Climate change, air pollution, and the economics of health impacts

Conference Proceedings Paper
Climate change, air pollution, and the economics of health impacts
Reilly, J., T. Yang, S. Paltzev, C. Wang, R.G. Prinn and M. Sarofim (2003)
Eos Transactions, 84(46), ABSTRACT U31A-04

Abstract/Summary:

Climate change and air pollution are intricately linked. The distinction between greenhouse substances and other air pollutants is resolved at least for the time being in the context of international negotiations on climate policy through the identification of CO2, CH4, N2O, SF6 and the per- and hydro- fluorocarbons as substances targeted for control. Many of the traditional air pollutant emissions including for example CO, NMVOCs, NOx, SO2, aerosols, and NH3 also directly or indirectly affect the radiative balance of the atmosphere. Among both sets of gases are precursors of and contributors to pollutants such as tropopospheric ozone, itself a strong greenhouse gas, particulate matter, and other pollutants that affect human health. Fossil fuel combustion, production, or transportation is a significant source for many of these substances. Climate policy can thus affect traditional air pollution or air pollution policy can affect climate. Health effects of acute or chronic exposure to air pollution include increased asthma, lung cancer, heart disease and bronchitis among others. These, in turn, redirect resources in the economy toward medical expenditures or result in lost labor or non-labor time with consequent effects on economic activity, itself producing a potential feedback on emissions levels. Study of these effects ultimately requires a fully coupled earth system model. Toward that end we develop an approach for introducing air pollution health impacts into the Emissions Prediction and Policy Analysis (EPPA) model, a component of the MIT Integrated Global Systems Model (IGSM) a coupled economics-chemistry-atmosphere-ocean-terrestrial biosphere model of earth systems including an air pollution model resolving the urban scale. This preliminary examination allows us to consider how climate policy affects air pollution and consequent health effects, and to study the potential impacts of air pollution policy on climate. The novel contribution is the effort to endogenize air pollution impacts within the EPPA model, allowing us to study potential economic effects and feedbacks. We find strong interaction between air pollution and economies, although precise estimates of the effects require further investigation and refined resolution of the urban scale chemistry model.

Citation:

Reilly, J., T. Yang, S. Paltzev, C. Wang, R.G. Prinn and M. Sarofim (2003): Climate change, air pollution, and the economics of health impacts. Eos Transactions, 84(46), ABSTRACT U31A-04 (http://www.agu.org/meetings/fm03/)
  • Conference Proceedings Paper
Climate change, air pollution, and the economics of health impacts

Reilly, J., T. Yang, S. Paltzev, C. Wang, R.G. Prinn and M. Sarofim

84(46), ABSTRACT U31A-04

Abstract/Summary: 

Climate change and air pollution are intricately linked. The distinction between greenhouse substances and other air pollutants is resolved at least for the time being in the context of international negotiations on climate policy through the identification of CO2, CH4, N2O, SF6 and the per- and hydro- fluorocarbons as substances targeted for control. Many of the traditional air pollutant emissions including for example CO, NMVOCs, NOx, SO2, aerosols, and NH3 also directly or indirectly affect the radiative balance of the atmosphere. Among both sets of gases are precursors of and contributors to pollutants such as tropopospheric ozone, itself a strong greenhouse gas, particulate matter, and other pollutants that affect human health. Fossil fuel combustion, production, or transportation is a significant source for many of these substances. Climate policy can thus affect traditional air pollution or air pollution policy can affect climate. Health effects of acute or chronic exposure to air pollution include increased asthma, lung cancer, heart disease and bronchitis among others. These, in turn, redirect resources in the economy toward medical expenditures or result in lost labor or non-labor time with consequent effects on economic activity, itself producing a potential feedback on emissions levels. Study of these effects ultimately requires a fully coupled earth system model. Toward that end we develop an approach for introducing air pollution health impacts into the Emissions Prediction and Policy Analysis (EPPA) model, a component of the MIT Integrated Global Systems Model (IGSM) a coupled economics-chemistry-atmosphere-ocean-terrestrial biosphere model of earth systems including an air pollution model resolving the urban scale. This preliminary examination allows us to consider how climate policy affects air pollution and consequent health effects, and to study the potential impacts of air pollution policy on climate. The novel contribution is the effort to endogenize air pollution impacts within the EPPA model, allowing us to study potential economic effects and feedbacks. We find strong interaction between air pollution and economies, although precise estimates of the effects require further investigation and refined resolution of the urban scale chemistry model.