- Journal Article
Abstract/Summary:
A coupled land-atmosphere climate model is used to investigate the impact of vegetation parameters (leaf area index, absorbed radiation, and greenness fraction) on the simulation of surface fluxes and their potential role in improving climate forecasts. Ensemble simulations for 1986-95 have been conducted with specified observed sea surface temperatures. The vegetation impact is analyzed by comparing integrations with two different ways of specifying vegetation boundary conditions: observed interannually varying vegetation versus the climatological annual cycle. Parallel integrations are also implemented and analyzed for the land surface model in an uncoupled mode within the framework of the Second Global Soil Wetness Project (GSWP-2) for the same period. The sensitivity to vegetation anomalies in the coupled simulations appears to be relatively small. There appears to be only episodic and localized favorable impacts of vegetation variations on the skill of precipitation and temperature simulations. Impacts are sometimes manifested strictly through changes in land surface fluxes, and in other cases involve clear interactions with atmospheric processes. In general, interannual variations of vegetation tend to increase the temporal variability of radiation fluxes, soil evaporation, and canopy interception loss in terms of both spatial frequency and global mean. Over cohesive regions of significant and persistent vegetation anomalies, cumulative statistics do show a net response of surface fluxes, temperature, and precipitation with vegetation anomalies of ±20% corresponding to a precipitation response of about ±6%. However, in about half of these cases no significant response was found. The results presented here suggest that vegetation may be a useful element of the land surface for enhancing seasonal predictability, but its role in this model appears to be relatively minor. Improvement does not occur in all circumstances, and strong anomalies have the best chance of a positive impact on the simulation.
© 2009 American Meteorological Society