An integrated approach to economic and environmental aspects of air pollution and climate interactions

Conference Proceedings Paper
An integrated approach to economic and environmental aspects of air pollution and climate interactions
Sarofim, M. (2007)
Eos Transactions, AGU, 88(52), Fall Meet. Suppl., abstract A53F-08

Abstract/Summary:

Emissions of greenhouses gases and conventional pollutants are closely linked through shared generation processes and thus policies directed toward long-lived greenhouse gases affect emissions of conventional pollutants and, similarly, policies directed toward conventional pollutants affect emissions of greenhouse gases. Some conventional pollutants such as aerosols also have direct radiative effects. NOx and VOCs are ozone precursors, another substance with both radiative and health impacts, and these ozone precursors also interact with the chemistry of the hydroxyl radical which is the major methane sink. Realistic scenarios of future emissions and concentrations must therefore account for both air pollution and greenhouse gas policies and how they interact economically as well as atmospherically, including the regional pattern of emissions and regulation. We have modified a 16 region computable general equilibrium economic model (the MIT Emissions Prediction and Policy Analysis model) by including elasticities of substitution for ozone precursors and aerosols in order to examine these interactions between climate policy and air pollution policy on a global scale. Urban emissions are distributed based on population density, and aged using a reduced form urban model before release into an atmospheric chemistry/climate model (the earth systems component of the MIT Integrated Global Systems Model). This integrated approach enables examination of the direct impacts of air pollution on climate, the ancillary and complementary interactions between air pollution and climate policies, and the impact of different population distribution algorithms or urban emission aging schemes on global scale properties. This modeling exercise shows that while ozone levels are reduced due to NOx and VOC reductions, these reductions lead to an increase in methane concentrations that eliminates the temperature effects of the ozone reductions. However, black carbon reductions do have significant direct effects on global mean temperatures, as do ancillary reductions of greenhouse gases due to the pollution constraints imposed in the economic model. Finally, we show that the economic benefits of coordinating air pollution and climate policies rather than separate implementation are on the order of 20% of the total policy cost.

Citation:

Sarofim, M. (2007): An integrated approach to economic and environmental aspects of air pollution and climate interactions. Eos Transactions, AGU, 88(52), Fall Meet. Suppl., abstract A53F-08 (http://www.agu.org/meetings/fm07/)
  • Conference Proceedings Paper
An integrated approach to economic and environmental aspects of air pollution and climate interactions

Sarofim, M.

AGU, 88(52), Fall Meet. Suppl., abstract A53F-08

Abstract/Summary: 

Emissions of greenhouses gases and conventional pollutants are closely linked through shared generation processes and thus policies directed toward long-lived greenhouse gases affect emissions of conventional pollutants and, similarly, policies directed toward conventional pollutants affect emissions of greenhouse gases. Some conventional pollutants such as aerosols also have direct radiative effects. NOx and VOCs are ozone precursors, another substance with both radiative and health impacts, and these ozone precursors also interact with the chemistry of the hydroxyl radical which is the major methane sink. Realistic scenarios of future emissions and concentrations must therefore account for both air pollution and greenhouse gas policies and how they interact economically as well as atmospherically, including the regional pattern of emissions and regulation. We have modified a 16 region computable general equilibrium economic model (the MIT Emissions Prediction and Policy Analysis model) by including elasticities of substitution for ozone precursors and aerosols in order to examine these interactions between climate policy and air pollution policy on a global scale. Urban emissions are distributed based on population density, and aged using a reduced form urban model before release into an atmospheric chemistry/climate model (the earth systems component of the MIT Integrated Global Systems Model). This integrated approach enables examination of the direct impacts of air pollution on climate, the ancillary and complementary interactions between air pollution and climate policies, and the impact of different population distribution algorithms or urban emission aging schemes on global scale properties. This modeling exercise shows that while ozone levels are reduced due to NOx and VOC reductions, these reductions lead to an increase in methane concentrations that eliminates the temperature effects of the ozone reductions. However, black carbon reductions do have significant direct effects on global mean temperatures, as do ancillary reductions of greenhouse gases due to the pollution constraints imposed in the economic model. Finally, we show that the economic benefits of coordinating air pollution and climate policies rather than separate implementation are on the order of 20% of the total policy cost.