel inverted cup, is located at 40m above the
ground on the tower. A synflex tubing connects the inlet to the Earth Network sampling
and drying module in the laboratory, where all connections are stainless steel 1

8 inch diameter.
A VICI® Valco multiposition valve inside the sampling module follows a pre-programmed
sequence of ambient air and calibration tanks.

In the context of calibration, we will use the term instrument response with symbol r,
to mean the mole fractions output by instrument before a calibration is applied, while mole
fractions with symbol � will be used for calibrated mole fractions.

2.2.2.1 Calibration tanks

We have used three calibration tanks filled by NOAA in aluminum AL-150 cylinders. The
serial numbers of the calibration tanks are listed in Table 2.1 along with the mole fractions
of CO2, CH4 and CO.

Table 2.1: Serial numbers and composition of calibration tanks used in this project. Values marked
with a ’*’ are measured values calibrated with the two other tanks

CC114957 CB10893 CB10203

CO2 389.32± 0.01 ppm 419.34± 0.00 ppm 230.20* ppm
CH4 1946.16± 0.09 ppb 1888.12± 0.26 ppb 1074.94* ppb
CO 136.58± 0.04 ppb 240.64± 0.38 ppb 91.26± 0.15 ppb

The mole fractions for CO2 and CH4 were not reported by NOAA for the tank CB10203
because it was specifically targeted to cover the low range of carbon monoxide mole frac-
tions. This resulted in far too low mole fractions for CO2 and CH4 relative to ambient levels.
Still, the CB10203 calibration tank has been useful in assessment of the instrument drift and
linearity.

Figure 2.7: CO2 mole fractions time series and
corresponding calibration tanks

Due to logistical reasons, the tank
CC114957 which is near ambient for CO2

and CH4 was only available from August
2016, for other tanks, calibrations started
in October 2015 while measurement started
in June 2015. We have, therefore, used one
point calibration for CO2 and CH4 before
August 2016 and two points calibration af-
terwards. The implication of this is dis-
cussed in section 2.2.2.5. Data time series
and corresponding measurements of calibra-
tion tanks are presented in Figure 2.7 for

33



CO2 and Figure 2.8 for methane and carbon
monoxide.

(a) Methane (b) carbon monoxide

Figure 2.8: Data time series and calibration tanks for CH4 and CO2

2.2.2.2 Repeatability

Repeatability allows to understand the smallest mole fractions that can be resolved by an
instrument, which is an indicator of the instrument’s precision. We have assessed repeata-
bility by taking the standard deviation of each calibration session for each calibration tank.
Calibration sessions, which last twenty minutes, were done every other day for each tank,
but data corresponding to the transient period of the first ten minutes were automatically
rejected.

We have found an average repeatability of 0.02 ppm for CO2, 0.20 ppb for CH4 and
7.2 ppb for CO, these values are similar to those found by Yver Kwok et al. [2015, Table 1]
for the Picarro G2401 models. Histograms of standard deviations of ten minutes calibration
sessions are shown in Figure 2.9 for CO2, Figure 2.10 for CH4 and Figure 2.11 for CO.

(a) Tank CB10203 (b) Tank CC114957 (c) Tank CB10893

Figure 2.9: Histograms of standard deviations of 10 minutes calibration sessions for CO2 for each
calibration tank
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(a) Tank CB10203 (b) Tank CC114957 (c) Tank CB10893

Figure 2.10: Histograms of standard deviations of 10 minutes calibration sessions for CH4 for
each calibration tank

(a) Tank CB10203 (b) Tank CC114957 (c) Tank CB10893

Figure 2.11: Histograms of standard deviations of 10 minutes calibration sessions for CO for each
calibration tank

2.2.2.3 Instrument drift

The drift in measurements characterizes a slow and gradual change in the instrument re-
sponse over time. This might be caused by a change in the precision of the lasers, mirrors
reflectivity etc. The CRDS estimates the mixing ratios by comparing the ring-down time of
the cavity containing the absorber gas to an empty cavity, which is achieved by tuning the
lasers to frequencies at which the analyte does not absorb. By continuously taking the ratios
of the ring-down times not their absolute values, the instrument becomes less sensitive to
small change in the cavity parameters because both ring-down times are measured within
the same hardware environment.

The time and pressure dependent drifts are minimized by actively and precisely con-
trolling the cavity pressure and cavity temperature. Therefore, there is no significant drift
expected from the Picarro CRDS instrument for the timeframe of this study. This expec-
tation is confirmed by Figure 2.12 where instrument responses normalized by their mean
values for CO2 and CH4 are plotted as a function of time for all calibrations tanks.
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(a) carbon dioxide (b) methane

Figure 2.12: Instrument responses normalized by their mean for CO2 and CH4 for the three
calibration tanks

2.2.2.4 Instrument linearity

Non-linearities arise when the sensitivity of the instrument depends on the concentration
of the analyte. The sensitivities of our Picarro G2401 are shown as function of time and
mole fractions for CO2 (Figure 2.13), CH4 (Figure 2.14) and CO (Figure 2.15). For a linear
instrument the sensitivity which is the instrument response per mole would be the same
across all concentration range, implying that data points would overlap in Figure 2.13a (and
Figure 2.14a, Figure 2.15a) and make an horizontal line in Figure 2.13b (and Figure 2.14b,
Figure 2.15b).

(a) (b)

Figure 2.13: Instrument sensitivity as a function of time (a) and as a function of CO2 mole
fractions (b)
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We have found a slope of 0.012% for CO2 over the range of 389.32–419.34 ppm (black
and blue dots in Figure 2.13) which is relevant for ambient CO2 monitoring and a slope of
0.0016% for the near ambient range of 1888.12–1946.16 ppb for CH4. The slope for CO2

and CH4 are very small, corresponding to a correction of 0.012% ⇥ (419.34 � 389.32) or
0.004 ppm for CO2 and similarly, 0.0009 ppb for methane, which does not justify the cost
of purchasing another calibration tanks to correct for non-linearites. We have, therefore,
considered our instrument linear for ambient CO2 and CH4 monitoring for the duration of
this study. A slope of 6.9% exists for carbon monoxide in the range of 91.26–240.64 ppb, a
nonlinear correction would be needed for CO data either by applying a slope or using the
quadratic equation shown in Figure 2.15b.

(a) (b)

Figure 2.14: Instrument sensitivity as a function of time (a) and as a function of CH4 mole
fractions (b)
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(a) (b)

Figure 2.15: Instrument sensitivity as a function of time (a) and as a function of CO mole fractions
(b)

2.2.2.5 Calibration

GCWERKS® software: GCWERKS [Peter Salameh 2016] is a software used across all
AGAGE stations which controls individual parts of instruments including Gas Chromatog-
raphy (GC), Gas Chromatography-Mass Spectrometry (GC/MS), CRDS and even UPS.
GCWERKS® controls calibration sequences, drift and non-linearity corrections with remote
access, remote backup and extensive plotting and reporting capabilities. The Picarro G2401
used for this project was also controlled by GCWERKS®.

We have been running a calibration sequence for each calibration tank every other day.
Due to logistic reason the second calibration tank for CO2 and CH4 was not available until
August 1st, 2016. Before that we have been doing one point calibration expressed as follow,

� =

�std

rstd
rair (2.1)

where � are calibrated mole fractions and rair are dry mole fractions reported by the
instrument. �std and rstd are actual mole fractions and instrument response for the standard
tanks, respectively.

After August 1, 2016 we have been using two points calibration with slope m expressed
as Equation 2.2 and offset b expressed as in Equation 2.3.

m =

�std2 � �std1

rstd2 � rstd1
(2.2)
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b = �std1 �m⇥ rstd1 (2.3)

In order to understand the error margin caused by using one point calibration instead of
two points calibration, we have made a comparison of both for the period where we had two
calibration standards, as shown in Figure 2.16, we have found a mean underestimation of
0.020± 0.009 ppm for CO2 and 0.02± 0.11 ppb for methane when using one point calibration
only, these values are still well below the WMO goals of 0.05 ppm for CO2 and 2.0 ppb for
CH4. In addition, for the context of this project goal of inverse emissions estimation, the
calibration error margins are very small compared to other potential source of uncertainties,
including modeling and aggregation errors.

Figure 2.16: Two points calibration minus one point calibration for CO2 and CH4

2.3 Black carbon, weather and other measurements at

Mt. Mugogo

Black carbon has been continuously monitored by a 7-wavelength Aethalometer® model
AE33 supplied by MAGEE Scientific pictured in Figure 2.17a this instrument provides real
time (one minute time average) concentrations of black carbon (BC) using the absorption
over the 7 wavelengths (350–950 nm). The Aethalometer® also calculates the fraction of
biomass burning which has higher absorption at lower wavelengths compared to fossil fuel
BC which has equal absorption efficiency across all wavelengths [Sandradewi et al. 2008].

Weather parameters, are measured by two weather stations, one is a WXT520 Vaisala
automatic weather station (Figure 2.17g) and, from February 2016, another weather station
was provided with the Earth Networks sampling module (Figure 2.17f).
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Other instruments include the Picarro G5105 (Figure 2.17b) and its Earth Networks mod-
ule (Figure 2.17c) for nitrous oxide N2O measurements, The Teledyne T400 (Figure 2.17e)
ozone analyzer and a Licor L-200 pyranometer (Figure 2.17d) which measures solar radiation
intensity.

(a) (b) (c)

(d) (e) (f) (g)

Figure 2.17: Other instruments present at the station include the Aethalomer (a), the Picarro
G5105 (b) and its corresponding Earth Networks module (c), the Pyranometer (d), ozone ana-
lyzer(e), the Earth Networks weather station (f) and the Vaisala weather station (g)
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Chapter 3

The Lagrangian Particle Dispersion

Model: NAME

The particle dispersion modeling was used to quantify the sensitivity of mole fractions mea-
sured at Mount Mugogo station to various potential emission sources location. Here we
present the Lagrangian particle dispersion model used in this study, the model parameter-
ization of turbulence and specific parameters that were set for this work. We have also
compared the wind speed and directions measured at the station to the reanalysis meteo-
rology interpolated at the station location. We have found that the reanalysis meteorology
was unable to accurately simulate the wind speed and directions measured at the station;
a conclusion expected at this mountainous location. The footprints and winds streamlines
shows that the model accurately reproduce the large scale circulation expected in the region.

3.1 Model formulation

In a Lagrangian Particle Dispersion Model (LPDM), transport and diffusion of air tracers
is described by trajectories of a large number of ‘particles’, which are abstraction to in-
finitesimally small air parcels. In present work, we have use the UK Met Office’s Numerical
Atmospheric dispersion Modeling Environment version 3 (NAME).

In the NAME model formulation, trajectories are calculated by following the movement
of particles from release points forward in time, or from receptor points (measurement sites)
backward in time, along a three dimensional grid. The particles carry the mass, physical
and chemical properties of the tracers being simulated, and those properties evolve over time
due to chemical transformation, dry and wet deposition and radioactive decay.

Particle dispersion within NAME largely follows the wind, which is provided by three-
dimensional (3-D) wind fields and other meteorological parameters supplied by the numerical
weather prediction (NWP) model. Atmospheric turbulence is simulated with a random walk
technique. Particles are advected in each time step following the equation 3.1 [Morrison et al.
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2005]

Xt+�t = Xt + [u(Xt) + u
0
(Xt) + u

0

l(Xt)]�t (3.1)

Here X are particle position vectors, u(X) are the mean ambient winds interpolated
to the particle position, u0

(X) are the turbulent velocity components, u0
l(X) are the low

frequency meander vectors and �t is the time step. A random walk technique is used to
simulate wind meander and dispersion due to atmospheric turbulence. Profile of turbulence
are estimated by empirical fit to the observed data for stable and unstable (e.g. convective)
conditions. For stable conditions, horizontal velocity variance �2

u profile is expressed as
equation 3.2 and the vertical velocity variance �2

w is given in equation 3.3
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where u⇤ is the friction velocity, zi is the boundary layer depth and z is the height above
ground. In unstable conditions, the turbulence parameters are expressed as
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The convective velocity scale is given by,

w⇤ = u⇤

✓
zi

0.4|L|

◆ 1
3

, (3.5)

where L is the Obukhov length which is the height at which turbulence is generated
more by buoyancy than by wind shear. For both stable and unstable conditions, turbulence
profiles are set to converge to a small values in the free troposphere with a fixed standard
deviation (�u = 0.25m s

�1 and �w = 0.1m s

�1).

Turbulence terms in the advection scheme of equation 3.1 are shown in equations 3.6 and
3.7, where ⌧u and ⌧w are horizontal and vertical lagrangian timescales respectively and rt is
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a random value of zero mean and unit variance [Ganesan 2013].

u0
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(3.7)

The first terms of the right-hand side of equations 3.6 and 3.7 express ‘memory‘ of the
previous step, the second terms represent random perturbations and the third right-hand
term of equation 3.7 is needed due to the fact that vertical velocity variance can vary rapidly
with height compared to slow variation in the horizontal velocity variance which makes this
term negligible for horizontal turbulence.

3.2 Model setup and Meteorology

The NAME model was driven by archived meteorological fields from the UK Met Office’s
global unified model. The model has a resolution of 0.352° longitude and 0.234° latitude, 59
vertical levels and three-hourly temporal resolution.

The computational domain extends from �15° to 55° longitude and �40° to 18° latitude
as show in Figure 3.1.

Figure 3.1: NAME model domain, a geographic region for which the footprints were calculated

43



Inert particles were continuously released from a 40m column centered at 300 meters
above ground level, at a rate of 20000 particles per hour and a mass of 1.0 g s�1. We have
chosen 300m above ground because the altitude of the Mugogo location in NAME is 2117m
above sea level, while the actual altitude at Mugogo is 2507m above sea level, the chosen
release height allows the particles to be released at a height close to the realistic altitude.
Particles were tracked back in time for 30 days, a period they are expected to have reached
down to the boundary layer or exited the domain. The coordinates of locations where parti-
cles reach the boundary layer are recorded as potential sources of emissions and coordinates
of points where particles exit the modeling domain are recorded for calculation of the influ-
ence of emissions coming from outside the domain.

By using inert particles we assume that the chemical loss is negligible for the long lived
greenhouse gases we are modeling. Manning et al. [2011] have estimated that, at ambient
OH levels, CH4 chemical loss by OH oxidation is close to 0.7% for the 12 days period of their
study. We expect higher chemical loss due to the tropical location of our domain where OH
levels are higher and considering our longer modeling time, but still the CH4 chemical loss
should stay below a few percent, which is potentially smaller than other expected sources
of uncertainty in a typical modeling system like ours, including model representation of
topography, convection, boundary layer height etc.

We have compared the wind speed and directions from the UK Met Office’s global unified
model at the location of Mt. Mugogo with the wind speed and directions measured at the
station, and the wind roses are plotted in Figure 3.2, Figure 3.3, Figure 3.4 and Figure 3.5
for the December-January-February, March-April-May, June-July-August and September-
October-November seasons respectively. The wind directions from the global unified model
do not agree with those measured at the stations. We would not expect a global model to
capture the local circulation at Mount Mugogo especially because the local meteorology is
likely driven by the unique hilly topography of the region and the nearby lake.

Figure 3.6, Figure 3.7, Figure 3.8 and Figure 3.9 present sample calculated air histo-
ries from the NAME model overlaid to the winds streamlines from the UK Met Office’s
global unified model. The footprints agree well with the expected synoptic circulation at the
location of Mt. Mugogo. We notice that from the unified model perspective; a small anti-
cyclonic circulation sets up around the station, where the wind seems to go around volcanic
mountains. Still, we expect that the uncertainty due to the meteorology is the main source
of uncertainty in our work, given the scarcity of ground meteorological data from Africa that
feed into global numerical weather prediction models.
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(a) (b)

Figure 3.2: Wind roses comparing wind speed and direction for the meteorology used in the NAME
model (a), and the wind speeds and directions measured at Mugogo (b), during the Dec-Jan-Feb
season.

(a) (b) fig:mugrosemam

Figure 3.3: Wind roses comparing wind speed and direction for the meteorology used in the NAME
model (a), and the wind speeds and directions measured at Mugogo (b), during the Mar-Apr-May
season.
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(a) (b)

Figure 3.4: Wind roses comparing wind speed and direction for the meteorology used in the NAME
model (a), and the wind speeds and directions measured at Mugogo (b), during the Jun-Jul-Aug
season.

(a) (b)

Figure 3.5: Wind roses comparing wind speed and direction for the meteorology used in the NAME
model (a), and the wind speeds and directions measured at Mugogo (b), during the Sep-Oct-Nov
season.
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Figure 3.6: A NAME footprint overlaid with wind speed streamlines for February 15,2016 at
15:00:00. Footprints indicate the potential source of air masses arriving at the station for a specific
time. Streamlines provide information on the general circulation, long lines indicate high wind
speed, arrows indicate the direction of the flow. A yellow star marks the location of the station
(The subtle horizontal and vertical discontinuities in the South and East are due to the merging of
four separate blocks of the unified model (PT6, PT7, PT10, PT11) to make this image)

47



Figure 3.7: A NAME footprint overlaid with wind speed streamlines for April 16,2016 at 18:00:00.
Footprints indicate the potential source of air masses arriving at the station for a specific time.
Streamlines provide information on the general circulation, long lines indicate high wind speed,
arrows indicate the direction of the flow. A yellow star marks the location of the station (The
subtle horizontal and vertical discontinuities in the South and East are due to the merging of four
separate blocks of the unified model (PT6, PT7, PT10, PT11) to make this image)
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Figure 3.8: A NAME footprint overlaid with wind speed streamlines for July 14,2016 at 15:00:00.
Footprints indicate the potential source of air masses arriving at the station for a specific time.
Streamlines provide information on the general circulation, long lines indicate high wind speed,
arrows indicate the direction of the flow. A yellow star marks the location of the station (The
subtle horizontal and vertical discontinuities in the South and East are due to the merging of four
separate blocks of the unified model (PT6, PT7, PT10, PT11) to make this image)

49



Figure 3.9: A NAME footprint overlaid with wind speed streamlines for October 14,2016 at
12:00:00. Footprints indicate the potential source of air masses arriving at the station for a specific
time. Streamlines provide information on the general circulation, long lines indicate high wind
speed, arrows indicate the direction of the flow. A yellow star marks the location of the station
(The subtle horizontal and vertical discontinuities in the South and East are due to the merging of
four separate blocks of the unified model (PT6, PT7, PT10, PT11) to make this image)
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Chapter 4

Trans-dimensional Markov Chain Monte

Carlo Inversion

Estimating surface fluxes of atmospheric trace constituents is a common problem in atmo-
spheric sciences, which seeks to find the best way to combine the observed atmospheric mix-
ing ratios, the known physical relationship between the sources and the observation usually
expressed in form of chemical transport models and the already existing prior information
about the emissions which generally comes from bottom up methods, process models or ex-
pert knowledge.
This chapter outlines the details of Monte Carlo and Markov Chain Monte Carlo solution
to inverse problem and the problem of subjective versus objective determination of basis
functions. The trans-dimensional reversible-jump Markov Chain Monte Carlo is introduced
as an objective approach to determining basis functions, the mathematical representation
of basis functions and various probability distributions for the prior, the likelihood proposal
distribution and acceptance probability are presented.

4.1 Bayesian approach to inverse problem

Bayesian formalism provides a mechanism for learning from incomplete and noisy data, char-
acterized by probability density functions, and heterogeneous sources of information typical
to atmospheric sciences problems.

The prior information of emissions and other parameters which is represented by the
probability density function ⇢(x) is updated by the observations ⇢(y/x) to the posterior
probability of parameters given the observations ⇢(x|y) following the Bayes’ rule expressed
by,

posterior =
likelihood⇥ prior

evidence
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⇢(x|y) = ⇢(y|x) · ⇢(x)
⇢(y)

(4.1)

the likelihood ⇢(y|x) gives the measure of how good the parameters x are explaining the
data.

Multiple methods have been proposed to solve for the inverse problem in atmospheric
sciences, some are briefly outlined in section 1.3.3.2 with a comprehensive review provided by
Kasibhatla et al. [2000]. Most of those methods use Gaussian probability density functions
and linear models which give rise to the cost function of Equation 4.2 representing the
mismatch between measured mole fractions and modeled mole fractions and the mismatch
between prior and posterior emissions,

J = (y �Hx)TR�1
(y �Hx) + (x� xprior)

TP�1
(x� xprior) (4.2)

where H is a linear model characterizing a change in mole fractions due to a change in
emissions, P is the prior emissions uncertainty and R is the model measurement uncertainty.

Assuming linear model constitutes a significant limitation especially for highly varying
trace constituents, in addition there is no way to include more uncertainties and requires the
covariance matrix P and R to be well known.

4.2 Markov Chain Monte Carlo Method

4.2.1 Monte Carlo Integration
The problem of extracting useful information, moments, quantiles, highest posterior density
regions for instance, from the posterior distribution Equation 4.1 can be expressed as a
posterior expectation of a function of x [Gilks et al. 1996],

E [f(x)|y] =
R
f(x)⇢(x) · ⇢(y|x) dx

⇢(y)
(4.3)

Monte Carlo integration evaluate the expectation of Equation 4.3 by drawing a set of
random samples Xt, t = 1, . . . , n from ⇡(x) = ⇢(x)⇢(y|x) and then calculating,

E [f(X)] ⇡ 1

n

nX

t=1

f(Xt) (4.4)
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For independent sample points Xt the law of large numbers guarantees that the approxi-
mation can be made as accurate as needed by increasing the sample size n. It is not possible,
however, to draw independent samples from typical posterior probability density functions
encountered in atmospheric sciences due to the high dimension and often non-standard form.

The samples Xt are not required to be independent, however, [Gilks et al. 1996] as long
as they are generated by a process drawing samples from ⇡(x) in correct proportion, this is
usually achieved by drawing samples from a Markov Chain having ⇡(x) as its stationary dis-
tribution. A Markov Chain Monte Carlo integration is therefore a Monte Carlo integration
drawing samples from a Markov Chain.

4.2.2 Markov Chains
A sequence of random numbers X0, X1, . . . , Xn�1, Xn is a Markov Chain if the next state
Xn+1 is sampled from a distribution P (Xn+1|Xn) which depends only on the current state
of the sequence. The distribution P (Xn+1|Xn) is called the transition kernel.

After sufficient number of iterations (burn-in), the chain will ‘forget’ its starting points
X0 and converge to a unique stationary distribution ⇡(.) which does not depend on X0 and n.
Markov Chain Monte Carlo integration is, therefore, a Monte Carlo integration with samples
taken from a Markov Chain whose stationary distribution is the target posterior distribution.

A Markov Chain is called a random walk if it satisfies,

Xn+1 = Xn + ✏n (4.5)

Where ✏n is generated independently of X0, X1, . . . , Xn. The random walk is called
symmetric random walk if the distribution of the ✏n is symmetric about zero.

4.2.3 The Metropolis-Hastings Algorithm
The Metropolis-Hastings (M-H) algorithm together with the Gibbs sampling are the most
commonly used sampling techniques to construct markov chains whose stationary distribu-
tions are the posterior distribution. Here we focus on the M-H algorithm because the Gibbs
sampler is a special case of M-H where proposal distributions are the posterior conditionals
[Gilks et al. 1996] . The algorithm of M-H is presented in Algorithm 1.

The M-H algorithm starts by initializing the sample value for the random variable x,
usually taken from the prior distribution of x, then for each iteration, a proposal sample x0

is generated from the proposal distribution. The proposed sample is accepted with a proba-
bility ↵ based upon how well the proposed sample is located within the joint posterior density.
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Algorithm 1 Metropolis-Hastings algorithm
1: initialize x(0) ⇠ q(x)
2: for iteration i = 1, 2, . . . do
3: Propose: x0 ⇠ q

�
x(i)|x(i�1)

�

4: acceptance probability:

5: ↵
�
x0|x(i�1)

�
= min

⇢
1,

q
(

x(i�1)|x0
)

⇡(x0)

q
(

x0|x(i�1)
)

⇡(x(i�1))

�

6: u ⇠ U(0, 1)
7: if u < ↵ then
8: Accept the proposal: x(i)  x0

9: else
10: Reject the proposal: x(i)  x0

11: end if
12: end for

The random-walk M-H algorithm, which is the most common, adds a small perturbation
to the current state of the chain x0

= x + Normal(0, �) and then accepts or rejects the
perturbed value. The acceptance ratio of this symmetric proposal distribution depends only
on the joint posterior distribution because the terms q(x0|x(i�1) and q(x(i�1)|x0

) cancel each
other in the acceptance probability.

The random-walk M-H algorithm approximates the stationary distribution ⇡(.) by ex-
ploring the state-space in small steps, each corresponding to a sample in the Markov Chain.
The form of the acceptance probability ↵ ensures that high probability region of ⇡ are ex-
plored more often than the tail of the distribution.

4.3 Trans-Dimensional Markov Chain Monte Carlo Meth-

ods

During inverse estimation of surface fluxes of atmospheric trace constituents from obser-
vations, the spatial domain is represented as the spatial grids of the underlying chemical
transport model. In practice, however, these grids need to be aggregated into fewer regions
or basis functions that can reasonably be constrained by the number of available measure-
ment sites.

The Metropolis-Hastings algorithm requires that the number of basis function,i.e. the
dimension of the vector x, be determined a priori. Subjective determination of the number
of basis functions as well as their spatial delimitation leads to forced correlation of emissions
within one region which may not exist in the true data and the assumption that the emis-
sions in adjacent regions are uncorrelated. Fixing the number of basis functions results in
aggregation errors when too few degrees of freedom are allowed to the model [Lunt et al.
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2016] or spatial structure in the posterior fluxes estimate which does not exist in the true
field when the number of basis function is too high.

Green [1995] has proposed the reversible-jump Markov Chain Monte Carlo (rjMCMC)
which extends the Markov Chain Monte Carlo (MCMC) for a variable dimension state vec-
tor. This is achieved by including the basis functions representation in the state vector as
outlined in section 4.3.1 and adjusting the proposal distribution to consider the change in
dimension and adding the corresponding term in the acceptance ratio. The rjMCMC ap-
plies to all problems where the size of the state vector is unknown, the term TDMCMC is
interchangeably used in geophysical science problems where the vector x represents spatial
(and temporal) dimensions.

Bodin et al. [2009] have applied the TDMCMC for the problem of seismic tomography.
More recently Lunt et al. [2016] have demonstrated the use of TDMCMC in atmospheric
inversion of long lived greenhouse gases. In this work we have used the method of Lunt et al.
[2016].

For the trans-dimensional inversion, we need to include the number of unknown param-
eters k in the Bayes theorem Equation 4.1 and replace the state vector x by m which
represents the emissions and their corresponding partitioning into basis functions, the exact
form of m is presented in the section 4.3.1,

⇢(m|y, k) / ⇢(y|m, k) · ⇢(m|k) (4.6)

The general nature of MCMC methods allows us to introduce additional unknowns in
the inversion, Ganesan et al. [2014] have shown that hierarchical Bayesian approaches that
incorporates hyperparameters ✓ describing the uncertainties in the parameters of the prior
distribution, model measurements uncertainties as well as correlations timescales lead to
realistic emissions and associated uncertainties. The general form of the transdimensional,
hierarchical Bayesian equation becomes [Lunt et al. 2016],

⇢(m, ✓, k|y) / ⇢(y|m, ✓, k) · ⇢(m|✓, k) · ⇢(m|k) · ⇢(k) · ⇢(✓) (4.7)

4.3.1 Basis functions
Similar to Bodin et al. [2009] and Lunt et al. [2016], we have used so-called voronoi tessella-
tions to reduce the dimension of the emissions vector x, but still allowing the flexibility to
incorporate variable number of basis function in the inverse problem. Voronoi cells are con-
structed by assigning a number of points called nuclei (seeds, or generators) to the domain,
each nuclei defines a region where any point within the region is closer to the region’s nuclei
that any other nuclei, the edge of each region is equidistant between the closest two nuclei
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and perpendicular to the line connecting them. With voronoi tessellation, the size and shape
of each basis function is conveniently presented by two values; the latitude and longitude of
the region’s nucleus.

(a) n=15 (b) n=25

Figure 4.1: Examples of voronoi diagram for 15 nuclei (a) and 25 nuclei(b). Each nuclei (dots)
defines a regions where each points within the region is closer to the region’s nuclei than any other
nuclei

In case of voronoi tessellation, the basis functions for the transdimensional inversion are
represented by the configuration of the voronoi diagram c which represent the latitude and
longitude of the voronoi nuclei and the corresponding value of emissions flux x:

m = (c, x) (4.8)

For practical purpose, voronoi cells are restricted to the points of underlying grid cells
which are closest to the cells nuclei in such a way that each grid cell can only belong to one
voronoi cell.

4.3.2 Acceptance probability for the TDMCMC
The main difference between M-H algorithm and TDMCMC is the form of the acceptance
probability, where the acceptance ratio of M-H methods becomes a special case for the most
general form of TDMCMC presented in Equation 4.9,

U  (prior ratio⇥ likelihood ratio⇥ proposal ratio⇥ |J |) (4.9)

U 
✓
⇢(m0

)

⇢(m)

⇥ ⇢(y0|m0
)

⇢(y|m)

⇥ q(m|m0
)

q(m0|m)

⇥ |J |
◆

(4.10)
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in the Equation 4.10, m0 is a proposed update in the basis functions which can be a
perturbation added to the value of the flux, or a change in dimension. The term |J | is the
determinant of the Jacobian matrix of the transformation m! m0, the Jacobian normalizes
the difference in ‘volume’ between two spaces of different dimensions. For the transfor-
mations that do not change the dimension of m, the transformation matrix for the space
component is the identity matrix and the corresponding determinant of the Jacobian matrix
is |J | = 1, this is the case for a fixed-dimension metropolis-hastings algorithm.

Bodin et al. [2009] have shown that for birth-death MCMC, which is the case for this
work, when dimensional changes that allow only one more(less) increase (decrease) in the
dimension size are considered, the determinant of the Jacobian matrix |J | = 1 as well.

In following sections, we determine the form of the prior distribution, the likelihood
function and the proposal distribution.

4.3.3 Prior distribution
The prior distribution for a variable number of unknowns parameters, k depends on both
the basis functions m and k:

⇢(m) = ⇢(m|k) · ⇢(k) (4.11)

Where the basis functions m are expressed by Equation 4.8. Owing to the independence
between the location of a voronoi cell c and the value of emission flux x, the term ⇢(m|k)
can be separated into two terms,

⇢(m|k) = ⇢(c|k) · ⇢(x|k) (4.12)

the full prior distribution for the basis functions becomes,

⇢(m) = ⇢(c|k) · ⇢(x|k) · ⇢(k) (4.13)

We have assumed that the number of basis functions k, can take any integer value between
a specified range kmin and kmax all numbers having equal probability (uniform distribution)
between the range. The prior on the number of basis functions ⇢(k) is given by,

⇢(k) =
1

(kmax � kmin)
if kmin < k  kmax, 0 otherwise (4.14)

Similarly, assuming that voronoi nuclei can be position at any grid on the underlying
grid cells, with equal probability. For K = klatitude⇥ klongitude grid cells and k voronoi nuclei
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there are K!
k!(K�k)! possible configurations. Assuming equal probability for all grids cells, the

prior for nuclei location is expressed by:

⇢(c|k) =


K!

k! (K � k)!

��1

(4.15)

For any given basis function, a lognormal probability density function (pdf) for the prior
emissions fluxes is assumed. The parameters of the lognormal pdf are themselves unkown
parameters to solve for, following the hierarchical bayesian approach proposed by Ganesan
et al. [2014], which is nicely incorporated in the TDMCMC. The lognormal pdf for prior
emissions is given by:

⇢(x|k) = 1

x�x

p
2⇡

· exp
✓
�(ln x� µx)

2

2�2
x

◆
(4.16)

The final form of the basis functions prior pdf (Equation 4.13) for the TDMCMC is:

⇢(m) =


K!

k! (K � k)!

��1

· 1

(kmax � kmin)
· 1

x�x

p
2⇡

· exp
✓
�(ln x� µx)

2

2�2
x

◆
(4.17)

if kmin < k  kmax, 0 otherwise

4.3.4 Likelihood function
The likelihood function gives a quantitative measures of how well the model m matches
observed data. We have adopted the least-square misfit which quantifies how the simulated
data Hx matches the observed data y,

⇢(y|m, k) =
1p

|R|2⇡
· exp

✓
��(m)

2

◆
(4.18)

Where R is the model-measurement covariance matrix and �(m) is the model data mismatch:

�(m) = (y �Hm)

t R�1
(y �Hm) (4.19)

The model-measurement covariance matrix has further been decomposed in two hyper-
parameters, one describing the model measurement uncertainty �y and the other being the
correlation length between measurements ⌧ . Specifically, the diagonal elements of R are
squares of �y, and the off-diagonal terms are given by Equation 4.20 [Ganesan et al. 2014],
where rij is the covariance between measurements i and j, and �ti,j is the time between
measurements,

rij =
p
rii ·
p
rjj · exp

✓
��ti,j

⌧

◆
(4.20)
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4.3.5 Proposal distributions and acceptance probabilities
The proposal distribution is the only remaining term in the Equation 4.10 to derive the
full mathematical expression of the acceptance probability for the transdimensional Markov
Chain Monte Carlo. Unlike the Metropolis-Hastings algorithm (Algorithm 1), where the
next iteration corresponds to the update in emission fluxes, there are six possible updates
to move from the current state to the next in the hierarchical transdimensional MCMC, as
listed below,

1. x update: randomly select and perturb one value of emissions flux like in M-H

2. ✓x update: randomly select and perturb one hyperparameter value related to emissions

3. ✓y update: randomly select and perturb one hyperparameter value related to observa-
tions

4. move: randomly select and move one voronoi nucleus location

5. birth: add one new voronoi nucleus at a random location

6. death: randomly select and remove one voronoi nucleus

and each of these six possible perturbations has its own form of acceptance probability
which is a special case of Equation 4.10.

4.3.5.1 Emission update

Updating a value of emissions flux x for a basis function c takes the form of a Gaussian
perturbation to the current value. The Gaussian perturbation being symmetric, the proposal
ratio of Equation 4.10, q(m|m0)

q(m0|m) = 1. The acceptance probability for emission flux update is
the product of the prior ratio and likelihood ratio, considering the form of the prior given
by Equation 4.17 and the likelihood function of Equation 4.18. The acceptance probability
for the emission flux update is given by:

↵xupdate = min


1, exp

✓
�(ln x0

i � µ)2

2�2
x

+

(ln xi � µ)2

2�2
x

◆
· exp�

✓
�(m0

)� �(m)

2

◆�
(4.21)

4.3.5.2 Emission hyperparameter update

A perturbation on hyperparameters acting on x will only change the parameters of the
lognormal distribution µ, � and has no effect on the likelihood function. The acceptance
probability simply becomes the prior ratio accounting for the change in the parameters of
the lognormal distribution, so from Equation 4.17 we get,

↵x�hyper = min


1,

�x

�0
x

exp

✓
�(ln x� µ0

)

2

2�02
x

+

(ln xi � µ)2

2�2
x

◆�
(4.22)
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It is important to point out that the hyperparameters of the emission pdf are not in-
formed by the data, which guarantees the independence between of the form of prior from
the data.

4.3.5.3 Observation hyperparameter update

A change in the hyperparameters acting on data ✓y will results in a change in the covariance
matrix R and, therefore, the likelihood function. The acceptance probability in this case is
the likelihood ratio, from Equation 4.18 we obtain,

↵y�hyper = min


1, exp

✓
�(�0

(m)� �(m))

2

◆
· |R|
|R0|

�
(4.23)

4.3.5.4 Move step

A move update consists of selecting a random nucleus of the basis functions, perturbing its
position with a Gaussian pdf centered at its current location but with the emission flux
associated to the nucleus remaining unchanged. In this case, the proposal ratio can be
written as,

q(m|m0
)

q(m0|m)

=

q(c|m0
)

q(c0|m)

· q(x|m
0
)

q(x0|m)

(4.24)

The second term of the right hand side is unity because the flux value did not change, and
in addition the first term is also unity because the position c = c(x, y) has been perturbed
by a symmetric distribution. The proposal ratio for a move update is, therefore, q(m|m0)

q(m0|m) = 1.
Similarly, the prior distribution does not change since the emission flux value does not change;
The acceptance probability for the move update is the likelihood ratio:

↵move = min


1, exp

✓
�(�(m0

)� �(m))

2

◆�
(4.25)

4.3.5.5 Birth step

During a birth move, a vacant grid cell is selected randomly and assigned a new voronoi
nucleus, subsequently, an emission value is assigned to the newly created voronoi cell by
adding a Gaussian perturbation to the current emission flux value at the position of the
new nucleus. Since the nucleus is placed independently from the new emission value, we can
write

q(m|m0
)

q(m0|m)

=

q(c|m0
)

q(c0|m)

· q(x|m
0
)

q(x0|m)

(4.26)
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If the current state m has k number of voronoi cells, and K is the total number of model
grids; there are K � k possible locations of the new nucleus. The probability of birth at
position c0k+1 is given by:

q(c0|m) = 1/(K � k) (4.27)

If xi is the emission at position c0k+1, the probability of generating a new emission flux x0
k+1

is given by,

q(x0|m) =

1

�b

p
2⇡

exp

✓
�
(x0

k+1 � xk)
2

2�2
b

◆
(4.28)

where �b is the size of Gaussian perturbation from xk. The proposal pdf for a birth
process is therefore,

q(m0|m) =

1

(K � k)�b

p
2⇡

exp

✓
�
(x0

k+1 � xk)
2

2�2
b

◆
(4.29)

For the reverse step of the birth, the probability of deleting a cell at position c0k+1 is

q(c|m0
) = 1/(k + 1) (4.30)

and the probability of removing an emission flux when a cell is deleted is

q(x|m0
) = 1 (4.31)

We finally get the proposal ratio for the birth step expressed as


q(m|m0

)

q(m0|m)

�

birth

=

p
2⇡(K � k)

k + 1

· �b · exp
✓
(x0

k+1 � xi)
2

2�2
b

◆
(4.32)

The acceptance probability for a birth process is computed by taking Equation 4.32,Equation 4.17
and Equation 4.18 into Equation 4.10,

↵birth = min


1,

�b

�xx0
k+1

· exp
✓
(x0

k+1 � xi)
2

2�2
b

◆
· exp

✓
�(ln(x0

k+1)� µ)2

2�2
x

◆
· exp

✓
��(m0

)� �(m)

2

◆�

(4.33)

The terms corresponding to the underlying resolution grid K cancel each other in Equa-
tion 4.33. Which imply that one does not have to force the voronoi nuclei to the positions
of underlying grid cells [Lunt et al. 2016] and can take any position in the domain.
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4.3.5.6 Death step

The death process randomly selects a voronoi nucleus ck and removes it along with the
associated emission xk. The remove point becomes part of another voronoi cell cj with
emission xj. With similar reasoning to the birth step, the proposal ratio of the death step is
given by,


q(m|m0

)

q(m0|m)

�

death

=

k

�d

p
2⇡(K � k + 1)

· exp
✓�(x0

j � xk)
2

2�2
d

◆
(4.34)

where �d is the size of the Gaussian perturbation of the reverse step(birth step). The
acceptance probability for the death step is given by:

↵death = min


1,

x0
k�x

�bd

· exp
✓
�
(x0

j � xk)
2

2�2
bd

◆
· exp

✓
�(ln(xk)� µ)2

2�2
x

◆
· exp

✓
��(m0

)� �(m)

2

◆�

(4.35)

Algorithm 2 Reversible jump MCMC algorithm [Lunt et al. 2016]
1: initialize parameters x, c, ✓x, ✓y,
2: for iteration i = 1, 2, . . . n do
3: r  i mod 5

4: if r=0 then
5: x0

i = xi +N(0, �x) . Emission update
6: else if r=1 then
7: ⇥

0
i = ✓i +N(0, �theta) . hyperparameter update

8: else if r=2 then
9: k0

= k + 1 . form a new voronoi cell: birth
10: else if r=3 then
11: k0

= k � 1 . Delete one voronoi cell: death
12: else if r=4 then
13: c0i = ci +N(0, �move) . move one voronoi cell: move step
14: end if
15: ↵ (x0, c0, ✓0, k0

) . calculate acceptance ratio
16: u U(0, 1) . calculate a random vale u ⇠ U(0, 1)
17: if ln(↵) � ln(U(0, 1)) then
18: (x, c, ✓, k) = (x0, c0, ✓0, k0

) . accept
19: end if
20: q  i mod 100

21: if q = 0 then Store (x, c, ✓, k) . store every 100

th iteration
22: end if
23: end for
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4.4 Implementation of the rjMCMC

4.4.1 List of parameters used in the inversion
We have applied the rjMCMC methodology outlined in the algorithm 2 to estimate methane
and carbon dioxide emissions in Central and Eastern Africa. Values and range of parameters
and hyper-parameters used for the inversion are listed in Table 4.1. We have stored every
100

th iteration, the reported values are the median of the posterior distribution and the error
bars are the 16

th and 84

th percentiles.

Table 4.1: List and values of parameters used in the inversion

parameter Distr. type starting value range stepsize

Emission scaling factors Lognormal µ = 1, � = 2 - 0.3
Hyper parameter of Lognormal
mean

uniform 1 [0.8,1.6] 0.4

Hyper parameter of Lognormal
standard deviation

uniform 2 [1,3] 0.4

Model-measurement mismatch:
sigma-model

uniform 50 [1,100] 0.4

correlation timescale uniform 12 hours [1,120] 4
Number of basis functions uniform 50 [5,600] randomly add

(birth) or re-
move (death)
one

Frequency of calculation of each
sigma-model value

constant 7 days - -

Number of iterations constant 1 000 000 - -
Burn-in: number of discarded ini-
tial iterations

constant 200 000 - -

nsub: store every nsubth iteration constant 100 - -
stepsize for longitude move constant 8.0 - -
stepsize for latitude move constant 5.0 - -
stepsize for birth/death constant 2.0 - -

4.4.2 Data filtering using NAME model
NAME footprints were also used for data filtering. The local ratio, which is the fraction
of NAME sensitivity footprints of the nine grid boxes surrounding the station to the total
sensitivity of the NAME spatial domain, was used to detect and filter out time periods when
measurements were overly influenced by local emissions. A high degree of local influence
typically corresponds to times when the air is particularly stagnant and transport dominated
by sub-grid scale processes that cannot be resolved by the model [Lunt et al. 2016]. We have
used a local ratio threshold of 40% for this work.
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Chapter 5

Data Presentation and Analysis

Mole fractions of carbon dioxide, methane and carbon monoxide have been measured by the
Picarro G2401 from June 2015. In addition, black carbon with biomass burning fraction was
measured by a seven-wavelengths dual spots Aethalometer from May 2015, weather data
are measured by two weather stations. All available data and instruments are described in
section 2.3. Here we present and analyze CO2, CH4, CO, black carbon and weather data
from June 2015 to February 2017.

5.1 Time series of measured mole fractions and black car-

bon concentrations

Time series of carbon dioxide (Figure 5.1) exhibit enhanced concentrations of CO2 during
both dry seasons. The same enhanced concentrations are observed for carbon monoxide
(Figure 5.3) and black carbon (Figure 5.4). Unlike other measured species, methane mixing
ratios (Figure 5.2) did not show any significant enhancement during the long dry season
(Jun-July-August) of 2015 and 2016.
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Figure 5.1: CO2 time series for Mugogo station

Figure 5.2: Time series of measured CH4 mole fractions at Mugogo
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Figure 5.3: Time series of measured CO at Mugogo from June 2015 to February 2017

Figure 5.4: Hourly average black carbon indicating fossil fuel and biomass burning fraction
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5.1.1 Seasonal cycles

5.1.1.1 Seasonal cycle of carbon dioxide, carbon monoxide and black carbon

Calculated footprints by the NAME model show that the station footprint is almost entirely
located in the Northern Hemisphere in the short dry season (Dec-Jan-Feb) as shown in Fig-
ure 3.6 whereas the Figure 3.8 shows that the station is entirely influenced by the southern
hemispheric air masses during the long dry season (Jun-Jul-Aug.). The Sun transitions from
Northern to Southern Hemisphere in the Fall (Sept-Oct-Nov) and from Southern to Northern
Hemisphere in Spring (Mar-Apr-May). The Sun transition sets up strong convection corre-
sponding to the rain seasons, during which the station footprints extend to both hemispheres.

The location of the center of the ITCZ is classically determined from the precipitation
field. In effort to locate the ITCZ from the UK Met office’s unified model meteorological
data, we followed Zagar et al. [2011] who characterized the ITCZ following the zero crossing
of the meridional component of the wind. We found approximate locations of the ITCZ
similar to what is reported in literature over the African continent [Nicholson 2009] . The
surface pressure at sea level shown in Figure 5.5 also provided a better proxy for the ITCZ
location compared to other potential indicators including the specific humidity and the
vertical wind speed

(a) (b)

Figure 5.5: Boundary layer average meridional component of the wind speed overlaid to the
surface pressure at sea level for February (a) and July (b). The approximate location of the ITCZ,
highlighted by a broken red line, is the latitudinal band where the meridional wind changes the sign.
We used the wind and pressure data from the UK met office’s unified model meteorology, used for
the modeling part of this work

During the short dry season of December-January-February, the Sun is over the Southern
part of Africa, which leaves the Northern part very dry. The dryness results in a regional
scale biomass burning with some due to people preparing their fields for the next growing
season while other fires might be natural bush fires.
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(a) Map of vegetation health index for
February 2016 [NOAA STAR 2017]

(b) Satellite observed open fires, February
2016 [UMD 2017]

Figure 5.6: Satellite observed vegetation health index (a) where greener color means healthier
vegetation, and open fires (b) where each dot represents an open fire. Both maps are for February

(a) Map of vegetation health index for
February 2016 [NOAA STAR 2017]

(b) Satellite observed open fires, February
2016 [UMD 2017]

Figure 5.7: Satellite observed vegetation health index (a), greener color means healthier vegetation
and open fires (b) each dot represents an open fire. Both maps are for August, 2016
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Similarly, during the long dry season of June-July-august, the Sun is over the Northern
part of Africa the Southern part becomes very dry due to lack of convection and hence
precipitation, which results in region scale biomass burning. Figure 5.6 shows the map of
vegetation health index for for February 2017 (Figure 5.6a) provided by NOAA Satellite
Applications and Research (STAR) [NOAA STAR 2017] where a greener color represents
healthier vegetation. The corresponding active fires detected by Visible Infrared Imaging
Radiometer Suites (VIIRS) sensor aboard the Suomi National Polar-orbiting partnership
(NPP) satellite are depicted in Figure 5.6b, fire maps were downloaded from the University
of Maryland (UMD) website. [UMD 2017]. Figure 5.7 depicts the vegetation health index
and fire maps for August.

Figure 5.6 and Figure 5.7 together with their corresponding footprints Figure 3.6 and
Figure 3.8 suggest that the enhanced mixing ratios of CO2 CO and black carbon concentra-
tion observed in both dry seasons result from regional scale biomass burning that occur in
the Northern Africa during the short dry season and in the Southern Africa during the long
dry season.

Figure 5.4 bottom panel, indicates that fossil fuel black carbon (soot) significantly con-
tributes to the total black carbon measured at Mugogo especially during both dry seasons
where its contribution can be in the 20–30% range. Possible sources of soot for Mugogo
include the nearest, albeit small, town of Musanze located at 12 km from the station in
the North-East direction. In the south-West there are Gisenyi in Rwanda and Goma in
the Democratic Republic of Congo, located at 45 km from the station. There are also a
number of small cities in Uganda, the major ones being Masaka and Kampala the capital
city of Uganda both located in the North-East direction and 270 km and 380 km respectively.
In the South East direction there is Kigali, the capital city of Rwanda, located at 70 km away.

The atmospheric lifetime of soot is generally assumed to be greater than 4.2 days [Jacob-
son 2010; Wang et al. 2014] with wet deposition as the main removal process. Considering
the atmospheric lifetime of soot of 4 days and a modal wind speed of 3m s

�1 (Figure 5.15b)
during the short dry season, it is evident that soot emitted from Kampala would be able
to reach the station especially considering that there is much less rain during this season.
Similarly, fossil fuel black carbon emitted from Kigali, the capital of Rwanda, and other
major towns of Tanzania would be able to make it to the station during the dry season of
June-July-August. Which explains the relatively higher fraction of soot measured at Mugogo
station during the dry seasons.

5.1.1.2 Seasonal cycle of methane

Time series of measured methane mole fractions at Mugogo station (Figure 5.2) exhibit high
methane mixing ratios during the December-January-February season. The average station
footprint for this period (Figure 3.6) indicates that during this time of the year, the sta-
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tion is largely influenced by air masses coming from the Northern hemisphere. Figure 5.8a
and Figure 5.8b show the latitudinal distribution of monthly mean methane mole fractions
calculated by NOAA from flask measurements for January 2008 and July 2008 respectively
[GLOBALVIEW 2017], and latitudinal distributions of monthly mean CO2 mole fractions
(Figure 5.9) have been shown for comparison. A significant inter-hemispheric gradient exists
for methane mixing ratios, and the gradient gets even stronger during the short dry season.

The enhanced methane mole fractions during the short dry season are, therefore, due to
northern hemisphere air masses being advected to the station during this time of the year.
Unlike CO2 and CO whose seasonal cycles are largely driven by regional biomass burning,
methane season cycles are mostly driven by shifting winds pattern around the year.

(a) (b)

Figure 5.8: Latitudinal distribution of monthly mean mole fractions of CH4 measured by NOAA
for (a) January 2008 and (b) July 2008 [GLOBALVIEW 2017]. Cyan circles are baseline from marine
boundary layer, red ’pluses’ are surface measurements, blue ’pluses’ are aircraft measurements and
a smooth curve is fitted to the marine boundary layer measurements
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(a) (b)

Figure 5.9: Latitudinal distribution of monthly mean mole fractions of CO2 measured by NOAA
for (a) January 2008 and (b) July 2008 [GLOBALVIEW 2017]. Cyan circles are baseline from marine
boundary layer, red ’pluses’ are surface measurements, blue ’pluses’ are aircraft measurements and
a smooth curve is fitted to the marine boundary layer measurements

We have plotted the recently released NOAA flask data from stations that are closest
to Mugogo station, those are Mahe Island in the Seychelles, Assekrem station in Algeria,
the Ascension Island (UK) station and the Gobabeb station in Namibia (Figure 5.10a). We
have also plotted (Figure 5.10b) the same stations and the Mt. Kenya station for the period
of 2004 to 2011 when the Mt. Kenya station was operating, where the map of Figure 5.11a
shows the location of those stations. Both the Seychelles station and the Mt. Kenya station
have the same season cycle as Mt. Mugogo station, but the Ascension island, which is in
the same equatorial belt, does not exhibit the mole fractions enhancement around February.
Figure 5.11b demonstrates that Mugogo station, the Mount Kenya station and the Seychelles
station are located between the two seasonal extremes of the ITCZ and, therefore, are
seasonally exposed to air masses from both hemispheres, while the Ascension Island station
always receives air masses from the southern Hemisphere.
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(a)

(b)

Figure 5.10: Time series of closest NOAA measurement sites for our measurement period (a) and
for the data used in CarbonTracker-CH4 (b)
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(a) (b)

Figure 5.11: (a) Location of NOAA sites that are closest to Mugogo station
https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/observations.php. (b) Approximate location
of the ITCZ in January and July (source: Wikipedia) with approximate locations of the closest
NOAA stations

5.2 Diurnal cycles of CO
2

and CH
4

Carbon dioxide measured at Mugogo station exhibits a daily cycle, with low values of mole
fractions observed during the day due to ecosystem uptake and high values observed dur-
ing the night as shown in Figure 5.12. Unlike CO2, methane increases during the day and
decreases during the night (Figure 5.13). Possible explanation for methane diurnal cycle at
Mugogo would involve the dynamic of the mixing layer; if Mugogo summit is mostly in the
mixing layer during the day and above the planetary boundary layer during the night, the
measurement could be largely influenced by local sources during the day while measurement
would represent a lower regional background during the night. Possible local sources and
their expected influence on diurnal cycle of methane are enumerated below:

Wetland emissions: Mugogo is surrounded by wetlands located in the valleys. As wetland
methane emissions increase with temperature,[Cui et al. 2015; MacDonald et al. 1998]
we would expect methane emissions to peak in the afternoon, this is consisted with
observed diurnal cycle of methane mole fractions at Mugogo

Fossil fuel emissions: As detailed in section 5.4.4, methane mixing ratios increase for
winds coming from the South-East direction, so this points to possible fossil fuel emis-
sion from Kigali, the capital city of Rwanda.

Lake Kivu emissions: Lake Kivu located at about 40 km in the South West of Mugogo
is known to contain large amount of CH4 (65 km3) and carbon dioxide (256 km3) at
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0

�C and 1 atm [Pasche et al. 2011]. Gas emissions from lakes have been shown to
be enhanced at night due to cooler surface water setting up convection and bubbling.
Methane emitted overnight from lake Kivu would accumulate in the boundary layer
and contributed to the high mole fractions observed at Mugogo in the morning as the
planetary boundary layer breaks up. Polar plots of Figure 5.27 show increased methane
mole fractions for winds coming from the South West of the station, which correspond
to the location of Lake Kivu, in February, March, May and September. Given the
amount of methane dissolved in the lake, one would expect CH4 fluxes from the lake
to be a significant driver of CH4 mole fractions measured at Mugogo. Fluxes from the
lake are likely limited by the mountain chain formally know as the Congo-Nile divide
which extends from South to North between the station and the lake, with summit
altitude equal or higher than mount Mugogo summit.

Figure 5.12: Average diurnal cycle of CO2 at Mugogo. Values are difference from the mean and
error bars are the range of monthly means
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Figure 5.13: Average diurnal cycle of methane mixing ratios. Values are difference from the mean
and error bars are the range of monthly values

5.3 Weather data

Mount Mugogo is located in the North West part of Rwanda which is significantly cooler and
receives more precipitation than the rest of the country. Figure 5.14 shows that the daily
maximum temperature was slightly higher in February and March while the coolest tempera-
ture close to freezing were measured in the long rain season (March-April-May). The wettest
months are March, April and May while the driest months were July, August and September.

Lights winds are observed around the year with a modal wind speed in the 2–4m s

�1

range as shown in Figure 5.15b, Figure 5.16b Figure 5.17b and Figure 5.18b. The highest
wind speed observed were around 11m s

�1 and were observed in the rain seasons.

Unlike wind speed which vary very little around a year, wind directions have a clear
seasonal shift, and Figure 5.15a points out that Easterlies and North-East winds dominate
the short dry season, as expected from this equatorial location during the Northern Winter.
During this short dry season, strongest winds in the 6–8m s

�1 range, blow from North-East
and West North West, although not very frequent.
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Figure 5.14: Measured daily minimum temperature (blue), daily maximum temperature (red) and
precipitation intensity (bottom panel) at Mugogo

In the long rain season (March-April-May) winds shift to Southerlies and South West
winds (Figure 5.16a). During this season also winds get stronger with high wind speeds of
8–10m s

�1 primarily blowing from the South, with some coming from the South West.

The winds direction do not change a lot from the long rain season to the dry season. Still,
Figure 5.17a shows increased wind component from the South East direction and reduced
Easterlies compared to the previous season. In addition, the highest wind speeds observed
are lower and there is no preferred direction for higher wind speed.

During the short rain season, Mugogo station sees winds blowing from a wider area
ranging from the South South East to North East. With higher wind blowing from South
South East, South East and North East.
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(a) (b)

Figure 5.15: Wind rose (a) and wind speed frequency(b) for the short dry season of December-
January-February

(a) (b)

Figure 5.16: Wind rose (a) and wind speed frequency (b) for the long rain season (Mar-Apr-May)
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(a) (b)

Figure 5.17: Wind roses (a) and wind speed frequency (b) for the long dry season (Jun-Jul-Aug)

(a) (b)

Figure 5.18: Wind rose (a) and wind speed frequency (b) for the short rain season (Sept-Oct-Nov.)
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5.4 Correlations between species

In this section we seek to find possible correlations between measured mole fractions of CO2,
CH4, CO and BC concentration which indicates common or co-located sources.

5.4.1 Mixing ratio correlations between black carbon and carbon
monoxide

We have already found in section 5.1.1.1 and 5.1.1.2 that carbon monoxide and BC have
the same seasonal distribution largely due to regional bush fires and fossil fuel burning from
nearest towns. In addition, Figure 5.19 illustrates that most major pollution events seen in
black carbon concentration time series are also found in CO mole fractions time series. More
quantitatively, Figure 5.20a, Figure 5.21a and Figure 5.21b indicate that carbon monoxide
mole fractions and BC concentration are well correlated most of the year with coefficients
of determination R2 of 78% and 71% in the dry seasons and 64% in the short rain season.
However, there is no correlation between CO and BC in the long rain season as seen in
Figure 5.20b. The lack of correlation between CO and BC in the long rain season, and
relatively weak correlation in the short rain season points out to substantial wet removal of
black carbon particles before they make it to the station.

Figure 5.19: Daily mean carbon monoxide (blue) and black carbon (red) for 2016
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(a) Dec-Jan-Feb (b) Mar-Apr-May

Figure 5.20: Scatter plots for CO and BC for the short dry season (DJF) and the long rain season
(MAM)

(a) Jun-Jul-Aug (b) Sep-Oct-Nov

Figure 5.21: Scatter plots for CO and BC for the long dry season (JJA) and the short rain season
(SON)

5.4.2 Correlation between carbon monoxide and methane mole frac-
tions

During the short dry season, as can be seen in Figure 5.22a, there is no significant corre-
lation between CH4 mole fractions and CO. This is a period of the year when air masses
with higher methane concentrations are advected from the Northern Hemisphere. Measured
methane mole fractions are likely to change due to the wind speed and direction, while CO
depends on regional biomass burning as well as local sources.
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Figure 5.22b indicates that CH4 mole fraction and CO mole fractions are correlated dur-
ing the long rain season. This correlation points to a possible common source for CO and
CH4 during this period of the year, and more investigation would be needed to tell apart the
relative contribution between local biomass burning and fossil fuel emissions from nearby
towns, which are both possible common source of CO and CH4.

There is no correlation between methane mole fractions and carbon monoxide mole frac-
tions during both the long dry season and the short rain season, as highlighted in Fig-
ure 5.23a and Figure 5.23b. During this time carbon monoxide mole fractions are enhanced
by regional scale biomass burning while methane mole fractions stay relatively low compared
to the February maximum.

(a) Dec-Jan-Feb (b) Mar-Apr-May

Figure 5.22: Correlation between carbon monoxide and methane mixing ratio for the short dry
season and the long rain season
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(a) Jun-Jul-Aug (b) Sept-Oct-Nov

Figure 5.23: Correlation between carbon monoxide and methane mixing ratio for the long dry
season and the short rain season

5.4.3 Correlation between carbon monoxide and carbon dioxide
mole fractions

Correlation between CO2 and CO mole fractions are shown in Figure 5.24a, Figure 5.24b,
Figure 5.25a and Figure 5.25b for the four seasons. The coefficient of determination directly
follows the scale of regional biomass burning. There is no correlation at all during the
long rain season, a period when the regional biomass burning is minimum, and the largest
coefficient of determination is observed in the long dry season, a period where regional
biomass burning is at its maximum. Intermediate values for the coefficient of determination
are found in the short rain season and the short dry season, but still the short dry season
has higher coefficient of determination than the short rain season.

(a) Dec-Jan-Feb (b) Mar-Apr-May

Figure 5.24: Correlation between carbon monoxide and carbon dioxide mixing ratio for the short
dry season and the long rain season
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(a) Jun-Jul-Aug (b) Sept-Oct-Nov

Figure 5.25: Correlation between carbon monoxide and carbon dioxide mixing ratio for the long
dry season and the short rain season
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5.4.4 Methane mole fractions dependence on wind direction
A methane rose plot for the year 2016 is shown in Figure 5.26 which is overlaid to a map
illustrating the location of lake Kivu and the city of Kigali. The rose plot shows the frequency
of wind direction with color code representing methane mole fractions, with a purpose to
identify the most likely direction that high/low values of methane mole fractions were coming
from.

Figure 5.26: Methane rose plot showing the wind direction frequency color-coded with methane
mole fractions for 2016. The rose plots is overlaid on a map showing the location of lake Kivu and
the city of Kigali

From Figure 5.26, we expect that Kigali city fossil fuel emissions would come from the
South East direction, while possible emissions from lake Kivu would come from the South
West direction.

Monthly rose plots of methane mole fractions are presented in Figure 5.27. The rose plots
emphasizes the seasonal cycle of methane, already investigated in section 5.1.1.2, where high-
est mole fractions are measured in February whereas lowest are observed around October.
On top of the background concentrations which are set by the seasonal cycle, one can iden-
tify, in some months, the directions from which methane mole fractions were consistently
high.

Mole fractions enhancement from lake Kivu emissions are observed for the winds blowing
from the South West and South South West directions, those enhancement are visible for
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the months of February, March, May, July and September.

(a) January (b) February (c) March (d) April

(e) May (f) June (g) July (h) August

(i) September (j) October (k) November (l) December

Figure 5.27: Methane rose plots showing the wind direction frequency color-coded with methane
mole fractions.

Emissions from the city of Kigali also were likely to enhance the baseline methane con-
centrations from the South East and South South East directions, and those enhancements
occurred in January, February, March, September, October and December.
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A significant contribution from South of our station is also observed in February, March,
May, June and July. The South direction corresponds to the settlements near the station as
well as agricultural fields. The enhancement from the Southern direction is likely to be due
to emissions from agricultural activity in the direct vicinity of the station.

5.4.5 Carbon dioxide mole fractions dependence on wind direction
Rose plots of carbon dioxide, shown in Figure 5.28, exhibit a seasonal cycle where high mole
fractions are observed in February and August as discussed in section 5.1.1.1.

Unlike methane, carbon dioxide mole fractions are equally distributed from all directions.
This is due to the fact that CO2 has varied sources and sinks including household cooking,
open burning, transportation, plant photosynthesis and respiration etc. These sources are
likely to be found in all directions from the station.

A stronger mole fractions enhancement from the South West direction and the East North
East direction is observed in February. Those directions correspond to the location of lake
Kivu and the nearby town of Musanze respectively.
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(a) January (b) February (c) March (d) April

(e) May (f) June (g) July (h) August

(i) September (j) October (k) November (l) December

Figure 5.28: Carbon dioxide rose plots showing the wind direction frequency color-coded with
carbon dioxide mole fractions.
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Chapter 6

Methane inversion

Measured mole fractions of methane and calculated NAME sensitivity maps were used within
the rjMCMC framework to optimally estimate methane emissions in Eastern and Central
Africa. Here we describe the prior emissions used in the inversion, the inversion domain and
the boundary conditions and methane inversion results.

6.1 Inversion prior

“Current observation networks are sufficient to quantify global annual radiative
forcing and constrain global emission rates (with knowledge of loss rates), but
they are not sufficient for accurately estimating regional scale emissions and how
they are changing with time” - IPCC:WGI [2013, AR5, p.165]

Our specific goal was to start from the best available estimate of global methane emission
fluxes, and use it as out prior and update regional emissions fluxes from our measured data.
In this regards, we have used assimilated methane emissions provided by the global methane
budget [Peters, Jacobson, et al. 2007; CarbonTracker-CH4 2010].

6.1.1 CarbonTracker-CH4
CarbonTracker-CH4 is a data assimulation system for CH4 provided by the National Oceanic
and Atmospheric Administration (NOAA). Corresponding data assimilations systems for
CO2 are available for different time periods, the latest being Carbon Tracker 2016.

CarbonTracker-CH4 has different modules for each component of the methane cycle,
transport and chemistry.

Transport module: The chemistry and transport in Carbon tracker are simulated by
the two-way nested global chemistry-transport zoom model, Tracer Model, version 5
(TM5) [Krol et al. 2005]. The model separately simulates advection, deep and shallow
convection and vertical diffusion in the planetary boundary layer and free troposphere.
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TM5 was driven by the meteorology from Europian Center for Medium range Weather
Forecast (ECMWF) with 91 vertical levels and at a global resolution of 3� ⇥ 2

� and a
nested regional grid of 1� ⇥ 1

� over North America.

Fossil Fuel Module: CarbonTracker-CH4 used the prior emissions from Emissions Database
for Global Atmospheric Research, EDGAR 3.2FT2000 [EDGAR 2005], which is 1⇥ 1

degree grid estimates for fugitive emissions from coal, oil and gas production. The
database is based on emissions inventories by country and sector.

Agriculture and Waste module: CarbonTracker-CH4 uses EDGAR 3.2FT2000 emis-
sion inventory for prior emissions for rice agriculture, enteric fermentation, animal
waste management, wastewater and landfills.

Fire module: The fire module used in the CarbonTracker-CH4 uses the Global Fire Emis-
sion Database (GFED). The GFED uses the Carnegie-Ames Stanford Approach (CASA)
biogeochemical model [Potter et al. 1993] to estimate the carbon fuel in various biomass
types. The GFED calculates the burned area from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) satellite active fire counts combined with vegetation
cover information. The burned area are then fed into the CASA biospheric model to
calculate prior estimates of emissions from fires.

Natural sources: Wetlands, which are regions that are permanently or seasonally water
logged, are the largest natural source of atmospheric methane. The CarbonTracker-
CH4 uses as prior the estimates of Bergamaschi, Frankenberg, et al. [2007], which is
an inverse study estimating methane surface fluxes from SCIAMACHY satellite ob-
servations.
The prior for the termites and wild animal methane emissions for CarbonTracker were
based on Houweling et al. [1999] and Sanderson [1996] and the methane loss by oxida-
tion in soil was based on study by Ridgwell et al. [1999]. Emissions maps for February
and July are shown in Figure 6.1, each high emission spot in the map corresponds to
a wetland region.

Observations: CarbonTracker-CH4 uses surface observations from NOAA ESRL Cooper-
ative Global Air Sampling Network. These are flask samples which are collected once
a week or once in two weeks and are sent to the NOAA laboratory where they are an-
alyzed. In addition to flask samples, CarbonTracker-CH4 included measurements from
tall towers in Canada operated by Environment Canada (EC). Figure 5.11a shows
the observations sites used in CarbonTracker-CH4 that are closest to our inversion
domain. To the East there are Mount Kenya whose record has a lot of missing data
(Figure 5.10b) and the Seychelles, in the North direction there is the site of Assekrem
in Algeria, the Ascension Island site is in the West direction and Gobabeb, Namibia
in the Southern direction. All those sites are outside of our inversion domain and, as
shown in Figure 5.10, only the Mahe Island site in the Seychelles and the Mount Kenya
sites capture the seasonal cycle that we see at Mugogo. In addition, low frequency,
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flask samples are well suited to capture large scale and long-term trends but cannot
detect regional scales and high frequency variability in mole fractions that are needed
to constrain regional emissions.

(a) (b)

Figure 6.1: Prior emissions of methane from CarbonTracker-CH4, for February (a) and July(b).

6.2 Inversion setup

6.2.1 Inversion domain and sub-domain
The NAME model was run for the domain extending from -40.0 to 18.0 degrees North
latitude and -15.0 to 55.0 degrees East longitude. The domain is shown in Figure 6.2 made
up by all five colored boxes. The TDMCMC inversion was run for a much smaller sub-
domain, illustrated by the center blue box in Figure 6.2, while the outer orange, yellow,
light blue and red regions of Figure 6.2 were considered fixed regions and solved for using
the usual Metropolis-Hastings algorithm. Solving the TDMCMC for a sub-domain greatly
improve the computational efficiency of the inversion, and is justified by the fact that the
magnitude of the sensitivities decreases with the distance from the measurement site, and
the model is not expected to resolve finer spacial details in the far field region of the domain.
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Figure 6.2: NAME domain and subdomain used for inversion, the transdimensional inversion was
done in the center blue box, while the fixed-dimension MCMC was used for the outer boxes

6.2.2 Boundary Conditions
The CarbonTracker-CH4 provides assimilated mole fractions of CH4 at 3-hourly and 3

�⇥ 2

�

resolution. However, the most recent methane mole fractions are available for year 2010.
To estimate the boundary conditions for 2016, we have taken advantage of NOAA flask
sampling sites which are located close to the edge of inversion domain in each direction, as
shown in Figure 5.11a. We then sliced a vertical cross section from the CarbonTracker-CH4
mole fractions along each of the four boundaries of the inversion domain, for each site, the
cross section was scaled up by the ratio of monthly mean mole fractions measured at the
site in 2016 divided by the monthly mean mole fractions measured at the same site in 2010.
The scaling factors were found between 1.015–1.035 and are shown in the bottom panel of
Figure 6.3, while the top panel shows the monthly mean values for 2010 and 2016.
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Figure 6.3: Top panel: Monthly mean mole fractions measured at the stations close to the edge of
the inversion domain for 2016 (strait line) and 2010 (broken line).botom panel: Ratios of monthly
mean mole fractions measured in 2016 over those measured in 2010, the ratios where used to scales
the boundary mole fractions. The color scale apply to both panels

6.2.3 Inversion parameters
We have carried out a TDMCMC inversion where the basis functions were allowed to vary
between kmin = 5 and kmax = 600 according to Equation 4.14. Prior emissions scaling factors
were assumed to follow a lognormal distribution (Equation 4.16 ) of location parameter
µx = 1.0 and scale parameter �x = 2.0, which corresponds to prescribing a 2�� uncertainty of
200%. The parameters µx and �x were allowed to vary following a uniform distribution 0.8 
µx  1.6 and 1.0  �x  3.0. The model-measurements uncertainties, were allowed to vary
between 1–100 ppb with a starting value of 50 ppb. The model-measurement uncertainties
represent various uncertainties associated with the instrument and the model simulation of
mole fraction, these include structural uncertainties within the model, representation errors
and aggregation errors. Each simulation was run for 1 200 000 iterations with the first 200
000 iterations discarded as burn-in. Table 4.1 provides a more complete list of parameters.
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6.3 CH
4

inversion results

In this section we present some of the results of methane inversion, while the rest of results
have been put in the appendix A.

6.3.1 Uncertainty reduction maps
The air masses coming to the measurement site often originate from a specific direction de-
pending on the direction and the speed of the wind, and the calculated lagrangian footprints
tend to localize in specific regions of the inversion subdomain. Regions to which the mea-
surement site is the most sensitive get the highest uncertainty reduction while region with
less sensitivity to measurements have posterior emission fluxes close to prior emissions. The
sensitivity is proportional to the product of the footprint and the emission flux as shown in
the equation of the likelihood function (Equation 4.19).

Figure 6.4: Uncertainty reduction map for February 2016

Figure 6.4 presents the uncertainty reduction maps for February 2016. The normalized
uncertainty reduction map is the ratio of the 90

th percentile ranges of the posterior to the
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prior, expressed as:

uncertainty_reduction = 1� 90%ile range posterior
90%ile range prior

(6.1)

The prior uncertainty was obtained by running the inversion without observations, which
results in the prior but with the uncertainty reflecting all sources of uncertainty in the in-
version system.

6.3.2 Posterior emission maps
We show in Figure 6.5, the prior methane emissions for February 2016 (Figure 6.5a) and
the corresponding posterior emissions fluxes (Figure 6.5b).The posterior emissions are less
than the prior emissions in the inversion sub-domain, this suggest that the prior was an
overestimate.

(a) (b)

Figure 6.5: CH4 prior (a) and posterior (b) emission fluxes for February 2016

6.3.3 Scaling factors and country totals
Scaling factors, which are the ratio of the posterior over the prior emissions are shown in
Figure 6.6a. A scaling factor greater than 1 indicates that the posterior was increased from
the prior. Our inversion for February 2016 results in general reduction of prior emissions. Bar
plots of prior and posterior country totals for February 2016 are presented in Figure 6.6b,
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Rwanda, Burundi, Tanzania and the Democratic Republic of the Congo saw the largest
decrease in the posterior national total emissions.

(a) (b)

Figure 6.6: Prior scaling maps(a) and countries emissions totals (b) for February 2016

6.3.4 Forward run with optimized methane emissions
We present, in Figure 6.7 and Figure 6.8, the time series comparing the mole fractions
modeled with prior and posterior emission to observations. We also include the prior and
posterior baseline contribution to modeled mole fractions which result from the emissions
coming from the boundaries and the regions outside the inversion subdomain (Figure 6.2).

The modeled mole fractions accurately reproduce observations measured at Mt. Mu-
gogo. The figures reveal that modeled mole fractions using prior emissions are higher than
observed mole fractions at Mt. Mugogo, but, as illustrated in both figures, most of increase
happens from the baseline. This is an interesting finding because we previously found that
emissions from the inversion regions were overestimated, but also suggest that the baseline
contribution, which are emission away from the inversion subdomain, should be increased in
order to explain measurements at Mt. Mugogo. Furthermore, by estimating a reduction in
estimated regional emissions and suggesting an increase in emissions outside the region, we
expect little or no change to the global budget of methane.
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Figure 6.7: time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the prior(magenta) and posterior
(black) baseline contribution to modeled mole fractions, for March 2016
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Figure 6.8: time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the prior(magenta) and posterior
(black) baseline contribution to modeled mole fractions, for October 2016

6.3.5 Summary of methane inversion results
The Central and East African region emitted methane in the range of 1–4Tg each month
(Figure 6.9). High methane emissions were observed in December and January and in May
and June, periods which correspond to the transition from the wet season to the dry season.
Maximum methane emissions in May and January suggest that the water table in wetlands
was transition from flooded to dry, which is optimal for methane production. Overall the
total methane source from the inversion domain was 24.13Tg (16.3–33.81Tg) of CH4, a
change from a prior of 25.84Tg(15.17–53.13Tg) of CH4, this is a small decrease but with
80% uncertainty reduction.

National totals for the year 2016 are shown in Figure 6.10, the Democratic Republic of
the Congo, Sudan and Tanzania were the highest methane emitters in 2016, while Rwanda
and Burundi were the lowest emitters, owing to their small area.
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Figure 6.9: Prior and posterior monthly emissions fluxes of methane (Tg/month) estimated for
the entire inversion subdomain

Figure 6.10: Country’s prior and posterior emissions estimated for the year 2016
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Chapter 7

Carbon dioxide inversion

Optimized mole fractions of carbon dioxide are estimated using the NAME model footprints
and the rjMCMC methodology. This chapter outlines the prior and boundary conditions
used in the inversion, the inversion setup and parameters and the inversion results.

7.1 Inversion prior

We have used CarbonTracker-CO2, version CT2016 [Peters, Jacobson, et al. 2007, with
updated documentation at https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/index.php]
emissions and mole fractions as prior and boundary conditions for the CO2 inversion.

Terrestrial biosphere module: Carbon Tracker CO2 version 2016 (CT2016) uses the
CASA biogeochemical model to calculate carbon fluxes using input from weather mod-
els and satellite observed Normalized difference Vegetation Index (NDVI) to track
plant phenology. CASA model provides monthly mean Net Primary Production
(NPP) and heterotrophic respiration (RH), NPP is the difference in photosynthetic
carbon uptake, named the Gross Primary Production (GPP), and the metabolic
respiration, also called the autotrophic respiration (RA). The monthly mean Net
Ecosystem Exchange (NEE) is calculated as the algebraic sum of NPP and RH ,
NEE = NPP + RH , carbon uptake by terrestrial biosphere is considered negative.
Following the method of Olsen et al. [2004], CT2016 further downscale the monthly
mean NPP and RH calculated by CASA model to diurnal cycle by transforming NPP
and RH to GPP and total ecosystem respiration (RE), RE = RA +RH where GPP is
modeled as a linear function of incoming surface solar radiation and RE as a function
of near-surface temperature.

Fire emission module: The CT2016 uses the Fourth-generation Global Fire Emission
Database (GFED4.1) [Giglio et al. 2013] and the Global Fire Emission Database
from NASA Carbon Monitoring System (GFED_CMS). The GFED4.1 uses the
ECMWF and emissions are modeled at 3-hourly interval, while the GFED_CMS
uses the Modern-Era Retrospective Analysis for Research and Application (MERRA)
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meteorology and emissions are available at daily resolution. Both modules use the
satellite derived fire counts and vegetation cover to estimate the burned area which is
then fed into the CASA model to estimate carbon dioxide emissions from fire.

Fossil fuel module: CT2016 uses two fossil fuel emissions datasets; the “Miller” dataset
and the Open-source Data Inventory of Anthropogenic CO2 (ODIAC) dataset. The
Miller fossil fuel dataset extrapolates to 2016 the annual global and country totals from
the Carbon Dioxide Information Analysis Center (CDIAC) [Boden et al. 2013] which
extends through 2010. The extrapolation applies a percentage change for each fuel type
(solid, liquid and gas) following the 2016 British Petroleum (BP) Statistical Review of
World Energy for 2011–2015 [BP 2016]. The country totals are further mapped into a
1

� ⇥ 1

� grid following the spacial patterns of the EDGAR database.
The ODIAC fossil fuel emission uses the 2016 version of CDIAC [Boden et al. 2016]
which extends up to 2013 which is then extrapolated to 2016 in the same way as the
Miller dataset. Unlike the Miller dataset, The ODIAC country totals are mapped into
a 1

� ⇥ 1

� following the geographical location of power plants, provided by the CAR-
bon Monitoring and Action (CARMA) and the remaining fossil fuel emissions were
distributed using the nighlty image collected by the U. S. Airforce Defense Meteoro-
logical Satellite Project (DMSP), while aviation emissions were mapped using flight
tracks adapted from the UK Global Aircraft Emissions data project for climate change
impacts evaluation (AERO2k) air emission inventory.

Oceans module: First guess air-sea exchanges for CT2016 data assimilation were taken
from the climatology of direct measurement of CO2 partial pressure in surface wa-
ters p � CO2 provided by Takahashi et al. [2009], in addition, ocean inversion fluxes
from Jacobson et al. [2007] were also used in order to estimate the uncertainty in the
inversion.

Atmospheric transport and observations: Carbon TrackerCO2, version 2016 uses TM5
model and surface observations from NOAA ESRL Cooperative Global Air Sampling
Network which have been already introduced in section 6.1.1.

7.1.1 Inversion domain and boundary conditions
Similar to the methane inversion, NAME model was run for the spatial domain -40 to 18
latitude North and -15 to 55 longitude East. The TDMCMC inversion sub-domain was
bounded by -14.3 and 12.2 latitude and 15.3 and 49.4 longitude. For boundary conditions
we have used the gridded mole fractions provided by the near real-time Carbon Tracker, ver-
sion 2016. For CO2 inversion, the model-data mismatch was set to be uniformly distributed
between 1–20 ppm, while other parameters where the same as the CH4 inversion that were
presented in section 6.2.3 and Table 4.1.
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7.1.2 Modeling the diurnal cycle of CO2

Biogenic fluxes of CO2 to the atmosphere are largely composed by the photosynthetic CO2

uptake by plants also termed the Gross Primary Production (GPP), the release of CO2 due
to metabolic respiration of living plants also called the autotrophic respiration (RA) and the
release of CO2 due to decomposition of organic matter in soil, the heterotrophic respiration
(RH). From the atmospheric measurement perspective, we see the net algebraic sum of all
those fluxes, the Net Ecosystem Exchange (NEE). The NEE is a relatively small value with
a global total of a few petagrams of carbon per year compared to the individual fluxes of
about 120PgC per year in both ways [Carbon Tracker 2016].

Our NAME setup only allowed time-integrated (30 day) footprints to be stored. There-
fore, the impact of sub-monthly variations in flux on modeled mole fractions was not in-
cluded in our simulation. Given that CO2 flux has very large diurnal cycle, it is likely that
its omission from our setup will lead to biases. In future, this will be corrected by storing
time-resolved NAME footprints.

To partially mitigate this shortcoming of our model setup, we have used the daily aver-
age fluxes and boundary conditions as proxy for the anthropogenic CO2 fluxes plus the Net
Ecosystem Exchange, which is, in fact, what drives the trend in measured mole fractions at
given location. The CO2 inversion could be improved by using the time-resolving footprints.

7.2 CO
2

inversion results

Results for carbon dioxide inversion for each month of 2016 can be found in the appendix
B. Here we show sample results and highlight major findings.

7.2.1 Uncertainty reduction map and footprints
Figure 7.1 shows the uncertainty reduction map for carbon dioxide for February 2016 and
the corresponding footprint. The equation of the likelihood function (equation4.19) indicates
that the sensitivity is proportional to the product of the footprint and the emission flux.
We, therefore, see high sensitivity to the measurements in the regions of high values of the
footprints or in the regions of high emission fluxes. During February 2016, the measurements
were most sensitive to emissions from Tanzania and the Democratic republic of the Congo
and significantly sensitive to emissions from Kenya, Uganda and Somalia.
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(a) (b)

Figure 7.1: Uncertainty reduction map (a) and footprint (note the log scale) (b) for February
2016. The extent of the map in (a) is highlighted with a broken line in the footprint map

7.2.2 Prior and posterior emissions
CO2 prior and posterior emissions in Eastern and central Africa are largely driven by biogenic
emissions.The northern part of the inversion subdomain which includes northern Democratic
Republic of Congo, Central African Republic, Southern Chad, South Sudan, South of the
Republic of Sudan (North Sudan), and Ethiopia are a net source of atmospheric CO2 during
the short dry season, mostly due to biomass burning and reduced photosynthesis. During
this time, the central part of the inversion sub-domain was a net sink of CO2 to the atmo-
sphere. Figure 7.2 illustrates that the posterior emissions have the same spatial emission
distribution as the prior with a significant source of CO2 in the northern part of Central
Africa.
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(a) (b)

Figure 7.2: CO2 prior (a) and posterior (b) emissions for February 2016

7.2.3 Emissions scaling factors and country totals
Ethiopia and South Sudan (Figure 7.3b) were the largest net source of CO2 in February 2016.
The posterior emissions were slightly higher than the prior emissions for those two countries.
The map of posterior over prior emissions (Figure 7.3a) points to increased emissions with
respect to the prior along the southern boundary of the inversion sub-domain which is part
of Angola and Zambia and reduced prior emissions in the central Democratic Republic of
the Congo

(a) (b)

Figure 7.3: Prior scaling maps(a) and countries emissions totals (b) for February 2016
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7.2.4 Forward run with optimized CO2 emissions
Time series of observed mole fractions of CO2, modeled mole fractions with prior and poste-
rior emissions as well as the modeled baseline are depicted in Figure 7.4 for March 2016 and
Figure 7.5 for October 2016. The large variability in modeled mole fractions is due to lack of
sufficient observations to constrain the inversion because we have used only daily averages.
During March and October the net contribution of the inversion subdomain to the measured
mole fractions was so small that most of variability in the measured mole fractions were due
to the contribution from the boundaries.

Figure 7.4: time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the posterior baseline (black)
contribution to modeled mole fractions, for March 2016
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Figure 7.5: time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the posterior baseline (black)
contribution to modeled mole fractions, for October 2016

7.2.5 Summary of CO2 inversion
The Eastern and Central African region was a net source of 139.77Tg of CO2 (147.54Tg
prior) during the year 2016. Figure 7.6 indicates that the Democratic Republic of Congo
was the largest net source of CO2 with a net emission of 325.3Tg of CO2 while South Sudan
was the single largest net sink of CO2 whose magnitude was estimated to �213.4Tg of CO2.

Figure 7.7 points out that the inversion subdomain was a net sink of CO2 in May, June,
August, September and October, and a net source the rest of the year. Whether a country is
a net source or sink of CO2 largely depends on seasonal cycle of precipitations; most countries
in northern part of the domain (Central African Republic, South Sudan, Ethiopia,Uganda)
are a net sink of CO2 around August, September and October. Countries in the more
southern part of the inversion domain (D. R. Congo, Rwanda, Tanzania) are net CO2 source
during northern Summer because precipitations are localized more to the North following
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ITCZ and the South part is under intense biomass burning.

Figure 7.6: Net prior and posterior CO2 emissions fluxes by country for 2016

Figure 7.7: Net prior and posterior CO2 monthly emissions fluxes within the inversion subdomain
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Conclusions and way forward

Conclusions

We have set up a high frequency greenhouse gases monitoring station in the Volcanic re-
gion of North West Rwanda at Mount Mugogo, which is the first and, currently, the only
one in tropical Africa. The station currently measures carbon dioxide, methane, nitrous ox-
ide, black carbon, ozone and meteorological parameters. The Advanced Global Atmospheric
Gases Experiment (AGAGE), which the station is part now of, regularly performs intercom-
parisons between AGAGE data and other networks, especially the National Oceanic and
Atmospheric Administration (NOAA),Global Monitoring Division, The data that is being
measured at Mt. Mugogo has, therefore, internationally recognized calibrations standards
and protocols; this is what makes it useful for global and regional inverse studies and cali-
bration of remotely sensed measurements among others.

Time series of measured atmospheric mole fractions of carbon dioxide exhibit a sea-
sonal cycle, with significant enhancements observed around February and August, the short
and long dry seasons respectively. Observed enhancements of CO2 mole fractions, which
corresponds to increased black carbon and carbon monoxide concentrations, are caused by
regional scale biomass burning which happens seasonally in Northern parts of Central Africa
in December, January and February, and in Central to Southern Africa during June, July
and August.

Time series of atmospheric mole fractions of methane indicate increased methane concen-
tration during the short dry season of December-January-February, but not in the long dry
season. We propose that the methane increase in the short dry season is due to advection of
methane-rich Northern Hemisphere air masses to Mount Mugogo during the seasonal shift
of the inter tropical convergence zone.

Inverse estimation of surface fluxes of methane have found that the region was asource of
41.54Tg of CH4 during the year 2016, a 60% increase from the prior emissions of 25.84Tg.
Highest regional emissions were found in May, October and November. A significant fraction
of emissions were coming from Northern parts of the inversion domain Africa, namely, South
Sudan, Ethiopia and Somalia. The Democratic Republic of Congo and Tanzania were also
the highest emitter in Central Africa while Rwanda and Burundi have smallest methane
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emissions.
We have found that Eastern and Central Africa was a net source of CO2 during 2016 with
an estimated amount of 147–477Tg of CO2. With the Highest emissions happening in
December-January-February a time when large scales biomass burning occur in the Northern
regions of inversion domain. Likewise, the region is a net sink of CO2 during the time when
the Northern regions are in the rain season.
The estimated fluxes constitute additional data for comparison and cross-checking global
inversion studies, calibration of ecosystem models and for regional emissions verification.

Limitations and future research

Mount Mugogo is a good location for regional scale research. Given the quality of instru-
ments and the increasing number of parameters that are measured at Mt. Mugogo, it would
serve better the science and policy community if it were relocated to a more remote location
where pollution from nearby sources is minimal. Mount Karisimbi, an extinct volcano 20 km

away from Mugogo, has been proposed as a potential global site that would significantly
improve the quality of the data and increase the geographical extent of the station footprint.

Prescribed meteorological parameters can be a major source of uncertainty in inverse
studies, because the current computational resources would not allow us to perturb the four-
dimensional field of meteorological parameters within a chemistry transport models. The
uncertainty in wind speed and directions in chemistry transport model is expected to be
larger in Africa due to scarcity of meteorological observations that feed into global numer-
ical weather prediction models. An assessment of common reanalysis meteorology as they
compare to actual observations in a large domain in Africa would provide some insight to
the magnitude of the uncertainty.

A more complete regional study would incorporate nearest measurements from NOAA
flask stations and satellite column observations. This was not possible for our work which
was a near “real-time” measurements and inversion, while scientific measurements tend to
come within a one year time lag. This work can be completed and extended by incorporating
all available observations within the region.

Carbon dioxide inversion can be improved by using footprints that store time informa-
tion. This would allow the NAME model to accurately capture the diurnal cycle of carbon
dioxide, allowing to run the inversion at a higher frequency (few hours) than the daily aver-
age we have used for this work.
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A CH
4

Inversion results

A.1 Results for January 2016

(a) (b)

Figure A.1: Error reduction map (a) and footprint (note the log scale) (b) for January 2016. The
extent of the map in (a) is highlighted with a broken line in the footprint map

(a) (b)

Figure A.2: CH4 prior (a) and posterior (b) emissions for January 2016
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(a) (b)

Figure A.3: Prior scaling maps(a) and countries emissions totals(b) for January 2016
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Figure A.4: Time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the prior(magenta) and posterior
(black) baseline contribution to modeled mole fractions, for January 2016
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A.2 Results for February 2016

(a) (b)

Figure A.5: Error reduction map (a) and footprint (note the log scale) (b) for February 2016. The
extent of the map in (a) is highlighted with a broken line in the footprint map

(a) (b)

Figure A.6: CH4 prior (a) and posterior (b) emissions for February 2016
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(a) (b)

Figure A.7: Prior scaling maps(a) and countries emissions totals(b) for February 2016
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Figure A.8: Time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the prior(magenta) and posterior
(black) baseline contribution to modeled mole fractions, for February 2016
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A.3 Results for March 2016

(a) (b)

Figure A.9: Error reduction map (a) and footprint (note the log scale) (b) for March 2016. The
extent of the map in (a) is highlighted with a broken line in the footprint map

(a) (b)

Figure A.10: CH4 prior (a) and posterior (b) emissions for March 2016
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(a) (b)

Figure A.11: Prior scaling maps(a) and countries emissions totals(b) for March 2016
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Figure A.12: Time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the prior(magenta) and posterior
(black) baseline contribution to modeled mole fractions, for March 2016
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A.4 Results for April 2016

(a) (b)

Figure A.13: Error reduction map (a) and footprint (note the log scale) (b) for April 2016. The
extent of the map in (a) is highlighted with a broken line in the footprint map

(a) (b)

Figure A.14: CH4 prior (a) and posterior (b) emissions for April 2016
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(a) (b)

Figure A.15: Prior scaling maps(a) and countries emissions totals(b) for April 2016
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Figure A.16: Time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the prior(magenta) and posterior
(black) baseline contribution to modeled mole fractions, for April 2016
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A.5 Results for May 2016

(a) (b)

Figure A.17: Error reduction map (a) and footprint (note the log scale) (b) for May 2016. The
extent of the map in (a) is highlighted with a broken line in the footprint map

(a) (b)

Figure A.18: CH4 prior (a) and posterior (b) emissions for May 2016
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(a) (b)

Figure A.19: Prior scaling maps(a) and countries emissions totals(b) for May 2016
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Figure A.20: Time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the prior(magenta) and posterior
(black) baseline contribution to modeled mole fractions, for May 2016
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A.6 Results for June 2016

(a) (b)

Figure A.21: Error reduction map (a) and footprint (note the log scale) (b) for June 2016. The
extent of the map in (a) is highlighted with a broken line in the footprint map

(a) (b)

Figure A.22: CH4 prior (a) and posterior (b) emissions for June 2016
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(a) (b)

Figure A.23: Prior scaling maps(a) and countries emissions totals(b) for June 2016
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Figure A.24: Time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the prior(magenta) and posterior
(black) baseline contribution to modeled mole fractions, for June 2016
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A.7 Results for July 2016

(a) (b)

Figure A.25: Error reduction map (a) and footprint (note the log scale) (b) for July 2016. The
extent of the map in (a) is highlighted with a broken line in the footprint map

(a) (b)

Figure A.26: CH4 prior (a) and posterior (b) emissions for July 2016

128



(a) (b)

Figure A.27: Prior scaling maps(a) and countries emissions totals(b) for July 2016
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Figure A.28: Time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the prior(magenta) and posterior
(black) baseline contribution to modeled mole fractions, for July 2016
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A.8 Results for August 2016

(a) (b)

Figure A.29: Error reduction map (a) and footprint (note the log scale) (b) for August 2016. The
extent of the map in (a) is highlighted with a broken line in the footprint map

(a) (b)

Figure A.30: CH4 prior (a) and posterior (b) emissions for August 2016
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(a) (b)

Figure A.31: Prior scaling maps(a) and countries emissions totals(b) for August 2016
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Figure A.32: Time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the prior(magenta) and posterior
(black) baseline contribution to modeled mole fractions, for August 2016
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A.9 Results for September 2016

(a) (b)

Figure A.33: Error reduction map (a) and footprint (note the log scale) (b) for September 2016.
The extent of the map in (a) is highlighted with a broken line in the footprint map

(a) (b)

Figure A.34: CH4 prior (a) and posterior (b) emissions for September 2016
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(a) (b)

Figure A.35: Prior scaling maps(a) and countries emissions totals(b) for September 2016
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Figure A.36: Time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the prior(magenta) and posterior
(black) baseline contribution to modeled mole fractions, for September 2016
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A.10 Results for October 2016

(a) (b)

Figure A.37: Error reduction map (a) and footprint (note the log scale) (b) for October 2016.
The extent of the map in (a) is highlighted with a broken line in the footprint map

(a) (b)

Figure A.38: CH4 prior (a) and posterior (b) emissions for October 2016
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(a) (b)

Figure A.39: Prior scaling maps(a) and countries emissions totals(b) for October 2016
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Figure A.40: Time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the prior(magenta) and posterior
(black) baseline contribution to modeled mole fractions, for October 2016
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A.11 Results for November 2016

(a) (b)

Figure A.41: Error reduction map (a) and footprint (note the log scale) (b) for November 2016.
The extent of the map in (a) is highlighted with a broken line in the footprint map

(a) (b)

Figure A.42: CH4 prior (a) and posterior (b) emissions for November 2016
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(a) (b)

Figure A.43: Prior scaling maps(a) and countries emissions totals(b) for November 2016
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Figure A.44: Time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the prior(magenta) and posterior
(black) baseline contribution to modeled mole fractions, for November 2016
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A.12 Results for December 2016

(a) (b)

Figure A.45: Error reduction map (a) and footprint (note the log scale) (b) for December 2016.
The extent of the map in (a) is highlighted with a broken line in the footprint map

(a) (b)

Figure A.46: CH4 prior (a) and posterior (b) emissions for December 2016
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(a) (b)

Figure A.47: Prior scaling maps(a) and countries emissions totals(b) for December 2016
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Figure A.48: Time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the prior(magenta) and posterior
(black) baseline contribution to modeled mole fractions, for December 2016
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B CO
2

Inversion results

B.1 Results for January 2016

(a) (b)

Figure B.49: Error reduction map (a) and footprint (note the log scale) (b) for January 2016.
The extent of the map in (a) is highlighted with a broken line in the footprint map

(a) (b)

Figure B.50: CO2 prior (a) and posterior (b) emissions for January 2016

146



(a) (b)

Figure B.51: Prior scaling maps(a) and countries emissions totals (b) for January 2016
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Figure B.52: Time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the prior(magenta) and posterior
(black) baseline contribution to modeled mole fractions, for January 2016
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B.2 Results for February 2016

(a) (b)

Figure B.53: Error reduction map (a) and footprint (note the log scale) (b) for February 2016.
The extent of the map in (a) is highlighted with a broken line in the footprint map

(a) (b)

Figure B.54: CO2 prior (a) and posterior (b) emissions for February 2016
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(a) (b)

Figure B.55: Prior scaling maps(a) and countries emissions totals (b) for February 2016
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Figure B.56: Time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the prior(magenta) and posterior
(black) baseline contribution to modeled mole fractions, for February 2016
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B.3 Results for March 2016

(a) (b)

Figure B.57: Error reduction map (a) and footprint (note the log scale) (b) for March 2016. The
extent of the map in (a) is highlighted with a broken line in the footprint map

(a) (b)

Figure B.58: CO2 prior (a) and posterior (b) emissions for March 2016
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(a) (b)

Figure B.59: Prior scaling maps(a) and countries emissions totals (b) for March 2016
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Figure B.60: Time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the prior(magenta) and posterior
(black) baseline contribution to modeled mole fractions, for March 2016
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B.4 Results for April 2016

(a) (b)

Figure B.61: Error reduction map (a) and footprint (note the log scale) (b) for April 2016. The
extent of the map in (a) is highlighted with a broken line in the footprint map

(a) (b)

Figure B.62: CO2 prior (a) and posterior (b) emissions for April 2016
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(a) (b)

Figure B.63: Prior scaling maps(a) and countries emissions totals (b) for April 2016
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Figure B.64: Time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the prior(magenta) and posterior
(black) baseline contribution to modeled mole fractions, for April 2016
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B.5 Results for May 2016

(a) (b)

Figure B.65: Error reduction map (a) and footprint (note the log scale) (b) for May 2016. The
extent of the map in (a) is highlighted with a broken line in the footprint map

(a) (b)

Figure B.66: CO2 prior (a) and posterior (b) emissions for May 2016
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(a) (b)

Figure B.67: Prior scaling maps(a) and countries emissions totals (b) for May 2016
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Figure B.68: Time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the prior(magenta) and posterior
(black) baseline contribution to modeled mole fractions, for May 2016
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B.6 Results for June 2016

(a) (b)

Figure B.69: Error reduction map (a) and footprint (note the log scale) (b) for June 2016. The
extent of the map in (a) is highlighted with a broken line in the footprint map

(a) (b)

Figure B.70: CO2 prior (a) and posterior (b) emissions for June 2016
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(a) (b)

Figure B.71: Prior scaling maps(a) and countries emissions totals (b) for June 2016
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Figure B.72: Time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the prior(magenta) and posterior
(black) baseline contribution to modeled mole fractions, for June 2016
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B.7 Results for July 2016

(a) (b)

Figure B.73: Error reduction map (a) and footprint (note the log scale) (b) for July 2016. The
extent of the map in (a) is highlighted with a broken line in the footprint map

(a) (b)

Figure B.74: CO2 prior (a) and posterior (b) emissions for July 2016
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(a) (b)

Figure B.75: Prior scaling maps(a) and countries emissions totals (b) for July 2016
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Figure B.76: Time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the prior(magenta) and posterior
(black) baseline contribution to modeled mole fractions, for July 2016
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B.8 Results for August 2016

(a) (b)

Figure B.77: Error reduction map (a) and footprint (note the log scale) (b) for August 2016. The
extent of the map in (a) is highlighted with a broken line in the footprint map

(a) (b)

Figure B.78: CO2 prior (a) and posterior (b) emissions for August 2016
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(a) (b)

Figure B.79: Prior scaling maps(a) and countries emissions totals (b) for August 2016
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Figure B.80: Time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the prior(magenta) and posterior
(black) baseline contribution to modeled mole fractions, for August 2016
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B.9 Results for September 2016

(a) (b)

Figure B.81: Error reduction map (a) and footprint (note the log scale) (b) for September 2016.
The extent of the map in (a) is highlighted with a broken line in the footprint map

(a) (b)

Figure B.82: CO2 prior (a) and posterior (b) emissions for September 2016
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(a) (b)

Figure B.83: Prior scaling maps(a) and countries emissions totals (b) for September 2016
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Figure B.84: Time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the prior(magenta) and posterior
(black) baseline contribution to modeled mole fractions, for September 2016
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B.10 Results for October 2016

(a) (b)

Figure B.85: Error reduction map (a) and footprint (note the log scale) (b) for October 2016.
The extent of the map in (a) is highlighted with a broken line in the footprint map

(a) (b)

Figure B.86: CO2 prior (a) and posterior (b) emissions for October 2016
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(a) (b)

Figure B.87: Prior scaling maps(a) and countries emissions totals (b) for October 2016
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Figure B.88: Time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the prior(magenta) and posterior
(black) baseline contribution to modeled mole fractions, for October 2016
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B.11 Results for November 2016

(a) (b)

Figure B.89: Error reduction map (a) and footprint (note the log scale) (b) for November 2016.
The extent of the map in (a) is highlighted with a broken line in the footprint map

(a) (b)

Figure B.90: CO2 prior (a) and posterior (b) emissions for November 2016
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(a) (b)

Figure B.91: Prior scaling maps(a) and countries emissions totals (b) for November 2016
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Figure B.92: Time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the prior(magenta) and posterior
(black) baseline contribution to modeled mole fractions, for November 2016
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B.12 Results for December 2016

(a) (b)

Figure B.93: Error reduction map (a) and footprint (note the log scale) (b) for December 2016.
The extent of the map in (a) is highlighted with a broken line in the footprint map

(a) (b)

Figure B.94: CO2 prior (a) and posterior (b) emissions for December 2016
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(a) (b)

Figure B.95: Prior scaling maps(a) and countries emissions totals (b) for December 2016
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Figure B.96: Time series of optimized mole fractions (blue curve) compared to observations (red
dots) and the modeled observation with prior emissions (red) with the prior(magenta) and posterior
(black) baseline contribution to modeled mole fractions, for December 2016
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