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Abstract

The purpose of this study is to develop a strategy for investment in power generation
technologies in the future given the uncertainties in climate policy and fuel prices. First, such
studies are commonly conducted using deterministic methods which assume a given likelihood
of the carbon and gas price levels. In this study a probabilistic approach is used to address these
uncertainties. Secondly, capacity expansion models conventionally apply average estimates to
predict the amount of power that each generator will produce based on the technology chosen. I
propose an alternate method which determines the actual generation hour-by-hour of a generator.
Using this method, I also capture the variability of wind generation across the year.

To accomplish this goal, I used the Electric Reliability Council of Texas (ERCOT) as a case
study. I investigated the effect of different scenarios of generation technology investments
projected over a period of twenty years. I conducted two sets of analyses; first assuming that
Carbon Capture and Storage (CCS) technologies will be available after 2020, then assuming that
they will not. Using a dispatch model, I simulated the hours of a load duration curve for 2020
and 2030. In the first period 2010-2020, I assumed the price of carbon to either be $0 or $50/ton
CO 2. In the second period, I take the carbon price to be at either a low of $25/ton of CO 2 or a
high of $100/ton of CO2 . The price of natural gas used was either a high of $15/MMBtu or a low
of $3/MMBtu in both periods. Using a Monte Carlo, I sample the wind generation based on the
season and the time of day. The system costs with the new investment scenarios were then
evaluated in a decision tree to establish the socially optimal solution.

I find that the optimal strategy to be taken today depends on the availability of CCS technologies
in 2030. Assuming that there is CCS in 2030, the more dominant strategy would be to build
natural gas generators today. If we assume that there is no CCS in 2030, the strategy would
depend on the probabilities of the levels of gas and carbon prices in 2020.

Thesis Supervisor: Mort D. Webster, Assistant Professor, Engineering Systems Division
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1.0 INTRODUCTION AND MOTIVATION

The electricity sector produces 40% of carbon emissions from the energy sector from

combustion of fossil fuels (EIA, 2009). Currently, no climate policy addresses carbon emissions

but when one is established, it will heavily impact the electricity power sector. For now, both the

price and the time when a climate policy will be established remain uncertain. In the power

sector, a price on carbon will change the cost structure of fossil generation technologies and

operation costs will increase as a fraction of the total cost of generation. This is an important

consideration in capacity expansion planning. Figure 1.1 characterizes the cost structure of a

pulverized coal plant for every KWh produced.

300-7

aStandby generation
2.00

eperation & maintenance

DCerbon emissions

1.00 mFueI

NECapital expenditure

0,50

0 00.........
Lifefime cost of generation

Figure 1.1: Cost Structure of a Pulverized Fuel Coal Generator (Royal Academy of Engineering,

2004)

In Figure 1.1, the price of emissions assumed is $15 or £8.20 in 2006 value. However, the price

on carbon is uncertain and can in fact be higher or lower than that shown in Figure 1.1. The

rectangle representing carbon emissions can in the future be either bigger or smaller depending

on the price that will be set. For fossil fuel technologies the cost of carbon emissions may



become a significant fraction of the total cost of generation. Studies have used prices ranging

from 10$/ ton of CO 2 to as high as $200/ton of CO 2 .

One way to reduce carbon emissions is by switching to less carbon intensive fossil fuels (MIT

Study on the Future of Coal, 2007). Natural gas has been identified to produce fewer emissions

than both coal and oil. However, an increased demand in natural gas, which can also be used in

the transportation sector, may result in high natural gas prices. In the summer of 2008, the US

price of natural gas was as high as $8.86/MMBtu from an average of $3.54/MMBtu according to

the EIA. Figure 1.2 shows forecasts in the short term showing the upper and lower bounds of the

expected prices.

Henry Hub Natural Gas Price

-e-~

,0

0I-
Jan 2009 Jul 2009 Jan 2010 Jul 2010 Jan 2011 Jul 2011

Historical spot price
--- NYMEX futures price

STEO price forecast
--.-- -- 95% Confidence Interva .Enery

Figure 1.2: EIA Short Term Natural Gas Outlook (EIA, 2010)

In Figure 1.2 we see the price of natural ranging between $13.43 and $2.99 by December 2011.

The uncertainty in natural gas price is therefore an important factor for expansion planning.

I . I . . j I I I I I i I I I I t i i I



Another way to reduce dependency on high-carbon fuels is through the use of renewables (MIT

Study on the Future of Coal, 2007). Interestingly, these have high capital costs and low

availability factors which are also unfavorable to investors. Moreover, they pose numerous

reliability complications from the system operator's perspective. Figure 1.3 shows the cost

structure of an onshore wind generator.

600

4.00

mstanaby generaon
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HOperation & maintenance

O0Cat0on emisions

UCapital expenditure
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Figure 1.3: Onshore Cost-structure of a wind farm (Royal Academy of Engineering, 2004)

The majority of the costs of generating electricity from wind are capital expenditure as shown in

Figure 1.3. The capital cost is almost three times that of building a coal plant. However,

operation and maintenance costs are minimal and there are no fuel costs. The standby generation

cost is the cost of having readily available generators on standby for reliability concerns (Royal

Academy of Engineering, 2004). These costs are a result of the intermittency and variability of

wind. While average estimates have been used to calculate the expected revenue generated from

wind farms, a better representation of these is necessary so as to be more accurate in predicting

wind electricity production.

Other ways to reduce the amount of carbon emissions from the power sector are through

increased use of nuclear energy, increasing technology efficiencies, and also carbon capture and

sequestration (CCS) (MIT Study on the Future of Coal, 2007). CCS is however still not



commercialized and its availability is also uncertain. In this thesis, I do no not include nuclear

energy.

The aim of this study is to provide a strategy for power generation capacity expansion despite

these looming uncertainties to avoid risk. I investigate the evolution that generation technologies

will most likely take as a result of the uncertain carbon price and natural gas. My question is:

"Given the uncertain climate policy and fluctuating natural gas prices, what generation

technologies should be invested in today to avoid risk to the investor?''

Traditionally, capacity expansion has been deterministic even in the analysis of uncertainties

through the use of scenario analysis. Long term planning usually takes a deterministic

characteristic while short term operations use probabilistic decision making. To address this

question, I propose a probabilistic approach which compares options under different states of the

uncertainty and probability as the method employed by Mort et al, 2008 and Mort et al, 2009 to

analyze uncertainty in greenhouse emissions and costs under various scenarios. Though there are

numerous uncertainties in expansion planning, such as demand, and demand response, I assume

that the uncertain carbon price and natural gas prices are significant drivers in expansion in

today's energy climate.

I employ dynamic programming which allows for the problem to be solved or optimized over

multiple periods. A multi-stage decision making process allows for flexibility in the design of the

capacity expansion plan. A one-time decision would lock in the investors in a potentially risky

investment given the changes that may occur throughout the period in question. In addition to the

focus on the uncertainties, I propose the use of short term dispatch model to assess the costs of

the system. Specifically, I try to capture the hour-by-hour costs of running the system in the

future to decide on the technology option today. The main motivation behind this is to illustrate

the variability in wind production based on historical seasonal and daily patterns.



The hypothesis is that the method used in this study provides more accurate system costs under

each of the states of uncertainty because of the hour-by-hour approach taken. Additionally, using

decision analysis is a more useful tool than deterministic approaches. The targeted audiences for

this thesis are investors, system operators, and policy makers such as the Public Utility

Commissions.

To accomplish these aims, I use the Electric Reliability Council of Texas (ERCOT) as a case

study. The generation technology portfolio for Texas, like the rest of the country, has evolved

over time as a result of changing market and environmental regulation. Electricity demand

continues to grow in Texas at an average annual rate of 2%, and today environmental regulation

plays an even more important role in the choice of technologies as efforts to move towards a

low-carbon economy increase. Figure 1.4 shows the evolution of each of the main energy

sources in Texas from 1990 to 2007.

Evolution Energy Sources in Texas
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Figure 1.4: Evolution Energy Sources in Texas (data adapted from EIA, 2007 edition)

In Figure 1.4, "Other Gases" include propane gas, and blast furnace gas; "Other Renewables"

include wood, solar thermal, geothermal, and wind; and "Other" includes chemicals, and

batteries. As seen in Figure 1.1, the investment in natural gas has been increasing rapidly while
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there has been relatively less growth in coal investment. Seventy-seven new natural gas plants

have been connected to the grid in Texas since 1995 (Texas House Committee Select, 2009). The

increase in the price of natural gas in recent years, however, suggest that investment in natural

gas plants is more risky than other fuels, even coal. There has also been an increase in nuclear

generation, though legislative constraints remain an impediment in its adoption in the future.

While renewable resources still make up a small percentage of total energy, there has been a

significant rise in investment mostly in wind. This is largely a result of both state and federal

programs that encourage investment in renewables through incentives for climate change

mitigation and increased energy sustainability. A notable example is Texas' Renewable Portfolio

Standard (RPS) which was first implemented in 1999, and has so far been one of the most

successful in the nation. Under a RPS, electric utilities are required to purchase a portion of their

electricity from renewable sources (Wiser, 2002). Finally, hydroelectricity has been declining

over the years due to high costs in building the plants. Figure 1.2 shows the current composition

of ERCOT generation capacity.

ERCOT's Generation Portflio in 2010

*2% 01% 0 Natural Gas
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Figure 1.5: ERCOT Generation Portfolio in 2009 (ERCOT, 2010)



Natural gas continues to dominate the region's generation portfolio. Coal generation has slightly

increased and wind now makes a signification portion of the region's fleet. These three fuel types

are the focus of this thesis.

Using ERCOT as a case study, I develop an investment strategy by determining socially optimal

technology portfolio for the next twenty years till 2030 from a number of portfolio scenarios.

The optimal solution is simply the system that results in the least total costs including capital and

operation. I design the portfolios investigated here using simple screening curves. To solve this

as a dynamic programming problem, I assume that there are two decision periods 2020 and 2030.

I simulate each hour of each of these years, and I use a dispatch model to evaluate the different

scenarios focusing on the uncertainties and the wind production. Using a decision tree, I conduct

various analyses to determine the optimal solution which is the system with the lowest total

system costs.

This thesis is organized as follows. In Chapter 2, I provide a literature review of other studies

that have been done on this topic and discuss the methods which are used in the approach of this

study. The methodology used is detailed in Chapter 3. The different scenarios of technology

investment are presented here. In Chapter 4, I give the results of the analysis giving the optimal

technology choice from the system operator's perspective. In Chapter 5, I discuss these results

and provide insight for policy consideration and give policy recommendations.



2.0 LITERATURE REVIEW

Capacity expansion has employed numerous approaches; individual methods and syntheses of

two or more methods. Most commonly used are deterministic models which optimize a given set

of parameters to give the optimal solution. Decisions made from deterministic models ignore

uncertainties that that are capacity expansion such as those that are studied in this thesis. Least

cost linear programming models are usually used such as mixed-integer linear programming.

Stochastic programming has been used to factor in uncertainty but this method optimizes the

solution over one period and does not factor in learning and flexibility. For instance, the capacity

expansion plan may be optimized for the next twenty years though we there may be various

changes in the system between now and then. Other techniques used include simulation methods

such as scenario analysis. These simulate a system under different parameter assumptions but do

not provide a basis for decision making.

In this section, I present a few studies that have used the different techniques in capacity

expansion planning. I give various examples of the types of models used, highlighting the

strengths and weaknesses of each. This discussion sets the stage for the description of the

methodology that is used in this thesis in Chapter 3. An overall description of resource planning

and decision making in the electricity sector is first provided to give some background on

decision-making in the power industry. This background information is referenced in the

description of the methods to be used in this thesis.

2.2 Resource Planning

Electricity resource planning is divided into four decision stages: long term, medium term, short

term, and real time decision making. The highest level of decisions is made in the long term and

the effect of these decisions ripple down to all other levels of decision making. Decisions for

both generation and transmission expansion are made at this stage based on forecasts of future



load demand. This thesis focuses on generation expansion only. Figure 2.1 shows the planning

structure in electricity generation.

LONG TERM
3, 5, 10, 30 years

MEDIUM TERM
1-3 years

SHORT TERM
1 day to 1 week

REAL TIME
Seconds to Minutes

Figure 2.1: Resource Planning in Electricity Hierarchy (adapted from Gomez-Exposito, et. al,

2008)

In the long term, emphasis is on the generation capacity expansions and grid investment. In a

deregulated market such as ERCOT, the goal of the generators is to maximize revenues and

profits and lower all costs. Capacity expansion models generally take into account variables such

as the demand growth forecast, technology alternatives and costs, price trends, and regulations

(Hobbs, 1994). They however only consider the system technical constraints and specifications

at a high level and use average conditions. Metaheuristic methods that are used in expansion

planning for example only solve the optimization problem given demand and the costs of each

technology. The uncertainties in these operational specifications have been overshadowed by the



large uncertainties in the variables in the long term which are of more significant financial

impact (Gomez- Exposito, 2008 ed). However, with the variability in wind and solar patterns in

the short term it is necessary that expansion models that capture more resolution in the short and

real time terms are used.

Contracts for fuel and maintenance scheduling are made in the medium term. For instance, steam

turbines need 20 days of maintenance in a year (Gomez-Exposito, 2008). In a deregulated

market, tasks also involve economic forecasts, and yearly budgets.

In short term and real time decision making, the goal is to minimize actual generation costs

(Hobbs, 1995). The system operator makes these decisions and has the mandate to maintain

system reliability and resource adequacy. Generation costs for fossil plants have high start up

and shut down costs and these are taken into account in the unit commitment problem, where

unit generation is determined by the plants' cost structure within hours or over a week.

Electricity dispatch is then carried out with the unit commitment constraint. Electricity dispatch

is a process by which the power generated by each unit connected to the grid is determined

(Wollenberg, Wood, 2006). It is in this real-time period that the amounts of wind and/or solar

generation available are forecasted more accurately. While the unit commitment problem has

been included in some models, the inclusion of these short terms variability in renewable energy

patterns is still being studied.

In this thesis, I propose to combine the objectives of long term and real term planning to

establish a more robust capacity expansion model. The high resolution provided by the dispatch

model can help inform capacity expansion models better than methods currently used. Table 2.1

is a summary of the goals of long and short term planning which the method used in this study

intend to meet.



Table 2.1 Comparison of Capacity Expansion and Electricity Dispatch (Hobbs, 1995)
Long Term Short Term

Economic Minimize the present worth of

capital costs, operating costs, and

outage cost

Minimize the variable

cost of generation

Decision Variables Resource amounts and timing, Load carried by each

fuel sources, environmental generating unit and the

control measures amount of load curtailment

Constraints Capacity limitations, along with requirements that generation

be sufficient to meet customer demands, environmental

regulation, financial and economic constraints

The following is a review of the methods that have been used before in capacity expansion which

I will synthesize and use in this thesis.



2.3 Review of Similar Studies

There are numerous methods that have been used to answer the question of future investment in

generation considering various uncertainties. In the following subsections I will look at the most

widely used methods which were used to generate the approach used in this study.

2.3.1 Optimization

Optimization methods in capacity expansion planning have the objective of selecting design

capacities for generators by minimizing capital and operating costs of the system while meeting

load and satisfying the physical constraints of the system in the long term (Malcolm et al, 1994).

In the short term, optimization methods have the objective to meet demand while maintaining

security and reliability in the system, as in dispatch models.

Common optimization methods used in capacity expansion are linear programs (LP). Linear

programs are deterministic as the solution is based on the specific parameter values in the model.

They do not consider uncertainty in these parameters. There are other LP methods such as

mixed-integer linear programming (MILP) which address two parts; the short-term dispatching

problem and the long-term objective of meeting demand over a period of time (Ku, 2003). The

advantage of MILP over LP is that it optimizes discrete units whereas LP deals with continuous

variables of the system (Majumdar et al, 1999). Despite this benefit from MILP, the result is still

deterministic. LP methods usually have to be coupled with decision analysis to test out different

parameters. An electricity dispatch model for example is deterministic. However, using it

together with dynamic programming, for example, allows for the decision to be optimized

against different sets of parameters.

Stochastic programming is used in capacity expansion models that include uncertainty. Though

they have always been used in electricity power systems, stochastic models are now more

employed in modeling intermittent renewable energy sources. A study by Castranouvo et al

(2007) used Monte Carlo methods to capture the variability in wind. The model used also

considered optimization hour-by-hour as proposed in this thesis to capture forecast more



accurately. However, the expansion still produced a "hear-and-now" decision where a one-time

decision is made over the period considered. In a paper by Garcia-Gonzales et al (2008), a

stochastic model is used to incorporate uncertainties in wind patterns and electricity prices for

use in the short term or day-ahead markets in Spain. A two-stage stochastic model is

implemented (Garcia-Gonzales et al, 2008). This is called stochastic programming with

recourse, where the decisions in the two stages are the same but have different probabilities

(Growe et al, 1995).

2.3.2 Simulation

Simulation methods are used to experiment with different values of the parameters in the

problem (Ku, 2003). These are especially useful when dealing with uncertainty where the range

of possible outcomes can be explored. Most studies, even when using other methods of

expansion, use simulations when they have uncertain variables. Monte Carlo simulations are a

useful tool in evaluating different scenarios. Another common simulation tool is sensitivity

analysis which analyzes the effect of a single variable (Mital, 2004).

Scenario analysis is a method used to compare a number of possible outcomes to select the

optimal strategy. The aim of this method is to compare different parameters in related storylines,

to see the differences between them rather than dwell on the results of one solution. Scenarios

facilitate the results of varying assumptions, the range of possible futures, and trade-offs

(Johnston et al, 2006). IEEE study by Linares conducted a power systems planning model using

multi-criteria decision making and risk analysis for the Spanish electricity sector. A number of

scenarios were generated focusing on uncertainties in the economy and environmental

regulation. Different stakeholders and decision makers were then asked for their preferences and

these were used to select the most robust strategy. Scenario analysis has to fulfill the objective of

a specific stakeholder. In other words, the scenarios have to be run separately and then a decision

is made using some external information. Examples of such models are

Decision trees are also a widely used simulation tool. They are useful in uncertainty analysis as

they map out a range of possible outcome allowing for strategic decision making (de Neufville,



1990). Decision trees, like dynamic programming, can be used to model decisions made over

multiple periods and are also used to analyze multiple uncertainties. Botterud et al conducted a

study simulating capacity expansion decision for various generators in the Iberian market

(Botterud et al, 2002). They use a decision tree to map the different scenarios for uncertainty in

load growth, hydropower conditions, and competitors' expectations. An economic dispatch

model is used to evaluate each of the scenarios and probabilities are assigned from available

information. The approach in this thesis mimics this decision tree approach.

2.4 Flexibility

A study by Malcolm et al proposed using a "robust" model in expansion planning under

uncertainty. A number of scenarios under different levels of demand uncertainty were

considered. The objectives of the model used were the expected cost of the system over the

different scenarios, the variance in the cost, and a term that penalizes deviations from feasibility

were used. Robustness of the solution was then measured by varying the multipliers of the

variables (Malcolm et al, 1994). Robustness gives the illusion that we can control an uncertain

future. Malcom et al assert that the robust model can be used for various uncertainties, and they

describe the solution as 'almost optimal' for any scenario. According to Richard de Neufville,

"Robust design is passive way to deal with uncertainty. Flexible design is active way to deal with

uncertainty." Flexible design allows that the decision made today incorporates uncertainty in

such a way that the decision can be changed as knew knowledge is learnt. In this thesis, I use

flexibility design which analyzes different technology performances over a range of varying

future circumstances. This approach enables the system to avoid future downside risks while

taking advantage of any opportunities that may arise (de Neufville, 2009).

In a study by Geenthal Mital, a real options approach was used to evaluate the expansion in

hydropower. 'Real options' is a type of flexible design and a real option is the right to take action

at a predetermined exercise price for a period of time (Copeland et al, 2001). Two options were

analyzed; the size of the plant and the time that the plant should be built or deferring the build to

observe electricity demand and increase certainty. Mital's thesis also compared this approach

with more deterministic and irreversible approaches such as simple net present value (NPV).



NPV assumes that the decision is made today and all the cash flows are in today's dollar value

and ignore that some decisions maybe made at a later time. Other deterministic methods

mentioned in Mital's thesis are cost benefit analysis, life cycle costs, and internal rate of return.

He concluded that the dynamic decision making provided by flexible design is more effective

than the deterministic approaches and also was helpful for managing risk than expected values

(Mital, 2004).

Reedman et al (2006) carried out a study that used a real options approach to model technology

adoption under carbon price uncertainty for the Australian electricity sector..A mathematical

program called CSIRO's Electricity Market model (EMM), was used to estimate the price of

electricity until 2050 using drivers such as technological change and turnover of installed

generating capacity. Technical specifications of the grid were considered including plant location

and structure of the transmission network. The only uncertainty addressed in this study was the

carbon price; scenarios were made based on when the carbon tax was put in place and also at

what level the tax would be. Also, the scenarios focused only on thermal plants and did not

include renewable energy sources which apply significantly to Texas. Using the real options

model, they then evaluated which technologies would be invested in, and also when it would be

most profitable for investors to build these plants. The EMM model evaluates the various

scenarios from the short-term market bidding process, then the physical structure of the grid, and

includes a platform to calculate the green house emissions (Redman et. al, 2006). Though this

study does not include renewable generation, this approach is similar to that proposed for this

thesis. It captures grid operations at high resolution and also includes flexibility in decision

making.

2.5 Example Models

In this section, two examples of models that are currently used in expansion planning are

described and critiqued. These models are the MARKAL and ReEDs models.



2.5.1 MARKet Allocation (MARKAL)

MARKAL is a capacity expansion model developed at the Brookhaven National Labs to conduct

scenario analysis. MARKAL is a well recognized model and has been used in numerous studies

for the Environmental Protection Agency. The most distinctive feature in MARKAL is that it is a

systems' model, modeling the economy, energy, and the environment. It models existing and

new technologies available for electricity generation based on sector-specific electricity demand

(residential, commercial, industrial, and transportation), fuel prices, technology costs, and the

environmental and operational constraints. It has a base case modeled into it by which all other

scenarios are compared. It uses least cost optimization to compare different scenarios. The model

was made to represent years from 1995 to 2030 and is optimized over the entire horizon

(Johnson et al, 2006).

The ability to model capacity expansion as a function of the different sectors of the economy

allows MARKAL to capture some feedbacks in the larger picture. However, it does not capture

the stochasiticity of wind variation and instead uses average values for power generation.

Moreover, results from MARKAL are from running individual scenarios are deterministic and

not probabilistic. Finally, MARKAL is optimized over an entire 25 year period and does not

allow for dynamic decision making as is proposed in this thesis.

2.5.2 Regional Energy Deployment System (ReEDs)

ReEDs was developed by the National Renewable Energy Lab (NREL). It was developed

primarily to address issues such as carbon constrained scenarios, renewable portfolio standards,

carbon taxes and caps which are of greatest significant today (Short et al, 2008). The deployment

of renewable energies is therefore the major concern of this model.

It is a linear programming optimization model from 2006 to 2050 which minimizes the system

wide costs of meeting demand and transmission. It is divided into twenty three 2-year periods

and is optimized over each step. This gives more resolution in the optimization since shorted

periods of time are considered. ReEDs is made for the US and is distinctive in that it is



disaggregated along interconnects, NERC areas, RTOS, power control, and renewable energy

supply. This disaggregation allows ReEDs to include the network though at a higher level than a

dispatch model. Transmission costs are calculated based on the distance between the load and the

generator. However, this is not a true representation of the actual network. Because of the focus

on renewable energies, ReEDs has a detailed stochastic treatment of wind and solar power to

capture the variability and intermittent nature of these sources.

ReEDs is a much more detailed model than MARKAL discussed in 2.5.1. Optimization is over

shorter periods; it includes the network though at a higher level; and models the uncertainty in

wind patterns. However, the results presented from ReEDS are for independent scenarios and are

not probabilistic. Moreover, though there is more resolution in the optimization, a single decision

is made through out. There is therefore no flexibility in the decision making over the 44 years

considered. Also, the network is represented at a much higher level despite the disaggregation in

the geographic areas.

2.4 Chapter Summary

There are numerous methods that have been used in capacity expansion planning. Most models

used in this problem are optimization methods which are deterministic and do not include

uncertainty. Scenario analyses are also conducted but these are presented independently and

decisions cannot be determined quantitatively. Stochastic programming is a step up from

deterministic optimization as it includes uncertainty. However, there is only one decision that is

made despite the length of the period considered in the expansion period. Table 2.2 is a summary

of the models that have been used in studies.



Table 2.2: Conventional Methods of Decision Making in Expansion Planning
Method Draw Back

Deterministic Optimization gnores Uncertainty

Scenario Analysis Scenarios are run separately and do not

provide basis for decision-making

Stochastic Programming Considers uncertainty but is not flexible

As stated, this thesis uses a synthesis of the various methods that are described above. I aim to

use a dispatch model to capture the network operations more accurately. The dispatch model is

an optimization model allocated generation to the units in the network while minimizing the

costs. Using a Monte Carlo, I will model the variability in the wind and solar patterns. Finally,

after running the different scenarios, I will use dynamic programming to evaluate them with the

objective of maximizing the profits of the generation units. Chapter 3 describes in more detail,

the methodology used in this thesis.



3.0 METHODOLOGY

The methodology used in this thesis is aimed at modeling the evolution of the generation

network over the long term while incorporating short term dynamics. In the short term in

particular, there is concern over the amount of wind energy a generator can produce given the

season and the time of day. To the investor, this affects expected profits while, for the system

operator, demand must still be met at all times. In capacity planning, the increase in renewable

energy sources encourages the need to incorporate this short term concern. In addition to

modeling the wind variability, the uncertainty in the costs of fuel and emissions prices

necessitates the need to forecast investor costs more accurately than conventional models. The

hypothesis is that the combination of methods used in this analysis is more rigorous than the

conventional methods and therefore more useful in informing investor decisions.

Different future generation technology scenarios are developed and built into the ERCOT

system. Using the generator characteristics of existing plants in the ERCOT region, costs for

producing power for each generator were calculated. At this stage, the uncertain carbon and

natural gas prices are imposed on the system. These costs are then used in a dispatch model to

perform constrained optimization, which results in the allocation of generation to the units in the

region. The profits made by each generator are then used to calculate the net present values of

each of the technology scenarios that were assumed. In a decision tree, these scenarios were

evaluated against each other to establish the scenario with the highest expected net present value.

The sections below detail each of the steps that have been summarized here. First I describe the

uncertainties in question, and the scenarios that were investigated. I then detail how the system

was modeled and then explain the cost model, the dispatch model, and finally the decision

analysis.



3.1 Uncertainty Scenarios

The two uncertainties considered are the price of natural gas and the price of the carbon. The

carbon price used in these scenarios ranges from $0-$50/ton of CO 2 . This range is most

commonly used in studies. The price of natural gas price used was based on the EIA's Energy

Outlook for 2010. The high and the low are determined from the short term energy forecast

In the first stage of the decision tree (2010-2020), I assumed that the price of carbon is either 0 or

low ($50/ton of CO 2). Since there is currently no carbon price, it is reasonable to assume that in

the period from 2010 to 2020, there may not be a price level established. Also, if there is to be a

price placed, I assume that it starts off at a low level and potentially increases in the second

stage.

Table 3.1 describes the scenarios that were considered in the first stage of the decision tree.

table 3.1: Stage I Uncertainty Scenarios
Scnai De.crptio

1. Low Carbon Price and Low Natural Gas

Price

Carbon Price = $50/ton CO2

Natural Gas Price = $3/MMBTu

2. Low Carbon Price and High Natural Gas Carbon Price = $50/ton CO 2

Price Natural Gas Price = $15/MMBTu

3. 0 Carbon Price and Low Natural Gas Price Carbon Price = $0/ton CO 2

Natural Gas Price = $3/MMBTu

4. 0 Carbon Price and High Natural Gas Price Carbon Price = $0/ton CO 2

Natural Gas Price = $15/MMBTu



In the second stage, I assume that there is for certain a price that has been placed on carbon. The

price in this second stage is either low at $25/ton of CO 2 or high at $100/ton of CO2. The natural

gas price range is the same as in stage 1.

Table 3.2 is a summary of the uncertainty scenarios considered in the second stage of the

decision tree.

TablD i.2: Stage 2 uncertainty Scenarios
Scenario Description

1. Low Carbon Price and Low Natural

Gas Price

Carbon Price = $25/ton CO 2

Natural Gas Price = $3/MMBTu

2. Low Carbon Price and High Natural Carbon Price = $25/ton CO2

Gas Price Natural Gas Price = $15/MMBTu

3. High Carbon Price and Low Natural Carbon Price = $100/ton CO2

Gas Price Natural Gas Price = $3/MMBTu

4. High Carbon Price and High Natural Carbon Price = $100/ton CO2

Gas Price Natural Gas Price = $15/MMBTu

3.2 Determination of Technology Scenarios

From the uncertainty scenarios described in 3.1, I model eight technology scenarios, four for

each year (2020 and 2030). I assume demand levels from those published by ERCOT in their

Long Term System Assessment. These were available until 2019. I used an average growth of

2% per year to estimate the demand in both 2020 and 2030. Also, to calculate the amount of

capacity that had to be built, I retired all plants that were fifty years or older. In addition, I

assumed that ERCOT maintained a reserve margin of 12.5%. Table 3.3 is a summary of the state



of ERCOT's generation capacity. Of importance is the amount of capacity that is needed to

fulfill the demand in ERCOT while also replacing retired plants and maintaining generation

adequacy.

Tahle 3.3: Derivation of New C

Available Capacity (MW) 85520

Retiring Plants (MW) 15475.1 15028

Peak Demand (MW) 78964.32 96310
Peak Demand + 12.5% Reserve
Margin (MW) 88834.86 108348.75

New Capacity Needed (MW) 18789.74 34541.89

A simple screening curve method as described in Stoft (2002) was used to determine the amount

of each technology to be built. Starting with the amount of new capacity needed, I used screening

curves to determine the amount of capacity that should be built from each of the competing

technologies. The screening curve method is based on the equation 1 below:

Screening Curve : Cost ($/h) = Fixed Cost + Variable Cost * Generation Eq I

The technologies considered were:

1) Pulverized Coal

2) Natural Gas Advanced Combined Cycle

3) Advanced Combustion Turbine

4) Wind Turbine

5) Solar Photovoltaic

These are considered as they are in the first stage and in the second stage, pulverized coal has a

90% CO 2 capture rate in one of the analysis.



To determine the scenarios, the costs of generating electricity are determined using the equation:

Total Cost = Capital + Fuel Cost + 0 & M + Emissions Eq. 3.2

(Mckearny, 2010)

where, "O&M" represents the operation and maintenance costs, "Fuel Cost

" is the cost of the technology used by the fuel, and "Capital" is the cost of levelized or

amortized cost of the technology. A fixed NOx price and varying CO 2 prices are used for the

emissions costs. Equation 3.2 is the expanded version of Equation 3.1 where capital costs

represent the fixed cost; and fuel cost, O&M,. and emissions costs make up the variable cost.

Capital cost data for the two time periods considered, 2010-2020 and 2020-2030, were obtained

from a report by the Electricity Power Research Institute (EPRI) (EPRI, 2009). To amortize the

capital cost, equation 3.3 is used where the initial investment is spread across the life of the

generator.

Capital Costx r rT
Fixed Cost= 1i-e '

cf x8760hrs/year

Eq. 3.3

(Stoft, 2002)

where the fixed cost is the cost of construction spread out over the life of the plant, T, at a

discount rate, r, of 10% (Stoft, 2002). An average capacity factor, cf, for the technology is used

to spread the cost over actual power generated by the technology (EPRI, 2010).

The fuel cost is based on the forecasts provided by the EIA while the O&M costs are typical

values assumed for the technology type. The emissions costs are calculated using the emissions

rate assumed for the different technologies in the EPRI study.

Using the screening curves, I determine the least cost technologies for the required demand

investment for each of the uncertainty scenarios described in section 3.2. The screening curves



are linear with the fixed costs making up the y-intercept and the variable costs make up the slope

of the curve. From the screening curves, I determined the size of generation capacity that should

be provided by the technologies that were considered. Figure 3.1 is an example screening curve

for the "low carbon, high natural gas price" scenario.

X 106 Screening Cure: Low Carbon Price, High Natural Gas Price
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Figure 3.1: Low Carbon Price, High Natural Gas Price Scenario Screening Curves

From Figure 3.1 five technologies were compared against each other based on the costs of new

capacity per hour. The scenario used in Figure 3.1 uses a low carbon price of $50/ton of CO 2 and

a natural gas price of $15/MMBtu from the first stage. To read the screening curve, the

technologies making the envelope on the curves have the least cost for the amount of production

necessary. These are then taken as the generation portfolio. In the scenario in Figure 3.1, the

generation portfolio comprises 1500MW of natural gas advanced combustion turbine, 5740

natural gas advanced combined cycle, 6000MW pulverized coal, and 4322MW of wind.

All other screening curves derived are given in Appendix 1. Table 3.3 gives a summary of the

scenarios. The numbers in Table 3.3 represent each scenario as it was presented in Table 3.2

Pulverized Coal
Advanced Combined Cycle
Wind

.- Photovoltaic
Advanced Combustion Turbine



Table 3.4: Description of Scenarios
Portfolio Mix Short Description

Stage 1

3000MW Advanced Combustion Turbine
14572 MW Advanced Combined Cycle:

'All Natural Gas 1'

83% CC, 17% CT

1500 MW Advanced Combustion Turbine 'All fuels':
5750 MW Advanced Combined Cycle 8% Gas CTs, 32% Gas CC, 35%
6000MW Pulverized Coal: 6000MW Coal, 25% Wind
4322MW Wind: 4322MW

2000 MW Advanced Combustion Turbine
3000 MW Advanced Combined Cycle
12572 MW Pulverized Coal

2500 MW Advanced Combustion Turbine
12177 MW Advanced Combined Cycle

2000 MW Advanced Combustion Turbine: 'Coal and Gas'

2 5000 MW Advanced Combined Cycle: 14% Gas CT, 34% Gas CC, 52%
7677 MW Pulverized Coal with 90% Capture Coal w/ capture

1000 MW Advanced Combustion Turbine: 'Gas and Wind'

3 9000 MW Advanced Combined Cycle 68% Gas, 32% wind
4667 MW Wind

500 MW Advanced Combustion Turbine: 'All fuel'

4 4500 MW Advanced Combined Cycle 4% Gas CT, 31% Gas CC, 20% Coal
3000 MW Pulverized Coal with 90% Capture: w/ capture, 45% Wind

6677 MW Wind

'Coal and Gas':

72% Coal, 17% CC, 11%CT

'All Gas'

Stage 2



3.3 Modeling ERCOT

In 2009, ERCOT conducted a study (Analysis of Potential CO 2 Emissions Limits on Electric

Power Costs in the ERCOT Region) that forecasted electricity prices in the region under the

different CO2 emissions targets proposed in the Waxman- Markey Bill. To conduct this study,

ERCOT modeled the region as of 2009 with transmission improvements proposed for 2013, and

also the Competitive Renewable Energy Zones (CREZ) which are to be completed in 2018

(ERCOT, 2009). Other minor improvements were also added onto the system to best represent

its state by 2020. In terms of generation, a number of announced projects were added so as to

meet demand by 2020. These announced projects can either be approved or rejected, so it is

uncertain whether they will be built or not.

For the purposes of this thesis, I use the existing transmission network was used. However, I use

different levels of new capacity as I also assume that plants that will be fifty years or older in

2020 and 2030 will be retired. This increased the amount of new generation that needed to be

built. The screening curves described in section 3.2 were used to determine the type and size of

the new generation. The new fossil generation this assumed to be built at bus locations of retired

plants. Building new generators in these locations ascertains that we follow an already

established trend; generators usually follow load centers. New wind plants were built on the new

CREZ transmission lines which are in located in the western parts of the state where there is high

potential for wind energy.

To construct the scenarios for 2020, fifty-year old plants were retired and new ones built in some

of their locations. I ignore new generation that was added from announced projects. To build the

2030 system, the scenarios for 2020 were used as the base systems. This will be shown in more

detail in Section 3.6, where the decision tree is presented.



3.4 Dispatch Model: PowerWorld

There are numerous ways in which a dispatch problem may be solved. Classic economic

dispatch, also called merit order, is the simplest approach for power optimization and allocates

generation to suppliers by minimizing the cost of generation. Other types of dispatch calculations

take into account some constraints, such as losses in the power system (Galiana, 2009). Using an

optimal power flow model allows the inclusion of multiple operational constraints in the

optimization problem while still minimizing the generation costs. In planning, OPF can be used

in economic analyses to calculate the costs of transmitting power over transmission lines

(Wallenberg, 1996). In this thesis however, OPF is used to constrain the generation to the

structure of the network. Limits on the transmission lines are disabled since there are network

upgrades that will need to be built to take care of the new capacity.

There are three inputs to the OPF: marginal fuel costs, the electricity demand for a specific hour,

and variable wind generation. The fuel costs are passed into PowerWorld, where the marginal

cost of generation is calculated as shown in Equation 4.

Marginal Cost of Generation = Heat Rate * Fuel Cost + 0 & M Costs

Eq. 4

The heat rate is the amount of energy input used to generate each MW of electricity. The

components of Equation 4 (heat rate, fuel and operation costs) are detailed in Section 3.4.2. Only

fossil fuel plants are included in the dispatch. Nuclear and renewable energy plants have a fixed

amount of power production. Existing nuclear plants were assumed to always generate at

maximum capacity. Wind energy was assumed to vary because of its intermittent nature and a

full description of how this was modeled is given in Section 3.4.3. For every hour that was

solved by the dispatch model, a different demand level for the year was assumed. The derivation

of the demand level is detailed in Section 3.4.1 below.

Using the assumed heat rates, fuel costs, and O&M cost for all generators, the dispatch was

solved using a DC-OPF. The case was solved in DC mode to avoid the complexities of the AC



power flow. Solving in DC provides a linear solution to a very complex case making it faster to

run. While the results are less exact in comparison to an AC solution, DC provides a fairly

accurate approximation (Overbye et al, 2004). The power flow is solved for a single hour.

3.4.1 Electricity Demand

To run the OPF for the years 2020 and 2030, the electricity demand levels for the respective

years had to be assumed. A sequential hour-by-hour forecasted demand profile for ERCOT was

available for 2019. Using a 2% annual demand growth rate, hourly demand for 2020 and 2030

was calculated. From this data, load duration curves for the two years were constructed. Load

duration curves are the annual demand ordered in terms of magnitude. The load duration curve is

then discretized into 31 segments, and used to represent the years load. To obtain these 31

points, I sampled 1 hour of the load duration curve to represent 300 hours. I also included the

peak and off peak points of the year. The thirty-one sample hours are 300 hours apart and include

the peak hour and the off-peak hour. Figure 3.1 shows the approximations of the load duration

curves.
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Using MatLab and PowerWorld's Simulator Auto, I solve each of the thirty-one hours at its

demand level using DC-OPF. I solve this for all the technology scenarios described in section 3.2

under the uncertainty scenarios in section 3.1. Each technology has four auxiliary files

containing the cost of generation (explained in 3.4.3). From MatLab, each demand level is

passed to PowerWorld via SimuAuto and solved. Additionally, for new wind plants, generation

is sampled for each hour given the season and the time of the day. This is explained in section

3.4.3. The results from PowerWorld are saved in Excel.

3.4.2 Generator Cost Model

Based on a 2009 steady state power flow case available from the ERCOT planning website, I

imported generators in the region into an excel spreadsheet. These generators were assigned the

ERCOT name and bus number. This information was then used to determine information for

each generator from the Environmental Protection Agency (EPA) in the eGrid 2007 vi.1

database which contains information for each generator including the emissions rates. Plants

were then matched using the Department of Energy's ORISPL codes which are assigned to all

generating facilities in the country. Approximately 90% of generation was matched. Unmatched

plants were mainly those that were added to ERCOT after 2005 when the eGrid data was

prepared. The plant fuel types, heat rates, and emissions rates were used to calculate the total fuel

costs of generation. All new plants were given standard characteristics based on a report by the

Electric Power Research Institute: Program on Technology Innovation: Integrated Generation

Technology Options (EPRI, 2009). Appendix 2 shows a summary of these characteristics.

Equation 5 is the calculation of the total fuel cost which is passed onto the dispatch model as

shown in equation 4.

Total Fuel Cost = Fuel Price + ZGas Emissions Rate * Price Eq.5



where the fuel price depends on the generator technology, and i takes on the values CO 2, NOx,

and SO 2. This calculation does not include the heat rate; the heat rate is added separately in the

cost model used in the dispatch model to calculate the generator marginal cost. Base prices of

$500/ton of SO 2 and $2000/ton of NOx are used for S02 and NOx respectively.

I generated a csv file from the excel spread sheet which I then turned into at auxiliary file; the

readable format for PowerWorld. The auxiliary file contains the fuel cost, heat rate, operations

and maintenance costs, and other plant specifications.

3.4.3 Wind Distributions

Wind output data for years 2007 to 2009 are available from ERCOT. Using the hourly generation

for these years, I used Matlab to first group them by season based on the month, and then by

time, based on the hour of the day. The twenty-four hours of the day were divided into two with

hours from midnight to noon comprising the "Night" and hours from noon to midnight

comprising the "Day". I created eight separate data sets representing each of the four seasons,

and the two times of the day. I then fit the data for each season/time-of-day combination to a

Weibull distribution. The Weibull distribution has been used to forecast many natural

phenomena including wind speeds. It is also commonly used for studying wind energy patterns

(Justus et al, 1977). Here, capacity factors of wind to represent wind energy were used. The

capacity factor is the amount of actual generation as a fraction of the total generation capacity of

a plant calculated over a set period of time. Figure 3.2 shows the Weibull distribution of wind

output in the ERCOT region for the three years from 2007 to 2009.
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To perform a Monte Carlo simulation using the distributions in figure 3.2, I used Latin

hypercube sampling to draw random variables that represent the full distribution spectrum. Three

equally spaced probability fractiles were used: 0.25, 0.5, and 0.75. I used the inverse of these

probabilities for the eight Weibull distributions as the sample of possible capacity factors. A

Monte Carlo was then performed on the sample for every hour that was run. From the thirty-one

hour sample of the load duration curve, I used the season and time of these hours to determine

which of the Weibull distributions in figure 3.2 would be used.

To determine the generation of the wind plants, the randomly sampled capacity factor was used

to calculate their actual power production. These values were then passed as non-dispatchable

generation to PowerWorld where the OPF was solved. For each hour, the wind capacity factors

were sampled three times, and the OPF solved thrice. An average of these three runs of varying

wind generation was used to represent the hour.

3.5 Model Output

The output from the model is total production cost per hour for each of the generators. The sum

for all the units gives the system hourly costs. Each sample hour is then multiplied out with the

number of hours that it represents in the load duration curve to give the annual costs of

generation.

The costs are calculated for the entire system. The present value of costs is then taken with the

capital and a discount rate of 5% is used. The objective is to find the technology mix with the

socially optimal output.



3.6 Decision Analysis

The dispatch model is a linear program which provides gives an optimal solution for a given set

of parameters. However, since we cannot predict the future, these parameters can take on a

number of variables. Dynamic programming is therefore used and it is based on the concept of

enumeration which means that all possibilities are evaluated (de Neufville, 1990). Dynamic

programming is used in this thesis to provide decision analysis. Decision analysis is a method

used in strategic decision making which allows for the quantitative analysis of decisions given

various. The objective for both the system operator and the investors is to achieve a technology

mix with the lowest cost.

In this thesis, a two-stage decision tree is used for the two years, 2020 and 2030. Decisions for

what generation technology to build to meet 2020 demand are made in 2010 while the decisions

to meet 2030 demand are made in 2020. The uncertainties in the tree are the natural gas price and

the carbon price. Each of the technology scenarios designed in 3.2 were then evaluated under the

four different states of uncertainty at each stage of the tree. These states are described in table 3.3

for the two decision stages.

Table 3.5 (a): Stage 1 Decision Tree States

State 1 No Carbon Price, Low Natural Gas Price

State 2 No Carbon Price, High Natural Gas Price

State 3 Low Carbon Price, Low Natural Gas Price

State 4 Low Carbon Price, High Natural Price



Table 3.5 (b): Stage 2 Decision Tree States

State 1 Low Carbon Price, Low Natural Gas Price

State 2 Low Carbon Price, High Natural Gas Price

State 3 High Carbon Price, Low Natural Gas Price

State 4 High Carbon Price, High Natural Price

Using the decision tree, each of the paths that can be taken by technology scenarios was

evaluated. At each stage, the path with the highest expected profit across the scenarios was

established given varying probabilities between the states. Finally, the path giving the highest

expected profit was calculated.

The results of the methodology explained here are given in Chapter 4. Additionally, analyses

done on these results are carried out and illustrated.

States Definition



3.6 Chapter Summary

To answer the question of what technology mix will be adopted in the future in ERCOT, I built a

number of scenarios using screening curves and different prices of carbon and natural gas. These

scenarios assumed that the expected demand levels in both 2020 and 2030 are met through

investment. I assumed a 12.5% reserve margin for adequacy and reliability. Thirty-one equally

spaced hours in the load duration curves were taken to represent the entire year for both 2020

and 2030. Using expected costs of technologies and fuels, I ran a dispatch model, Power World

for each of the scenarios, which allocated generation to the different units in the system. The

results from running these representative hours in the dispatch model were the amount of

generation from each unit and the marginal cost of generation. The sum of these gave the hourly

costs of generation. I then used a decision tree to evaluate between the different scenarios. The

results of this analysis are reported in Chapter 4.



4.0 ANALYSIS

In this chapter, I present the results of the study with the goal of providing the expected path of

technology evolution. A dynamic programming model was developed to evaluate the

performance of alternative capacity expansion scenarios under uncertainty in future carbon

prices and natural gas prices as described in Chapter 3. In efforts to clearly communicate the

results, I present the results of the decision model using several different visualization

approaches. First, I report the results from the decision model in a value at risk and gain (VARG)

curve. A VARG curve compares the outcomes of each of the scenarios based on a cumulative

distribution. I then show the result from solving the decision tree for the expected present values

of costs. First I assumed equal probabilities for each uncertainty state. In addition, I present the

result from running sensitivities on the probabilities. Finally, I present the implications of these

results on the system; specifically I show the possible paths given the decision made in either

period.

Two sets of results are presented here. First, I consider the scenarios as they are described in

Chapter 2 and then in the second set, I investigate the resulting technology portfolio in the event

that Carbon Capture and Storage (CCS) is not available in 2030. The first section presents an

example from simulating a technology scenario within the ERCOT system as described in

Chapter 3.

4.1 Model Illustration

In this section, I present an example load duration curve for 2030 to show the hourly variations

of the generation given the costs of running the generators, wind variability and the demand

levels. The scenario assumes the "All Gas" scenario in the first period, and the "Wind and Gas"

in the second period. For each hour, the average generation per technology for three instances

with varying wind is shown. In a dispatch mode, the hourly portfolios are filled by the least cost

available technologies. The load duration curve is made up of 31 sample hours that were used to

represent a year time-scale as described in section 3.4.1.



Load Duration Curve

Period 1: Al Gas, Period 2: Wind and Gas
High Carbon Price, Low Natural Gas Price

7 9 11 13 15 17
Sample Hours

19 21 23 25 27

Figure 1

Figure 4.1: Load Duration Curve Showing Hourly Fuel Mix for the All Gas-Wind and Gas

Scenario

In Figure 4.1 a picture of the demand levels and the fuel mix is shown for each of the 31 hours.

The variation in the wind availability is also captured. Nuclear and "Other" fare non-dispatchable

and therefore provide base-load generation. In this simulation, a high carbon price and a low

natural gas price are assumed. For low demand hours, natural gas provides the generation

depending on the amount of wind generation available. For the higher demand hours, coal and

oil provide some generation to fulfill the demand. In spite of the high cost of coal and oil as a

result of the carbon price, these technologies may become competitive depending on the

resources available.
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4.2 Considering CCS

In the first analysis, I consider the technology scenarios as designed in Chapter 2 and in 2030,

CCS is available for the new pulverized coal plants.

4.2.1. Value at Risk and Gain Curve (VARG)

Using dynamic programming allows for flexibility in decision making over time. The motivation

behind adding flexibility to an investment is to avoid downside risk while capturing the upside

gains (Cardin et al., 2007). Value at Risk and Gain curves are usually used to evaluate

investment choices in large physical systems and also for financial analysis. A VARG curve is

another name for a cumulative distribution function. VARG curves are used to show the value of

flexibility given a number of investment choices. It stresses the downsides and the upsides. An

advantage of VARG curves is that one can visually compare all the design options. Figure 4.2

shows the VARG curves for each of the four decision scenarios.



VARG Curves

1: All Gas - - Period 1: 40% Gas, 35% Coal, 25% Wind - Period 1: 72% Coal, 28% Gas

0.8
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0.1

0
-2.5E+1 2

Figure 4.2: Cumulative D

A

-2E+12 -1.5E+12 -1E+12 -5E+11 0
Present Value of Costs

istribution Function of Present Value Costs for Decision Scenarios

Figure 4.2 shows the VARG curves for all the period 1 strategies, which are the three technology

portfolio scenarios. To interpret the VARG curve, the right-most curve has the lowest present

value cost when evaluated for a given probability level. From the results in Figure 4.2, each of

the three scenarios has the least cost at some part of the VARG curve. The bottom end of the

VARG curves shows which of the scenarios has the most risk, while the top end shows the most

valuable (lowest cost) scenario. Table 4.1 shows the Pio and P90 read from each of the VARG

curves in Figure 4.2.

Period

1

0.9



nnd P.. Present Vaine Conts With CCS

1. All Gas (83% CC) 1.6 0.6

2. 40% Gas, 35% Coal, 25% Wind 2.0 0.8

3. 72% Coal, 28% Gas 2.0 0.8

The highlighted entries in Table 4.1 show the scenarios that lead to the lowest costs when

evaluated at Pio and P90. Pio gives the value at risk, showing that there is a 10% chance that the

costs will be higher than the present cost when the probability is 10%. Similarly, P90 is the value

at gain, which shows that there is a 10% chance that the costs will be lower than the present cost.

The "All Gas" scenario is also the best solution when evaluated at any probability.

4.2.2 Decision Tree (Dynamic Programming)

In this section, I present the results of solving the decision tree for the lowest possible expected

present value of costs. The assumption in the decision tree is that there is an equal chance

between the states; probabilities of 0.5 are assumed for all uncertainties. Given that we currently

have no knowledge of the probabilities, it is fair to assume a 50/50 chance between the uncertain

variables. Figure 4.3 is a snapshot of the branch of the optimal solution under these conditions.
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4.2.3 Sensitivity Analysis

Sensitivity analysis is a process for investigating an optimal solution under different conditions or

formulations of the problem (de Neufville, 1990). In this study, I investigated the effect of varying

probabilities on the optimal solution. I used a high probability of 1 and a low of 0 with 20 intervals.

The results indicate the scenario that provides the lowest cost on the system for given set of

probabilities. The prices used for natural gas price are a high of $15/MMBtu and a low of $3/MMtu.

For CO 2 the price can either be 0 or $50/ton of CO 2 respectively.

4.2.3.1 Decision for 2020

The first sensitivity analysis performed was to establish the effect of the probability levels on the

2020 decision. Figure 4.4 is the result of this analysis.

Sensitivity Analysis on 2020 Decision
Considering Coal with CCS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Probability of a High Carbon Price in 2020

Figure 2

1l Period 1: All Gas
ET Period 1: 40% Gas, 35% Coal, 25% Wind

0 Period 1: 72% Coal, 28% Gas

Figure 4.4: Sensitivity Analysis on Natural Gas and Carbon Prices in Period 1
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From Figure 4.4, the "All Gas" scenario has a higher likelihood of providing the optimal solution.

As the probability of a high carbon price increases beyond 0.75, the "Coal, Gas, and Wind" scenario

becomes optimal. The corresponding probability of a high natural gas price is above 0.8. At this

point, the combination of the high carbon price and the high natural gas price make the "All Gas"

more expensive than the "Coal, Wind, and Gas" scenario. However, the "Coal, Gas, and Wind"

scenario also contains expensive coal, and expensive gas in this region, and this explains the slope

and the size of this region. The "Coal and Gas" scenario is not competitive given the prices of gas

and carbon.

4.2.3.2 Decision for 2030

To analyze the 2030 decision, I performed conditional sensitivity analysis where I tested the effect

of varying probabilities on the uncertainties in the second period. This analysis is conditional on the

decision that would have been made in 2020. Moreover, the results are also dependent on the

uncertainty state that 2020 could be in. The prices used for natural gas price are a high of

$15/MMBtu and a low of $3/MMtu. For CO 2 the high and the low are $25/ton and $100/ton of CO2

respectively.

Sensitivity Analysis on 2030 Decision
Condition: All Uncertainty States

1.0-
CD__ ~ & jh Period 2:AllGas (More CC)

0.9 L 1 4 t L t iPeriod 2: Gas and Coal w/CCS
.E t ~LK~ E3Period 2: Wind and Gas

S0.8~~L F r L Period 2: Wind, Coal w/CCS and Gas
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Probability of a High Natural. GaA Price in C3)

Figure 4.5: Sensitivity Analysis on Natural Gas and Carbon Prices in Period 2



In the second period of the decision tree, regardless of the probabilities, the "Gas and Coal with

Capture" scenario is the optimal solution. Besides the high capital costs in pulverized coal with 90%

capture and the high heat rate, the costs of coal are significantly reduced. In the model, a new coal

plant produces powers at $2.9/MMBtu under a $25/ton of CO2 and $5.7/MMBtu under a $100/ton

CO 2 price.

Because of the uncertainty in the capital costs of carbon capture and storage, I did a sensitivity

analysis on the capital costs. In the base case a price of $4,435/KW is used for 90% capture. This

analysis was dependent on the fuel type that would have been built in 2020. Assuming that the

"Wind, Coal, and Gas" scenario is chosen, I found that the CCS would have to cost as least

$7,500/KW so that another scenario would be competitive.

Sensitivity Analysis on the Cost of CCS
Cost: $7,5001KW

- sPod2 All Gas (More CC)

.- $Peiod2: Wind and Gas
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Figure 4.6: Sensitivity Analysis for 2030 given CCS costs $7.500/KW

Figure 4.6 shows that with a cost of $7,500/KW, the "Wind and Gas" scenario becomes competitive

on the condition that the probabilities of both a high natural gas price and high carbon price are close

to zero. The "Wind and Gas" is the second cheapest option once CCS is introduced as shall be

illustrated in section 4.3.

Assuming instead that the dominant "All Gas" scenario is built, a much higher price of at least

$17,300/KW for the CCS would allow competition for CCS.



Sensitivity Analysis on the Cost of CCS
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Figure 4.7: Sensitivity Analysis for 2030 given CCS costs of $ 17,300/KW

Figure 4.7 shows the competing technology scenarios as a price of $17,300/KWh of CCS

considering potential decisions in 2020. Again, the "Wind and Gas" scenario is competitive given

that the probabilities for both a high natural gas price and a high carbon price are close to zero.

4.2.4 Technology Evolution

From the results in the decision tree shown in section 4.2.1, the optimal solution in 2020 is the "All

Gas" scenario. The optimal solution for the second period is the "Gas and Coal with CCS" scenario.

I chose to present the technology evolution in terms of the decision tree because given that we

currently do not know how the probabilities will play out, it is fair to assume equal likelihood

between the uncertainties. Figure 4.8 shows the evolution of the composition of the ERCOT system

from 2010 to 2020.



4.2.4.1 Generation Portfolio Evolution (2010 -2020)

ERCOT's Generation Portfolio in 2010

M 2% 01%

M 6%

ERCOT's Generation Portfolio in 2020

0 20/d 0%

85%

019%
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066%

Figure 4.8: Evolution of Technologies between 2010 and 2020 (All Gas)

The changes in fuel composition are dependent on two main reasons; the retiring of old plants, and

also the increase in new plants to meet demand. In 2020, the percentage of natural gas in the system

increases by 8%. Coal and wind drop by 3% each. All other technologies are unchanged in absolute

terms. All hydro generators in ERCOT will be over fifty years old in 2020, and therefore they are all

retired.
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4.2.4.2 Portfolio Evolution (2010 -2020)

Here, I compare the fuel types in ERCOT in 2030 on the condition that the generation evolves as

shown in 4.2.4.1. The optimal solution for the second period is the "Gas and Coal with CCS"

scenario. Figure 4.9 shows the compositions of the resulting when this scenario is assumed.

ERCOT's Generation Portfolio in 2020

E2 0/a0%

l5%

023%

E 19%

ERCOT Generation Portfolio in 2030
l 0%

E 4%
O Natural Gas

o Coal

El Wind

O Nuclear

* Other

0166%

E 66%

The percentage of

drops by 1%.

Figure 4.9: Evolution of-Technologies between 2020 and 2030

natural gas in the system remains constant while coal increases by 4%. Wind



4.3 Without CCS

In the second analysis, I consider the technology scenarios as designed in Chapter 2 though in 2030,

CCS is not available for the new pulverized coal plants.

4.2.1 Value at Risk and Gain Curve (VARG)

VARG Curves

-+- Period 1: All Gas

1

0.9

0.8

0.7

0.6

cc 0.5
0
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cL 0.4
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0.2
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--- Period 1: 40% Gas, 35% Coal, 25% Wind
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Net Present Value of Costs

Figure 4.10: Cumulative Distribution Function of Present Value Costs for Decision Scenarios

Figure 4.10 shows the VARG curves for all the period 1 strategies, which are the three technology

portfolio scenarios. The "Gas, Coal, Wind" scenario avoids the most risk, and the "All Gas" scenario

-*- Period 1: 72% Coal, 28% Gas



captures the most gain. To provide a more comprehensive analysis of the VARG curves, I compared

the curves at different probability levels. Table 4.2 shows the present value costs of all the design

option evaluated at probabilities Pio and P90 which are commonly used in such analyses.

Table 4.2: P10 and P90 Present Value Costs Without CCS
Seais pI $ *XO2 p~, $XIO2

1. All Gas (83% CC) 2.01 0.81

2. 40% Gas, 35% Coal, 25% Wind 2.16 0.82

3. 72% Coal, 28% Gas 2.01 0.76

The highlighted entries in Table 4.1 show the scenarios that lead to the lowest costs when evaluated

at Pio and P90. P10 gives the value at risk, showing that there is a 10% chance that the costs will be

higher than the present cost. Similarly, P90 is the value at gain, which shows that there is a 10%

chance that the costs will be lower than the present cost. The 'All Gas' and "Coal and Gas"

scenarios avoid more risk and the "Coal and Gas" captures the most value of gain (lowest costs).

Overall, the "Coal and Gas" scenario performs best when the options are evaluated at P10 and P90.

However, we can expect different results at other probability levels. The sensitivity analysis in the

following section gives a fuller picture of the effect of different probabilities.

4.3.2 Decision Tree (Dynamic Programming)

Here, I present the results of solving the decision tree for the lowest possible expected present value

of costs. The assumption in the decision tree is that there is an equal chance between the states;

probabilities of 0.5 are assumed for all uncertainties. Given that we currently have no knowledge of

the probabilities, it is fair to assume a 50/50 chance between the uncertain variables. Figure 4.11 is a

snapshot of the branch of the optimal solution under these conditions.



From the decision tree, the optimal solution in the first period is the "All Gas" scenario. Assuming

that this is the decision made in the first period, in the second stage, the optimal solution under all

the four states is the "Wind and Gas".
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4.3.3 Sensitivity Analysis

Similar to 4.2.1.3 I conducted a sensitivity analysis on the decision tree variables.

4.3.3.1 Decision for 2020

Here I performed a sensitivity analysis on the 2020 decision. Figure 4.12 is the result of this

analysis.

Sensitivity Analysis on 2020 Decisions
Considering Coal with No CCS in 2030

10.9- z - . -.. 11

0.8-7 7 //

0.7- X / L

0.5-

0.4-

0.1-

0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Probability of a Carbon Price in 2020

Figure 4.12: Sensitivity Analysis on Natural Gas and

H 13 Period 1: All Gas
E0 Period 1: 40% Gas, 35% Coal. 25% Wind
I2 Period 1: 72% Coal, 28% Gas

1.0

Carbon Prices in Period 1

From Figure 4.12, the decision is highly probabilistic; each technology scenario is optimal for

some combination of the probabilities of the uncertainties. If the probability of a high natural gas

price is below 0.2, the optimal choice is the "All Gas" scenario regardless of the carbon price. As

the probability of a high gas price increases beyond 0.2, and the probability of the carbon price is

below 0.3, the "Coal and Gas" scenario becomes optimal. This scenario has ore coal and less gas

than the other scenarios and is therefore less susceptible to the price of natural gas. From a

probability of a high carbon price of 0.3, the effect of the high natural gas price is displaced by

the carbon price and as the probability of a carbon price continues to increase, the "Gas, Coal,



and Wind" scenario becomes optimal. With wind as part of it, this scenario is less vulnerable to

both the high natural gas price and the high carbon prices than the other scenarios. With a high

likelihood of a carbon price (beyond 0.5) and as the probability of a high gas price decreases

below 0.5, the "All Gas" scenario again becomes optimal again.

4.3.3.2 Decision for 2030

To analyze the 2030 decision, I performed conditional sensitivity analysis where I tested the

effect of varying probabilities on the uncertainties in the second period. This analysis is all

conditional on the decision that would have been made in 2020. Moreover, they are dependent

on the state in which 2020 would have been, for example "no carbon price, high natural gas

price". The prices used for natural gas price are a high of $15/MMBtu and a low of $3/MMtu.

For CO 2 the high and the low are $25/ton and $100/ton of CO 2 respectively.



Condition 1: "All Gas" Scenario

The results in 4.13(a) are made on the assumption that the "All Gas" decision is made in 2020.

Condition: No Carbon Price, Low Natural Gas Price in 2020 Condition: No Carbon Price, Low Natural Gas Price in 2020

0.1
10.0

0.o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Probability of High Carbon Price in 2030

E Period 2- All Gas (More CC)
E Period 2: Gas and Coal
2 Period 2: Wind and Gas

E Period 2: Wind, Coal and Gas

Condition: Carbon Price, Low Natural Gas Price In 2020

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability of High Carbon Price in 2030

Condition: Carbon Price, High Natural Gas Price

02 Period 2: All Gas (More CC)
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Proabilility of a High Carbon Price in 2030 Probability of a High Carbon Price in 2030

Figure 4.13(a): 2030 decisions given that "All Gas" decision is made in 2020

0 Period 2: Al Gas (More CC)
O Period 2: Gas and Coal
O Period 2: Wind and Gas
I Period 2: Wind. Coal and Gas

Period 2: All Gas (More CC)
0 Period 2: Gas and Coal
E Period 2: Wind and Gas
0 Period 2: Wind, Coal and Gas

For all the states, the "Wind and Gas" scenario has the highest probability of being optimal. A

low natural gas price combined with a low carbon price leads to the "All Gas" scenario. From

Figure 4.13 (a), this is true for all states given that the probability of a high carbon price is below

0.1 and the probability of a high natural gas price is blow 0.25. Also, when there is a high natural

gas price, and the probability of a high carbon price is low, the "Coal and Gas" scenario yields

the cheapest system costs. This does not hold under the condition that there was a carbon price

and a low gas price in 2020. This combination eliminates the coal completely in 2020 as shown

in 4.3.3.1.
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Condition 2: "Wind, Coal, and Gas "Scenario

The sensitivity analysis here assumes that in 2020, the "Wind, Gas, and Coal" scenario was
decided on. Results are shown in 4.13(b).

Condition: All Uncertainty States in 2030

1.0 -

0.9

M0.8

4- 0.7

z

0.5

////'' / 7X"/%/'~ 7
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0 0.1 /// ///7 x/' ,

0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8
Probability of a High Garbon Price in,2030

Figure 4.13(b): 2030 decisions given that "Gas, Coal,

Period 2: All Gas(More CC)
Period 2: Gas and Coal

7IPeriod2: Wind and Gas
Z Period 2: Wind, Coal and Gas

0.9 1 u

Wind" decision is made in 2020

For all the states a probability of a high natural gas of 0.5 and lower leads to the "All Gas"
scenario given that probability of a high carbon price in 2030 is 0.3 and less. As the high natural
gas probability decreases, the "All Gas" is cheaper. Though there is gas in either of the scenarios,
in this region, the "All Gas" price is cheaper because of lower capital costs. From the model, the
cost of running the "Wind and Gas" scenario are lower than those for running the "All Gas"
scenario, however the capital costs make the "All Gas" cheaper in this region.

Condition 2: "Coal and Gas "Scenario



The results in this section assume that in 2020, the "Coal and Gas" scenario was implemented.

Figure 4.13(c) summarizes the results of the sensitivity analysis.

Condition: All Uncertainty States in 2020

1/ / Period 2: All Gas (More CC)

co 0.9/0 Period 2: Gas and Coal
o/N$ Period 2: Wind and Gas

/8/ ~Period 2: Wind, Coal and Gas

0.7

M06

0 0.2

0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Probability of High Carbon Price in 2030

Figure 4.13(c): 2030 decisions given that "Coal Gas" decision is made in 2020

The probability of a high carbon price is dominant. For a probability of a high carbon price of

0.1, regardless of the natural gas price, the "All Gas" scenario is dominant. As the probability of

a high carbon price continues to increase beyond 0.1, both the natural gas price and the carbon

price affect the optimal choice. As the probability of a high natural gas increases with the

likelihood of a high carbon price the "Wind and Gas" scenario becomes cheaper. For low gas

price reduces the costs for the "Wind and Gas" scenario faster than it does for the "All Gas"

scenario. A high natural gas price favors the "All Gas". Again this is because of the higher

capital costs of the "Wind and Gas" scenario.

4.3.4 Technology Evolution



From the results in the decision tree shown in section 4.3.2, the optimal solution in 2020 is the

"All Gas" scenario. The optimal solution for the second period is the "Wind and Gas" scenario.

4.3.4.1 Generation Portfolio Evolution (2010 -2020)

In this section, I compare the snapshot of fuel types in ERCOT in 2010 as shown in Chapter 1

and the results of the decision analysis. Figure 4.14 compares the generation fuel types for 2010

and 2020.

ERCOT's Generation Portfolio in 2010

0 2% 31%

E 6%

ERCOT's Generation Portfolio in 2020

020/0%

135%

019%

0-58%

066%

Figure 4.14: Evolution of Technologies between 2010 and 2020

From figure 4.14, there is an 8% increase in natural gas, and a 3% decrease in coal. The amount

of wind and nuclear also decreases as a fraction of the total capacity in the system. The amount

of hydro in the system is wiped out because of the age of the plants.

o Natural Gas

o Coal

0 Wind

0 Nuclear

N Other

0 Hydro



4.3.4.2 Portfolio Evolution (2010 -2020)

In this section, I compare the fuel types in ERCOT in 2030 on the condition that the generation

evolves as shown in 4.3.4.1. The optimal solution for the second period is the "Wind and Gas"

scenario. Figure 4.15 shows the compositions of the resulting when this scenario is assumed.

ERCOT's Generation Portfolio in 2020

05% M20/

* 18%

O8%

ERCOT's Generation Portfolio in 2030

N 2%

0 4%
* Natural Gas

o Coal.

M Wind

M Nuclear

M Other

M 66%
N 68%

Figure 4.15: Evolution of Technologies between 2020 and 2030 (1)

4.4 Chapter Summary

In this chapter, I analyze the results first assuming that there will be carbon capture and storage

technologies available after 2020. Considering CCS, the optimal solution in the first period using

0190/



the VARG curves and the decision tree is the "All Gas" scenario. In the second period, the "Gas

and Coal" with capture is optimal. From 2010 to 2030, percentages of both natural gas and coal

increase if this path is taken. Under the conditions, wind development is not competitive.

In the second analysis, with no CCS, the results are more probabilistic. From the VARG curves,

the "Coal and Gas" scenario is the optimal solution as it avoids the most risk and also captures

the highest gains as the cheapest possible scenario. Results from the decision tree show that the

"All Gas" and the "Wind and Gas" scenarios are the optimal solutions in the first and second

periods respectively. The sensitivity analysis performed by varying the probabilities in the

decision tree, provides a more comprehensive summary of results. At different probabilities of

both the natural gas price and the carbon price, there are different optimal solutions. Using the

results from the decision tree, natural gas and wind increase in the system while coal decreases.



5.0 DIsCUSSION

In this chapter, I discuss the implications of the results presented in Chapter 4 and other factors

which may influence the evolution path of generation technology. The results from Chapter 4 are

from a purely economic analysis, but this chapter aims to bring in the engineering, political and

social considerations that too play a part in this decision making. While the results in the

previous chapter are based on ERCOT, the presentation of these results goes beyond the case

study. In my presentation of the main findings, I also present the various interests of different

stakeholders. I also discuss some limitations in this study.

5.1 Discussion of Results

The analysis done provides insight on the risks in investment in generation technologies. From

the various analyses conducted in Chapter 4, the following main deductions were made:

1. The path of capacity expansion taken today depends on the technologies we

assume to be available in the future.

2. Unless a price on carbon is established and is high enough, coal will remain

competitive.

3. CCS allows for coal to remain an attractive investment in the presence of a carbon

price.

4. Wind is competitive when the prices of both natural gas and carbon are high, and

in the absence of CCS technologies.

5. Investment in natural gas presents relatively the least risk.

Below, I discuss each of the main themes from the study.



The path of capacity expansion taken today depends on the technologies we assume to be

available in the future.

From the results in Chapter 4, perhaps the most interesting deduction is that the decision we

make today depends on the technologies that we foresee in the future. This shows the benefit of

path dependent decision making. It is therefore important that technology change be considered

in capacity expansion models if the optimal decision under uncertainty is to be determined more

accurately today.

The role of technology change in the future is important in policy making since policies may be

uninformed by this potential and assume only technologies in the status quo. This exemplifies

the need to fund R&D of breakthrough technologies such as CCS or ocean-wave energy. Since

the emissions challenge is a global problem, there is always a question of where these funds for

R&D should emanate from. According to Mancur Olson, parties are unlikely to accept the role of

the funder in cases where the costs are concentrated while the benefits are diffuse in this case

across the globe (Olson, 1971). I believe that both the private sector and the government have a

role to play. For manufactures or technology, there is great potential that new technologies will

be timely and capture any carbon policies that may be set. The government may also direct more

R&D funds to energy.

Alternatively, establishing a policy on carbon will induce innovation and lead to technology

change; improvements to current technologies or new inventions. The establishment of a carbon

price therefore plays an important role in technology change and our decision of what to build

today.



Unless a price on carbon is established and is high enough, coal will remain competitive. CCS

allows for coal to remain an attractive investment in the presence of a carbon price.

In the analysis conducted in Chapter 4, if the natural gas price is high and a carbon price is not

established, coal will remain a major component of the technology portfolio in the next ten years

unless CCS technologies become available. Moreover, the price that will be placed on carbon

should be high enough for other technologies to be competitive. According to Kip Viscusi, an

externality exists when the actions of one agent affects the utility of another leading to an

inefficient allocation of resources (Viscussi et al, 2005). Carbon emissions are large component

of greenhouse gases that are causing global warming and climate change. If the goal is to reduce

the impact of this externality, then it is crucial that a carbon price be established in the next ten

years to lower emission.

For many systems which currently have coal as the major fuel source, old retiring plants will be

replaced with new coal plants and unless CCS technologies are established, the power sector will

continue to produce high emissions for longer. CCS technologies are essential if the emissions

from coal are to be reduced as echoed by the MIT Study on the Future of Coal and also the IPCC

Third Assessment Report. Moreover, the costs of this technology have to be competitive if

investors are to willingly purchase it. To be competitive of course, a carbon price has to be

established and also it has to be high enough unless command and control policy mechanisms are

put in place. This poses another debate- should carbon emissions be regulated like air pollution

where such mechanisms are employed? If capture technology is mandated, then this ceases to be

an investment question as all utilities would have to comply. However, this form of mechanism

is unlikely since more market based solutions are currently being considered such as taxing and

cap-and trade.

Another consideration is that there are numerous economies that currently depend on coal as a

source of income. Politicians from such economies, commonly referred to as 'brown states', are

likely to oppose a price on carbon. According to an article in the New York Times, politicians

from mid-west states which rely heavily on coal and manufacturing are in the forefront for

opposing any legislature on climate policy with regards to carbon (Broder, 2009). This divide in



interests from a socio-economic perspective plays a role in establishment of a carbon price which

is crucial to the reduction in climate change. Only if CCS technologies are available at a

competitive price can there be resolve between climate change advocates and such economies.

Wind is competitive when the price of both natural gas and carbon are high, and in the

absence of CCS technologies.

From the analysis in Chapter 4, in the first ten years, wind is only a part of the optimal portfolio

when there is a high natural gas price and a high carbon price. This is a favorable circumstance

for wind investors and also manufacturers of wind turbines. In the second stage, when a carbon

price has been established for certain, wind becomes a consistent component of the optimal

solution assuming that CCS technologies have not been established.

There are numerous reasons why the diffusion of wind and other renewables is currently

attractive to most governments. In addition to reducing climate change, renewables promise

energy sustainability and security, and economic boosts for communities with resources. Wind

that has currently been built especially in Texas, which is currently the leading US wind

producer, was mostly spurred by the state adopting Renewable Portfolio Standards (RPS). RPS

essentially is the government picking a technology. If instead a carbon price is established, then

the market will be able to develop wind without the need for government intervention.

Again, this is another question of which mechanisms work best here- market or policy. To most

economists, the market based solutions are most effective for market problems (Viscussi, 2005).

If a market solution is to be employed, then the carbon price is essential to expansion of wind. If

instead, the command and control approach is taken, there is risk of regulatory capture as that

which occurred in Texas in the late '90s. Regulatory or Stiglerian capture is institutional failure

in which, companies' self interests coincide with the interests of the regulation setting body (Oye

et al, 1994). Enron lobbied the Texas government to mandate RPS and became the supplier of

wind turbines to investors in Texas. Such instances are common in regulation and standard



setting and these weaken the credibility of policy mechanisms. Moreover, it is imperative that

policies be aligned with social needs instead of needs of private organizations.

Another important consideration with wind besides investment is the reliability of electricity

systems and grids. Here, I define reliability in terms of both adequacy and security. Inherently,

wind like most renewables requires operational reserves to be available in the system to balance

its variability and intermittency. As a result, investment in wind should be coupled with a more

reliable technology. Currently, fossil fuels are used. However, other fuels such as nuclear energy

should be used considered if the goal is to achieve a lower carbon economy.

Investment in natural gas presents relatively the least risk.

From the results in Chapter 4, natural gas will play an important role in the next twenty years

whether it s priced high or low. Building purely natural gas plants from here on forward may

lead to the lowest costs in the system with the most reliability. In the US, recoverable shale gas

reserves have put confidence that there is enough natural gas for centuries to come (Petak et al,

2009). The abundance of the resource makes it a viable alternative to coal. Natural gas has lesser

carbon emissions than coal and in numerous studies it has been seen as a bridge to a lower

carbon economy. This finding of unconventional natural gas sources which has been referred to

as a 'game changer' also implies that natural gas prices may not increase in the margins that

current forecasts assume. In this case, natural gas investment will increase as the resource

becomes cheaper even without a carbon price.

In as much as natural gas offers the benefits of a lower carbon economy, it is debatable whether

this is enough to lead us to desirable CO 2 stabilization levels. While it is a solution in the short

term, other technologies should be considered to lower the power sectors

carbonemissions.Taking natural gas as the bridge to a lower carbon economy essentially locks in

investors to one fuel source. When will the bridge be crossed if natural gas continues to be a

major part of the generation portfolio? The potential increase in natural gas investment threatens

government goals to diversify their energy portfolios. Besides that we await some breakthrough

technologies, there are other fuels such as nuclear energy. Lock-in has the potential to inhibit



R&D efforts to either develop new technologies or to fund studies that may gain public

confidence in the use of nuclear energy for example.

Natural gas from the results in this study is the most economical fuel given the options that we

currently have. However, it presents a risk of reducing the diversity of technology portfolios and

also the continued reduction of carbon emissions. Policy instruments may need to intervene to

direct investment to other fuel sources to avoid reliance on a single energy source.

5.2 Limitations of the Study

The aim of this thesis is to develop a strategy that may protect investors from the risk that is

presented by the uncertainties that are currently characteristic of the energy industry. The method

used in developing this strategy while more detailed than traditionally used model also has some

limitations. There are limitations in the assumptions of scope and also in the tools available to

address the problem.

In terms of the scope, in recent years it is important to think about electricity from both the

generation side and the demand side. This thesis assumes that there is a constant growth in

demand and that all new demand is met purely from the generation side. It is however, important

to understand that there are numerous demand side initiatives that lower the amount of new

capacity that is needed such as distributed generation. Large scale solar systems for example are

cheaper on a distributed generation level. Also, there are numerous energy efficiency programs

that are currently underway and will reduce the amount of energy that is needed in the future.

Another assumption in the scope is that only three fuels are available for investment through out

the next twenty years. The current energy climate has spurred a lot of investment in research and

development for new technologies and ways to improve the existing technologies. For this study,

it would be useful to add the uncertainty in the availability of CCS to the uncertain carbon and

natural gas prices. Besides CCS, there are other technologies that may change the parameters that



were used in this thesis. Moreover, in the extreme case, disruptive technologies may enter the

market.

Finally, in running simulations in PowerWorld a number of simplifications were made. In

particular, transmission line constraints were disabled. As a result, some generators that may in

fact have insufficient transmission were allowed to be dispatched. Also, to maintain reliability in

the system, security constrained optimal power flow (SCOPF) should be used instead. SCOPF

checks that in spite of any possible disturbances in the system, there is a contingency to make

sure that demand is served.

5.3 Chapter Summary

The results obtained in Chapter 4 show that natural gas as an investment presents the least risk.

While this is favorable in the short term, as natural gas has lower carbon emissions than coal, it

presents long term risks of reducing fuel diversity and further emissions reductions. There may

be a need for policy instruments to direct investment to other fuels to fulfill government goals of

energy sustainability and security for instance. Coal remains a possible investment option and the

prospect of CCS technologies is favorable to coal mining economies. Wind becomes competitive

given that there is a high carbon price established and also that natural gas prices are high,

assuming that CCS technologies are not brought to the market. Without this condition, policy

instruments like RPS will have to be implemented or continued to support its diffusion.



6.0 CONCLUSIONS

In this thesis, the aim was to develop a strategy for investment in power generation technologies

in the future given the uncertainties in climate policy and fuel prices. The electricity sector

produces 40% of carbon emissions, and any climate policy will heavily impact the sector. These

uncertainties change the cost structure of technologies as we currently know them, and this poses

risk to investors in power generation. As demand continues to grow, new investment is required

and therefore a strategy to invest under such conditions is necessary. This thesis examines the

way that technology portfolios are likely to evolve in light of these uncertainties.

Capacity expansion in the long term commonly conducted uses deterministic methods.

Deterministic approaches determine solutions given exact parameters with no room for variation

in the likelihood of different scenarios. In this study, use a probabilistic approach which explores

given scenarios under assuming varying likelihood. In addition, capacity expansion models

conventionally use average estimates to predict the amount of power that each generator will

produce based on the technology. In this thesis, I propose an alternate method which determines

the actual generation of a unit in a system hour-by-hour. This is motivated by the intermittency

and variability of wind generation. The hypothesis is that by so doing, a more accurate

representation of system costs is made.

I used the Electric Reliability Council of Texas (ERCOT) as a case study and investigated the

effect on system cots of different types of generation technology investments over a period of

twenty years. Using a dispatch model, I simulated a sample of hours of the load duration curves

for 2020 and 2030 assuming different demand levels. In the first period 2010-2020, I assumed

the price of carbon to either be $0 or $50/ton CO 2. In the second period, I take the carbon price to

be at either a low of $25/ton of CO 2 or a high of $100/ton of CO 2 . The price of natural gas used

was either a high of $15/MMBtu or a low of $3/MMBtu in both periods. Each of these hours

had a different amount of wind generation from sampling Weibull distributions of historical

patterns in wind generation based on the season and the time of day. I simulated each technology

scenarios for the four uncertainty combinations. Each of these scenarios was simulated three



times to capture different wind levels. The average of these three scenarios was the system

output. The output was the system costs for each our aggregated over a year. I assumed a 5%

discount rate to calculate the present value of cost of running the system. The results from each

of the simulation were then evaluated in a decision tree to establish the socially optimal solution.

I the present the results in different visualization styles: VARG curves, sensitivity analysis and

decision tree with a 0.5 probability for all the uncertainties. From the VARG curves the

investment portfolio that avoided the most risk and also had the lowest possible costs was the

"Coal and Gas" scenario. From the sensitivity analysis, the optimal solution depended on the

probabilities assumed. In the first stage, the "All Gas" scenario was the most prevalent. In the

second state both the "Wind and Gas" and the "All Gas" scenario are most likely. From the

decision tree, I found that in the first period (2010-2020) building all natural gas plants is the

optimal solution. In the second period (2020-2030), the optimal solution is a combination of

wind and natural gas.

To stir investment paths suggested by this thesis, a carbon price plays an essential role. A carbon

price will give lead to both CCS technologies and renewables such as wind becoming

competitive with the fossil fuels. Natural gas is also an important component of the technology

mix and will continue to do so unless capture technologies becomes prevalent soon and also

other fuel alternatives are explored.



Future Work

To further the foundation laid by this thesis, I propose that the following work be done.

1. Expand the study to other technologies such as nuclear and other renewables. Only wind,

coal, and gas are considered in this study, other technologies could be included in the studies

scenarios that were tested.

2. Include pricing of other greenhouse gases as uncertain in the future. These gas include NOx

andS02

3. Analyze other uncertainties such as technology change and electricity demand. In particular,

it would be useful to add the uncertainty in the availability of CCS technologies.Technology

change is essential to avoid risk in betting on technologies whose development or feasibility

is uncertain. Varying demand levels takes care of the uncertainties in demand and also

demand-side management.
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APPENDICES

Appendix 1: Screening Curves

The following figures and tables show the screening curves that were developed to allocate

generation capacity across the different technologies. I present the scenarios in 2020 and then for

2030. Accompanied with each curve are the capital costs for the resulting technology mix

outlined in a table.

1.1 Screening Curves for 2020

1. Low Carbon Price, Low Natural Gas Price

X 106 Screening Curm: Low Carbon Price, Low Natural Gas Price
7 L 1 6 L L

Pulverized Coal

6 - Advanced Combined Cycle
6 Wind

Photovoltaic

5- Advanced Combustion Turbine

4-

3-

2-

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Demand, MW

Cost/MW Gen Total Cost
PV
Coal 2650000 0 0
ACC 880000 14572 12823360000
Wind 2350000 0 0
ACT 650000 3000 1950000000

Total -14773360000

2. Low Carbon Price and High Natural Gas Price

X 106 Screening Curme: Low Carbon Price, High Natural Gas Price

Pulverized Coal

6- Advanced Combined Cycle
6 Wind

Photovoltaic

5- Advanced Combustion Turbine

0 2000 4000 6000 8000 10000 12000 14000 16000
Demand, MW

Cost/MW Gen Total Cost
PV Coal 2650000 6000 15900000000
ACC 880000 5750 5060000000
Wind 2350000 4322 10156700000
ACT 650000 1500 975000000

1 Total -32091700000

18000

K .. .... ..



3. No Carbon Price, High Natural Gas Price

X 106 Screening Curve: No Carbon Price, High Natural Gas Price
7

Pulerized Coal

6 - Advanced Combined Cycle
Wind
Photowltaic

k 5 - Advanced Combustion Turbine

54-

-

* 2-

O r r r r r r r r
0 2000 4000 6000 8000 10000 12000 14000

Demand, MW

Cost/MW Gen Total Cost

PV Coal 2650000 12572 33315800000
AGO 880000 3000 2640000000
Wind 2350000 0 0
ACT 650000 2000 1300000000

1 Total -37255800000

16000 18000

1.2 Screening Curves for 2030

1. Low Carbon Price, Low Natural Gas Price
x 106 Screening Curve: Low Carbon Price, Low Natural Gas Price

14. L L L L L L
-- -- -. - -.Pulverized Coal with 90%CC

12 Advanced Combined Cycle
12 - Wind

Photovoltaic

10- Advanced Combustion Turbine

6

0CO
<a
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2.......- ------......

0 0.5 1 1.5 2
Demand, MW

2.5 3 3.5

x 10

Cost/MW Gen Total Cost
PV Coal
W/ CC 4435000 0 0
ACC 902000 12177 10983654000
Wind 2350000 0 0
ACT 675000 2500 1687500000

Total -12671154000



2. Low Carbon Price, High Natural Gas Price

6 Screening Cure: Low Carbon Price, High Natural Gas Price

Pulerized Coal with 90%CC

Advanced Combined Cycle

Wind

Photooltaic
.............Advranced Combustion Turbine

Cost/MW Gen Total Cost
PV Coal
W/ CC 4435000 7677 34047495000
ACC 902000 5000 4510000000
Wind 2350000 0 0
ACT 675000 2000 1350000000

Total -39907495000
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3. High Carbon Price, High Natural Gas Price

X 10 Screening Cure: High Carbon Price, High Natural Gas Price

Pulverized Coal with 90%CC
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Advanced Combustion Turbine
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Total 33392450000
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Appendix 2: Technology Characteristics

Here, I give the prices and values for the various characteristics used in this thesis in the
development of scenarios and prices

Price of Coal = $1.63/MMBtu
NOx Price = $2000/ton of NOx

Table 1 gives the heat rates of the different technologies considered in this thesis.

Table 1: Generator Heat Rates
Technology Heat Rates (Btu/KWh)

Natural Gas Combined Cycle 7260
Natural Gas Combustion Turbine 9000

Pulverized Coal 9100
Pulverized Coal with 90% Capture 12460

Table 2 gives the CO2 emissions rates of the different technologies considered in this thesis.

Table 2: Generator CO 2 Emissions Rates
Technology Emissions Rates(lb/KWh))

Natural Gas Combined Cycle 800
Natural Gas Combustion Turbine 1200

Pulverized Coal 2100
Pulverized Coal with 90% Capture 210

Table 3 gives the NOx emissions rates of the different technologies considered in this thesis.

Table 3: Generator NO, Emissions Rates
Technology Emissions Rates(lb/KWh))

Natural Gas Combined Cycle 0.5.
Natural Gas Combustion Turbine 0.7

Pulverized Coal 1
Pulverized Coal with 90% Capture 1

Table 4 gives the sizes of the different technologies considered in this thesis.

Table 4: Size of Generators
Technology Capacity (MW)

Natural Gas Combined Cycle 400
Natural Gas Combustion Turbine 300

Pulverized Coal 750
Pulverized Coal with 90% Capture 750



Table 5 gives the fixed O&M costs of the different technologies considered in this thesis.

Table 5: Fixed Operation and Maintenance Costs
Technology O&M Costs ($/MW)

Natural Gas Combined Cycle 1.6
Natural Gas Combustion Turbine 5.1

Pulverized Coal 3.8
Pulverized Coal with 90% Capture 3.8

Wind 10.4


